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Topological phases of matter have remained an active area of research in the last few decades. Periodic
driving is a powerful tool for enriching such exotic phases, leading to various phenomena with no static
analogs. One such phenomenon is the emergence of the elusive π=2 modes, i.e., a type of topological
boundary state pinned at a quarter of the driving frequency. The latter may lead to the formation of Floquet
parafermions in the presence of interaction, which is known to support more computational power than
Majorana particles. In this Letter, we experimentally verify the signature of π=2 modes in an acoustic
waveguide array, which is designed to simulate a square-root periodically driven Su-Schrieffer-Heeger
model. This is accomplished by confirming the 4T-periodicity (T being the driving period) profile of an
initial-boundary excitation, which we also show theoretically to be the smoking gun evidence of π=2modes.
Our findings are expected to motivate further studies of π=2 modes in quantum systems for potential
technological applications.
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Introduction.—Topology plays a significant role in con-
densed matter physics through its ability to protect certain
physical properties against perturbations. Its presence has
been identified in a variety of systems including topological
insulators [1,2], topological semimetals [3,4], and topologi-
cal superconductors [5,6]. These topological phases share
one defining feature, i.e., they support robust boundary
modes protected by a global quantity, i.e., the topological
invariant.
Since the last decade, the implementation of periodic

driving in studies of topological phases has been extensively
pursued [7–25]. Not only does periodic driving have the
capability to turn an otherwise normal system into a
topological one [7–9], but it can also generate unique
topological features with no static counterparts [19–26].
The latter is made possible by the periodicity nature of
quasienergy, i.e., the analog of energy in time-periodic
systems. It prominently includes the coexistence of boun-
dary zero and π modes, respectively pinned at quasienergy
of zero and half the driving frequency. Such a feature has
recently been exploited for quantum computing applications
[27–30].
Periodically driven (hereafter referred to as Floquet)

systems can support even richer topological features
beyond the above zero and π modes. The so-called π=2
modes are of particular interest, i.e., boundary modes
pinned at a quarter of the driving frequency. They were

first theoretically proposed in [31] as edge modes arising
in a chain of periodically driven parafermions. By con-
trast, π modes were first theoretically proposed in [25] as
edge modes arising in a chain of periodically driven
Majorana fermions. Since parafermion modes are known
to support richer topologically protected quantum gate
operations than their Majorana counterparts [32], such
π=2 modes emerge as the more attractive variants of the
more common π modes. On the other hand, while π modes
have been previously observed [16,23], to our knowledge,
π=2 modes have not been experimentally confirmed.
That the π=2mode was proposed either in a very elaborate
driven system [22] or in a strongly interacting system
[31] contributes to the difficulty in experimentally real-
izing them.
In this Letter, we adapt the theoretical square-root

procedure of Refs. [33,34] to construct an experimentally
feasible Floquet system capable of supporting the elusive
π=2 modes, along with zero and π modes simultaneously.
We then adopt the experimental technique of Ref. [23] to
realize such a system in acoustic waveguides and sub-
sequently detect π=2 modes. To this end, we theoretically
show and experimentally verify that a state injected at one
end of the system displays a 4T periodicity when zero, π,
and π=2 modes coexist. Our experiments not only confirm
the existence of π=2 modes but also capture their signature
when zero and π modes are additionally present.
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Square-root Floquet SSH model.—We consider a system
of two one-dimensional (1D) chains subjected to the two-
time-step Hamiltonian

HrootðtÞ ¼
(
hroot1 nT < t≤ ðnþ 1

2
ÞT

hroot2 ðnþ 1
2
ÞT < t≤ ðnþ 1ÞT ; ð1Þ

where

hroot1 ¼
XN
j¼1

X
S¼A;B

Mjj; S; αihj; S; βj þ H:c:; ð2Þ

hroot2 ¼
XN−1

j¼1

Jαjj; B; αihjþ 1; A; αj

þ
XN
j¼1

Jβjj; A; βihj; B; βj þ H:c: ð3Þ

jj; S; ξi denotes a state at sublattice S ¼ A, B of the jth site
in the chain species ξ ¼ α, β, and n ∈ Z. It is schematically
shown in Fig. 1(b) and can be understood as a nontrivial
square root of a Floquet Su-Schrieffer-Heeger (SSH) model

[see Fig. 1(a)]. Specifically, the parent model describes a
system of a single 1D chain subjected to a two-time-step
Hamiltonian of the form Eq. (1), such that during the first
and second half of the period, it is respectively given by

hparent1 ¼
XN−1

j¼1

Jαjj; Bihjþ 1; Aj þ H:c:; ð4Þ

hparent2 ¼
XN
j¼1

Jβjj; Aihj; Bj þ H:c: ð5Þ

The associated one-period time-evolution operator (here-
after referred to as the Floquet operator) is then given by

Uparent ¼Uparent
2 Uparent

1 ; whereUparent
j ¼ exp

�
−ihparentj

T
2

�
:

ð6Þ

The use of an additional chain in our square-root model then
introduces an ancillary degree of freedom that facilitates the
square-rooting procedure [33] in the spirit of obtaining the
Dirac equation [35] from the Klein-Gordon equation
[36,37] (see also Ref. [38], as well as related theoretical
[39–52] and experimental [53–56] studies).
Equation (1) can be intuitively understood as follows. A

particle initially living in chain α (β) evolves under hparent1

(hparent2 ) for the first half of the period and hops to the other
chain in the second half of the period. The particle, which is
now in chain β (α), then evolves under hparent2 (hparent1 ) for
another half period and hops back to the original chain α (β)
at the end of the second period. Therefore, the particle
effectively evolves one full period under the parent
Hamiltonian when viewed over two periods. On the other
hand, the particle undergoes a generally nontrivial evolution
over one period that can give rise to new physics, including
π=2 modes, the main focus of this Letter.
Mathematically, at MT ¼ ð2mþ 1Þπ with m ∈ Z, the

Floquet operator associated with Eq. (1) can be easily
obtained as

Uroot ¼ exp

�
−ihroot2

T
2

�
exp

�
−ihroot1

T
2

�

¼
�

0 −iUparent
1

−iUparent
2 0

�
: ð7Þ

Indeed, up to a unitary transformation, Uparent is repro-
duced by ðUrootÞ2 ¼ −diagðUparent

1 Uparent
2 ; Uparent

2 Uparent
1 Þ,

as expected from our intuition above. As MT deviates
from ð2mþ 1Þπ, ðUrootÞ2 is no longer diagonal and
directly related to Uparent. However, owing to the robust-
ness of Floquet phases and as numerically demonstrated in

(a)

(b)

(c)

FIG. 1. Schematic of (a) Floquet SSH model and (b) its square-
root counterpart. (c) Phase diagram for square-root and parent
Floquet system.
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Ref. [33], ðUrootÞ2 still exhibits the physics expected from
its parent system provided MT − ð2mþ 1Þπ is not too
large.
Depending on the system parameter values, the parent

Floquet SSH model may support either a pair of zero modes
only, a pair of π modes only, a pair of zero modes and a pair
of π modes, or neither of zero modes nor π modes. Here, 0
(π) modes are defined as the eigenstates of Uparent with
eigenvalue 1 (−1). As elucidated in Ref. [33], the presence
of π modes in the parent system leads to the coexistence of
zero modes and π modes in its square-root counterpart,
whereas the presence of zero modes in the former leads to
the emergence of the elusive π=2 modes in the latter.
Consequently, the proposed square-root Floquet SSH model
possesses the phase diagram shown in Fig. 1(c) (see
Supplemental Material [57] for its derivation).
Topological edge modes.—In Figs. 2(a)–2(c), we numeri-

cally calculate the quasienergy spectrum of the Floquet SSH
model and its square-root counterpart at a representative
point from each of the four phases in Fig. 1(c). There, in-gap
quasienergy solutions at 0,�π=T, and�π=ð2TÞ correspond
to zero, π, and π=2 modes, respectively, whose edge-
localization nature is confirmed in Figs. 2(b) and 2(c) and
the Supplemental Material. Figure 2(c) further verifies the
robustness of zero, π, and π=2 modes in the square-root
model against imperfection in the parameter M. There, all

modes remain gapped from the rest of the bulk spectrum,
with zero and π modes additionally remaining exactly
pinned 0 and π=T quasienergy, respectively, whereas π=2
modes are slightly shifted away from�π=ð2TÞ quasienergy.
The quasienergy rigidity of the system’s zero and π

modes originates from the presence of chiral symmetry
inherited from its parent model. Indeed, by writing the
system’s Floquet operator in the momentum space and
under the symmetric time frame [60,61], i.e., the shift of
time origin to t0 ¼ T=4, we obtain

U rootðkÞ ¼ e−iH
root
1

ðkÞT
4e−iH

root
2

ðkÞT
2e−iH

root
1

ðkÞT
4; ð8Þ

where

Hroot
2 ðkÞ ¼ Jα

τ0 þ τ3
2

ðcos kσ1 þ sin kσ2Þ þ Jβ
τ0 − τ3

2
σ1;

Hroot
1 ðkÞ ¼ Mτ1σ0; ð9Þ

τ1=2=3 and σ1=2=3 are Pauli matrices acting on the chain
species and sublattice subspace, respectively, and k is the
quasimomentum. It can then be verified that CU rootðkÞC† ¼
½U rootðkÞ�†, where C ¼ τ3σ3 is the chiral symmetry operator.
As a result, the system’s quasinergies come in pairs of ε
and−ε. Moreover, the special values ε ¼ 0 and ε ¼ π=T are
at least twofold degenerate and can be chosen to be

(a)

(b)

(c)

FIG. 2. (a) Illustration of quasienergy spectrum for two decoupled copies of parent Floquet system, each containing 10 sites. From left
to right: Jα ¼ 0.9π=T, Jβ ¼ π=T; Jα ¼ π=T, Jβ ¼ 0.9π=T; Jα ¼ 0.9π=T, Jβ ¼ 1.8π=T; Jα ¼ 1.8π=T, and Jβ ¼ 0.9π=T. (b) and
(c) Illustration of the quasienergy spectrum for a square-root Floquet system with 20 sites under (b)M ¼ π=T, (c)M ¼ 1.3π=T, and the
same parameters Jα and Jβ as panel (a).
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simultaneous �1 eigenvalues of C. The discreteness of
C eigenvalues in turn protects the resulting degenerate
eigenstates, i.e., zero and π modes, respectively.
At MT ¼ ð2mþ 1Þπ, there exists an additional subchiral

symmetry that operates as Cð1=2ÞU rootðkÞC†ð1=2Þ ¼ −U rootðkÞ,
where Cð1=2Þ ¼ τ3σ0 [34,62]. It guarantees that the quasie-
nergies of U rootðkÞ come in pairs of ε and ε� π=T.
Consequently, the special values ε ¼ �π=ð2TÞ are at least
twofold degenerate and can be chosen as simultaneous �1
eigenvalues of CCð1=2Þ. The discreteness of CCð1=2Þ eigen-
values then protects the resulting π=2 modes. Such a
subchiral symmetry no longer exists at MT ≠ ð2mþ 1Þπ,
thus allowing π=2 modes to generally deviate from their
expected �π=ð2TÞ quasienergy values. However, as
demonstrated in the Supplemental Material, at small ϵ≡
jMT − ð2mþ 1Þπj, the shift in the quasienergy of the π=2
modes in the blue regime of Fig. 1 is at least second order
in ϵ. This, coupled with the fact that their eigenmodes profile
is similar to the ideal MT ¼ ð2mþ 1Þπ case, justifies the
term π=2 modes even as the MT ¼ ð2mþ 1Þπ condition
cannot be exactly achieved in our experiments.
The coexistence of zero, �π=2, and π modes, i.e., in the

blue regime of Fig. 1(c), leads to a dynamical signature that
we manage to observe in our experiment. In particular, by
noting that Urootj0i ¼ j0i, Urootj � π=2i ¼∓ ij � π=2i,
Urootjπi ¼ −jπi, for zero, �π=2, and π modes respectively,
any superposition jψi ¼ aj0i þ bjπ=2i þ cjπi þ dj − π=2i
yields 4T periodicity. Indeed, throughout the period, each
component of jψi acquires a relative phase of π=2, thus
transforming it into a distinct state. After four periods, such a
relative phase accumulates into 2π, thus recovering the state
jψi. On the other hand, in the absence of �π=2 modes, i.e.,
the orange regime of Fig. 1(c), the remaining coexistence
of zero and π modes can similarly be probed by the
2T-periodicity signature of a state comprising a super-
position of j0i and jπi.
Experimental realization in acoustic waveguides.—We

will now present our experimental observation of π=2
modes in an acoustic waveguide array. To facilitate the
theoretical description of our experiment, we consider
the slowly varying amplitude (SVA) approximation
jð∂2pÞ=ð∂z2Þj ≪ kzjð∂pÞ=ð∂zÞj and take p → peikzz to
the Helmholtz equation ð∇2 þ k2Þp ¼ 0, where p is the
acoustic pressure. After SVA approximation, we get
the paraxial wave equation, which can be written in the
Schrödinger form

i
∂p
∂z

¼ Heffp ¼
�
−
∇2⊥
2kz

−
k2 − k2z
2kz

�
p; ð10Þ

with∇2⊥ ¼ ∂
2
x þ ∂

2
y as the 2D Laplacian operator. By further

employing a tight-binding approximation, Eq. (10) can then
simulate the lattice model of Eq. (1) with tunable hopping
amplitudes (see Supplemental Material). Here, “time” is

simulated by “propagation direction” z. This scheme is the
“paraxial acoustics,” which is analogous to the “paraxial
photonics” [63–66]. By periodically modulating the shape
of the waveguides along the z direction, a Floquet system
can be simulated. In this case, the wave function dynamics
can be probed by detecting the pressure in the z direction.
To realize the acoustic analogy of Eq. (1), we construct

the acoustic waveguide array (or 2D resonator system) as
shown in Figs. 3(a)–3(c). The whole structure is covered by
hard walls and filled with the air of density 1.8 kg=m3 and
sound velocity 347 m=s. The length of one Floquet period
is L ¼ 133 mm, and eight Floquet periods are used in the
simulation and experiment. In this setup, the waveguides
(2D resonators) and link tubes simulate the lattice sites and
nearest-neighboring hopping, respectively. As detailed in
the Supplemental Material, the geometry of waveguides
and the number of link tubes between two adjacent wave-
guides determine the hopping strength [Jα, Jβ, M in
Eq. (1)], respectively. Here, for example, Jα ¼ 0.850π=T
can be satisfied by six link tubes at 8 kHz, where T is
the Floquet period in acoustic structure. The cross profile of
the waveguide is a square with a side length a ¼ 10 mm.
The height and width of the coupling tubes are a and the
length is w ¼ 5 mm [see Fig. 3(a)]. To better simulate the
“time” dimension from a “spatial” one, radiation boundary
conditions at z ¼ 0 and z ¼ 8L are chosen in our simu-
lation to suppress the reflection. In the experiment, acoustic
absorbing materials are inserted at z ¼ 0 and z ¼ 8L to
absorb acoustic waves impinging on them. Furthermore,
we choose 8 kHz as the working frequency to reduce the
reflection from coupling tubes (see Supplemental Material
for details). After these implementations, the sound waves
propagate along theþz direction with negligible reflection,
effectively behaving like time evolution.
We fabricated two experimental samples with different

effective parameter values via 3D printing technology. For
each sample, we drill 780 identical and equally spaced
holes, inside which a microphone is inserted and responds
to pressure [see Fig. 3(c)]. When not in use, these holes are
covered by plugs. To numerically verify the dynamical
signature of the π=2 edge modes, a speaker is placed at
z ¼ 0 on the lower-right corner [indicated by a red arrow
in Fig. 3(b)], which generates an initial state j1; A; αi.
While such a state might in principle still have nonzero
overlap with the bulk modes, it is negligibly small as
compared with the overlap with the boundary modes. In
this case, the dynamics of such excitation are dominated
by its boundary mode constituents. Moreover, as detailed
in the Supplemental Material, it is approximately ∝ j0i þ
jπ=2i þ jπi − j − π=2i or ∝ j0i þ jπi at the system param-
eters considered in our experiment, thus resulting in a
clear 4T-periodic or 2T-periodic profile, respectively.
By measuring the acoustic pressure on the sample at

some specific z values, the stroboscopic time evolution
profile of the effective square-root Floquet SSH model can
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be probed. A broadband sound signal is used, and Fourier
transformation is performed to get 8 kHz field distribution.
Our experimental results are summarized in Figs. 3(e)
and 3(g), which are according to the blue and orange regime
of Fig. 1(c), respectively. There, we only considered eight
Floquet cycles for the following two reasons. First, due to
the presence of loss in the experiment, the signal becomes
weaker after a long evolution, thus making it harder to
extract the corresponding mode profile. Second, consistent
with our full-wave simulation [Figs. 3(d) and 3(f)], the
presence and absence of π=2 modes already manifest
themselves in the clear 4T- and 2T-period behavior of
Figs. 3(e) and 3(g) respectively. Therefore, prolonging the
number of Floquet cycles will not yield new information.
Concluding remarks.—In this Letter, we have proposed

and experimentally realized a square-root Floquet SSH
model, which exhibits “π=ð2TÞ quasienergy edge states”
termed the π=2 modes, in coexistence with the more
common zero and π modes. These exotic π=2 modes
originate from the zero modes in the parent system and
can thus be predicted by the topological invariant character-
izing the latter, i.e., ν0 as defined in the Supplemental
Material. We have further identified a subchiral symmetry
that protects these π=2 modes, as well as their dynamical
signature, both of which enable their successful observation
in our acoustic experiment.
Recently, Floquet topological systems which support

coexisting zero and π modes were shown to be advantageous

for quantum computation [28–30].Moreover, the experimen-
tally verified π=2 modes have been identified as the building
blocks of the more attractive Z4 parafermions [22]. The
realization of coexisting zero, π=2, and π modes reported
in this Letter thus opens up exciting opportunities for superior
topological quantum computing beyond Majorana particles.
These opportunities are further amplified by the fact that the
present setup could be straightforwardly generalized to obtain
other fractional 2π=k edgemodes (see SupplementalMaterial
for detail). Indeed, noting that many recent studies on the
quantum computational aspects of Majorana fermions are
motivated by the experimental signature ofMajorana zero and
πmodes, it is expected that our results shall similarly stimulate
similar studies onparafermions.While the present experiment
concerns a classical system, it is expected that some of our
findings can be carried over to the quantum realm.To this end,
the simulation of braiding among the various edge modes we
observed in our acoustic setup, e.g., achieved by adapting the
technique of Ref. [67], may present a promising future
direction.
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FIG. 3. (a) One Floquet period in the waveguide array, which hosts 0; π=2; π modes. An initial excitation was put at the red star in the
simulation. The purple color is the hard boundary, and the light blue represents the air-filled hollow region. (b) and (c) Photo of the
fabricated sample with plugs removed. The source was put in the lower-right corner in the measurement. (d) and (f) Mode evolution of
full-wave simulation with 0; π=2; πð0; πÞmodes appear at 8 kHz accordingly. (e) and (g) Experimental counterparts of panels (d) and (f),
respectively. The effective parameter values for the simulation and experimental results are (d),(e) Jα ¼ 1.668π=T, Jβ ¼ 0.850π=T,
M ¼ 0.976π=T and (f),(g). Jα ¼ 0.850π=T, Jβ ¼ 1.668π=T, M ¼ 0.976π=T.
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