
Trace Anomaly as Signature of Conformality in Neutron Stars

Yuki Fujimoto ,1,* Kenji Fukushima,2,† Larry D. McLerran,1,‡ and Michał Praszałowicz 3,1,§

1Institute for Nuclear Theory, University of Washington, Box 351550, Seattle, Washington 98195, USA
2Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

3Institute of Theoretical Physics, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland

(Received 2 August 2022; revised 1 November 2022; accepted 14 November 2022; published 16 December 2022)

We discuss an interpretation that a peak in the sound velocity in neutron star matter, as suggested by the
observational data, signifies strongly coupled conformal matter. The normalized trace anomaly is a
dimensionless measure of conformality leading to the derivative and the nonderivative contributions to the
sound velocity. We find that the peak in the sound velocity is attributed to the derivative contribution from
the trace anomaly that steeply approaches the conformal limit. Smooth continuity to the behavior of high-
density QCD implies that the matter part of the trace anomaly may be positive definite. We discuss a
possible implication of the positivity condition of the trace anomaly on the M-R relation of the neutron
stars.

DOI: 10.1103/PhysRevLett.129.252702

Introduction.—Massless quantum chromodynamics
(QCD) exhibits conformal symmetry, and the expectation
value of the trace of the energy-momentum tensor,
hΘi≡ hTμ

μi, vanishes at the classical level [1]. Conformal
symmetry, however, is broken at the quantum level. This
violation is quantified via the trace anomaly, which has the
anomalous term proportional to the gluon condensate owing
to the running of the strong coupling constant αs.
At finite temperature T and baryon chemical potential

μB, the condensate should depend on T and μB and we can
decompose the trace anomaly into the vacuum and the
matter parts. The matter part of the trace anomaly can be
expressed in terms of thermodynamic quantities, i.e., the
energy density ε and the pressure P, as hΘiT;μB ¼ ε − 3P.
An interesting question is how hΘiT;μB changes near the
transition point. At finite T and μB=T ≪ 1 the lattice-QCD
simulations provide the first-principles estimate. In
Refs. [3,4] the normalized trace anomaly ðε − 3PÞ=T4

(referred to as the interaction measure), in the pure
Yang-Mills theory was found to have a sharp peak at the
deconfinement temperature Tc and a tail approaching zero
asymptotically at high T.
This enhancement is understood from the thermal

modification of the condensate. The gluon condensate
melts near the transition point leading to a peak in the
thermal part of the trace anomaly. Lattice measurements of
the trace anomaly have a striking impact on our under-
standing of deconfined matter. As pointed out in the section
“Discussion of conformal symmetry” in Ref. [5] the trace
anomaly behaves like hΘiT ∝ T even for T ≳ 2Tc sug-
gesting that a strongly coupled gluonic system is realized in
the deconfined phase.
The trace anomaly has been also calculated in full

QCD with dynamical quarks (e.g., Refs. [6–8]). The

hard-thermal-loop perturbation theory (HTLpt) is success-
ful in reproducing the trace anomaly with quarks already
around T ∼ 2Tc, while the agreement between the lattice
and the HTLpt results for the pure Yang-Mills theory
begins only around T ∼ 8Tc [9].
These high-T studies motivate us to investigate the trace

anomaly at high baryon density. For baryon density
nB > n0, where n0 ≈ 0.16 fm−3 is the saturation density,
QCD thermodynamics is elusive because the lattice calcu-
lations are hampered by the sign problem. The only ab initio
methods are the chiral effective field theory (χEFT) around
nB ∼ n0 (see, e.g., Ref. [10] for a recent review), and the
perturbative QCD (pQCD) at high density where αs is
sufficiently small [11,12] (see also Refs. [13–17] for recent
developments).
To constrain thermodynamic quantities or the equation

of state (EOS), we can also rely on the empirical knowledge
from the neutron star (NS) observations; the sound velocity,
v2s ≡ dP=dε, characterizes the EOS. Recently, a nonmo-
notonicity of v2s as a function of density has been
conjectured [18–20]. For instance, a quarkyonic description
of dense matter [21–30] in the large-Nc limit [31,32] leads
to the rapid increase, accompanied by a peak of the sound
velocity (see also Refs. [33–36]).
At asymptotic densities where QCD recovers confor-

mality, v2s → 1=3 is expected; this limit is commonly
referred to as the conformal limit, and thus 1=3 − v2s serves
a measure of conformality. There was a conjecture claiming
1=3 − v2s ≥ 0 at all densities [37]; see also Ref. [38].
However, the recent analyses of NS data including the
two-solar-mass pulsars [39–42] are in strong tension with
1=3 − v2s ≥ 0 at sufficiently high nB [43–47], which seems
to challenge the conformality in dense NS matter in
deep cores.
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Here, we propose the trace anomaly scaled by the energy
density as a new measure of conformality. The sound
velocity is expressed solely in terms of the normalized trace
anomaly, and the latter is a more comprehensive quantity
than v2s . Here, we extract the trace anomaly from the EOSs
inferred from the NS data [45,48–50]. We discuss the
conformal limits hΘiT;μB → 0 and v2s → 1=3, and clarify the
difference. We show that the enhancement in the sound
velocity is not in contradiction with conformality. We then
discuss the possibility that the trace anomaly is positive
definite at all densities. We give a number of arguments for
the positivity of the trace anomaly and discuss implications
for NS physics.
Trace anomaly at finite baryon density.—Scale trans-

formations lead to the dilatation current jνD ¼ xμTμν for
which ∂νjνD ¼ Tμ

μ ¼ Θ [51]. For conformal theories Θ ¼ 0
but in QCD both quark masses and the trace anomaly
explicitly break the scale invariance as [52,53]

Θ ¼ β

2g
Fa
μνF

μν
a þ ð1þ γmÞ

X
f

mfq̄fqf; ð1Þ

where β=2g ¼ −ð11 − 2Nf=3Þαs=8π þOðα2sÞ is the QCD
beta function and γm ¼ 2αs=π þOðα2sÞ is the anomalous
dimension of the quark mass.
At finite T and/or μB, the expectation value involves a

matter contribution as hΘi ¼ hΘiT;μB þ hΘi0 where hΘi0
represents the vacuum expectation value at T ¼ μB ¼ 0. In
this Letter, we will focus on the matter contribution only
given by

hΘiT;μB ¼ ε − 3P: ð2Þ

It is customary to call hΘiT;μB the trace anomaly too. If
thermal degrees of freedom are dominated by massless
particles as is the case in the high-T limit, the Stefan-
Boltzmann law is saturated and P ∼ T4 at high temperature
or P ∼ μ4B at high density, so that ε ¼ 3P. Conversely, using
thermodynamic relations, one can show that hΘiT;μB ¼ 0
implies P ∝ T4 or P ∝ μ4B, respectively. Thus, hΘiT;μB is a
probe for the thermodynamic content of matter.
The physical meaning of the trace anomaly is transparent

from the following relations:

hΘiT;μB¼0

T4
¼ T

dνT
dT

;
hΘiT¼0;μB

μ4B
¼ μB

dνμ
dμB

; ð3Þ

where we quantify the effective degrees freedom by
νT ≡ P=T4 and νμ ≡ P=μ4B for hot matter at μB ¼ 0 and
dense matter at T ¼ 0, respectively. These imply that the
trace anomaly is proportional to the increasing rate of the
thermal degrees of freedom as the temperature or density
grows up.

Here, we propose to use

Δ≡ hΘiT;μB
3ε

¼ 1

3
−
P
ε

ð4Þ

as a measure of the trace anomaly [54]. The thermodynamic
stability and the causality require P > 0 and P ≤ ε,
respectively. Therefore, −2=3 ≤ Δ < 1=3, and Δ → 0 in
the scale-invariant limit.
We decompose the sound velocity as

v2s ¼
dP
dε

¼ v2s;deriv þ v2s;nonderiv; ð5Þ

where the derivative and the nonderivative terms are

v2s;deriv ≡ −
dΔ
dη

; v2s;nonderiv ≡ 1

3
− Δ: ð6Þ

Here, η≡ lnðε=ε0Þ and ε0 is the energy density at nuclear
saturation density, i.e., ε0 ¼ 150 MeV=fm3. From these
expressions it is evident that the restoration of conformality
renders Δ → 0 and dΔ=dη → 0, so that v2s ≃ v2s;nonderiv →
1=3 in the conformal limit at asymptotically high density.
Trace anomaly from the NS observations.—In Fig. 1,

we show Δ extracted from various PðεÞ constrained by NS
observables [45,48–50]. The error band represents the 1σ
credible interval corresponding to the error in PðεÞ. Since ε
is treated as an explanatory variable, the relative error in
ΔðεÞ is assumed to be the same as that in PðεÞ.
For all these data Δ ∼ 0 within the error at relatively low

energy density. Note that the red dash-dotted curve in Fig. 1

FIG. 1. Normalized trace anomaly readout from four indepen-
dent EOSs inferred from NS data; the light blue solid line and
error band from Ref. [45], the orange dashed lines from Ref. [48],
the green dotted lines from Ref. [49], and the red dot-dashed lines
from Ref. [50]. We show two ab initio calculations (χEFT [46]
and pQCD [12]) and the red line marked as (a) and the blue dotted
line marked as (b) are interpolations with 1σ band by the
Gaussian process applied to different regions of NS data.
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follows from the analysis including pQCD as an input [50],
which makes the tendency Δ ∼ 0 more apparent.
Figure 1 shows that the (normalized) trace anomaly in

the present experimental range monotonically decreases
with increasing ε. At asymptotically high density Δ → 0
should be eventually reached. It is nontrivial that the NS
observations favor Δ ∼ 0 at intermediate ε, well below the
asymptotic density. Here, we elucidate that this quick
approach to conformality causes a prominent peak in v2s .
We emphasize that, even if the behavior toward Δ → 0 is
monotonic in ε, v2s > 1=3 can be induced.
The minimal parametrization of monotonically decreas-

ing Δ is

Δ ¼ 1

3
−
1

3

1

e−κðη−ηcÞ þ 1

�
1 −

A
Bþ η2

�
: ð7Þ

The crossover density to conformal matter is characterized
by ηc and the width of the crossover region is 1=κ.
Equation (7) has the correct limit Δ → 1=3 for η ≪ ηc
andΔ ∼ ðA=3Þ=ðBþ η2Þ → 0 for η ≫ ηc. Nonzero A and B
represent the pQCD logarithmic tails that are not well
constrained from the NS data. One parameter set that fits
the observational data reads

κ ¼ 3.45; ηc ¼ 1.2 A ¼ 2; B ¼ 20: ð8Þ

The fit together with data is shown in the inset plot in Fig. 2.
We show v2s computed from Eq. (5) with the help of Eq. (7)
in Fig. 2. In the high density region for η≳ 2, v2s is
dominated by v2s;nonderiv approaching the conformal value,
1=3. At low density for η≲ 1, v2s goes to zero.
The most interesting is the behavior of v2s around

1≲ η≲ 2. This density region corresponds to the energy
scale of the transitional change from nonrelativistic to

relativistic degrees of freedom. There, v2s develops a peak
whose height can become larger than the conformal value.
The dashed and the dash-dotted lines in Fig. 2 show

v2s;deriv and v
2
s;nonderiv, respectively. Because Δ of Eq. (7) is a

monotonic function, v2s;nonderiv smoothly increases with
increasing η. Thus, v2s;deriv exhibits the peak structure.
From this decomposition we clearly recognize that the
peak in v2s is not caused by the violation of the conformal
bound, but it is a signature of the steep approach to the
conformal limit.
We stress that this is quite different from high-T QCD

where the normalized trace anomaly itself has a peak
around Tc, which causes a minimum in the sound velocity.
Along the T axis conformality is restored only at temper-
atures far above Tc. One might have an impression that
conformality in QCD should be associated with the weak
coupling, but it is not necessarily the case. What we find
from Fig. 1 is that conformality quantified by Δ is quickly
restored around 1≲ η≲ 2 and the peak in v2s should be
interpreted as a signature of conformality. The peak
position may well be identified as the point of the slope
change as observed in Ref. [56]. Around this peak αs is not
yet small and the state of matter for η≳ 2 should be
regarded as “strongly coupled conformal matter.”
We note that v2s → 1=3 generally occurs at lower density

than Δ → 0. We can illustrate this in a simple model with
the vector interaction between the currents whose energy
density is given by

εðnÞ ¼ mNnB þ C
Λ2

n2B; ð9Þ

where mN ¼ NcΛQCD is the baryon mass, and C and
Λ are the typical interaction strength and the scale of
the system, respectively. This can be thought of as
the generalization of the mean-field quantum hadro-
dynamics [57]. Note that μB ¼ mN þ 2ðC=Λ2ÞnB, and P ¼
ðC=Λ2Þn2B. This means that Θ ¼ mNnB − 2ðC=Λ2Þn2B and
v2s ¼ 2ðC=Λ2ÞnB=½mN þ 2ðC=Λ2ÞnB�. The conformal
point Δ → 0 is reached when nB ∼ NcΛ3

QCD=ð2CÞ. The
condition of v2s → 1=3 is reached earlier at nB ∼ NcΛ3

QCD=ð4CÞ. So in this model the density at which v2s surpasses the
conformal limit is always lower than that for the trace
anomaly.
Strongly coupled conformal matter.—In Fig. 1 we

overlay the currently available ab initio calculations of
χEFT [46] and pQCD [12] on the observational data that,
however, do not constrain Δ beyond ε=ε0 ∼ 101. We
utilized the Gaussian process for the interpolation using
NS data from the machine learning [45] up to the density
ε=ε0 ≲ 4 (a) and using all data up to ε=ε0 ∼ 8 (b). Details
about the choice of the kernel and the noise will be reported
elsewhere.
In the conservative inference in (a) Δ stays positive or

slightly negative after quickly approaching zero, which
implies a possible bound, Δ ≥ 0. Once the conformal limit

FIG. 2. The speed of sound and its decomposition (6) calcu-
lated from (7) as shown in the inset plot. The horizontal axis is the
logarithmic energy η normalized to the value at the saturation
point ε0 ¼ 150 MeV=fm3.
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of the trace anomaly is saturated, the underlying theory
becomes approximately scale invariant and the EOS
drastically simplifies. Baryons are strongly interacting,
and yet the resultant EOS of strongly coupled conformal
matter is P ≈ ε=3.
If the mean value from the machine learning inference is

extrapolated, the Gaussian process prefers (b). In this case
Δ has a nonmonotonic structure with two nodes.
Accordingly, there should be a density window with
dΔ=dε > 0 (i.e., v2s;ðderivÞ < 0) between the two zeros.
The peak in v2s is hardly affected, however, the maximum
of v2s is pulled up as compared to (a). If v2s;ðderivÞ happens to
be negative large, v2s approaches zero after the peak, which
causes softening of the EOS similarly to the first-order
phase transition. Intuitively, the peak in v2s is generated by
EOS stiffening, but the soft pQCD EOS at high density
requires EOS softening at intermediate density.
Is the trace anomaly positive in finite-density QCD?.—

Let us focus on the scenario (a) and consider its implica-
tions. The smooth curve of (a) in Fig. 1 supports a
hypothetical relation, hΘiμB ≥ 0 (equivalently, P ≤ ε=3).
The positivity condition of the QCD trace anomaly has
been often assumed in the literature of finite-T QCD; see,
e.g., Ref. [58]. The lattice-QCD calculations at finite T give
thermodynamic quantities satisfying hΘiT ≥ 0 [6–8].
In general, however, the trace anomaly may not be

positive definite. For example, if the low-energy theory is a
gauge theory governed by a free infrared (IR) fixed point
such as an Abelian gauge theory with massless fermions or
a non-Abelian gauge theory with many massless flavors
[59], where the β function is positive at weak coupling and
hF2i is known to be negative, then the trace anomaly (1)
becomes negative. We also point out that some phenom-
enological nuclear EOSs bear a negative trace anomaly due
to sudden stiffening of the EOS with P > ε=3 [57,60,61].
Moreover, QCD at finite isospin chemical potential [62]
and two-color QCD at finite μB [63,64] produce a negative
trace anomaly.
Nevertheless, in view of the observational data in Fig. 1,

QCD may well enjoy a special property that the matter part
of the trace anomaly is positive definite. One supportive
argument is based on the behavior of the chromoelectric
field E and the chromomagnetic field B. In the chiral limit
only the gluon condensate, hF2iμB ¼ hB2 − E2iμB , contrib-
utes to the trace anomaly. Nuclear matter at low density is
approximated as a gas of nucleons, and the trace anomaly is
positive for each nucleon (that is the nucleon mass squared),
and so the trace anomaly in dilute nuclear matter should be
positive. In the nonrelativistic quarkmodel at higher density,
the interquark interaction is dominantly mediated by the
chromoelectric field, and so the trace anomaly is positive.
Besides,we know for sure that the direct pQCDcomputation
at asymptotic high density gives a positive trace anomaly.
From another perspective the positivity of the trace

anomaly can be motivated as follows. Equation (3) relates

the matter part of the trace anomaly to the density derivative
of effective degrees of freedom νμ. As long as more
effective degrees of freedom are liberated at higher μB,
we can conclude hΘiμB ≥ 0 because of dνμ=dμB ≥ 0. It is
an intriguing question how the above argument could be
modified if color superconductivity is activated with a finite
condensation of quark Cooper pairs.
To prove hΘiμB ≥ 0 directly from QCD is an intriguing

challenge. It is a nontrivial and profound question due to
the composite operator renormalization. Here, we propose a
complementary strategy to test this conjectured inequality
using astronomical observations of NSs, namely, the
maximum mass bound.
One-to-one correspondence is established between the

EOS and MðRÞ (where M is the NS mass as a function of
the NS radius R). In order to find the maximum mass,
MmaxðRÞ, for a given radius R. we assume a standard crust
EOS up to nB ≤ 0.5n0 [65,66]. Then, for nB > 0.5n0 we
identify MmaxðRÞ by taking the maximally stiff or soft
EOS parametrizations. Technical details are outlined in
Refs. [67,68] (see also Ref. [46]).
Some maximally stiff EOS may render negative Δ. In

Fig. 3 the dotted line represents the originalMmaxðRÞ, while
the black solid line shows MmaxðRÞ for the EOS with the
Δ ≥ 0 condition taken into account. Performing the EOS
scan we find the gray shaded region that is incompatible
with the Δ ≥ 0 condition. For completeness we overlay
three current radius measurements obtained with two
different methods; namely, spectral measurement of
4U 1820-30 and SAX J1748.9-2021 [69], as well as the
timing measurement of J0740þ 6620 from NICER
[70,71]. We also plot the M-R relations from empirical
nuclear EOSs [61,72–75]. From Fig. 3 we can say that the
Δ ≥ 0 condition has a phenomenological impact to tighten

FIG. 3. The effect of the Δ ≥ 0 bound on the NS M-R relation.
The black solid (dotted) line shows the maximum mass configu-
ration for the EOS with (without) the Δ ≥ 0 bound. We also
overlay the measurement of NSs and the M-R relations (thin
dashed curves) corresponding to empirical nuclear EOSs from
Refs. [61,72–74] and two variants from Refs. [75,83].
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the allowed M-R region. In Fig. 3 we put a thin line at
M=M⊙ ¼ 2 as a guide for the eye. If the maximum mass is
larger as reported in Refs. [42,76], our proposed bound
would exclude EOSs that lead to sufficiently heavy mass
but small R inside the gray shaded region. We propose
further systematic comparisons of results with and without
our positivity condition as well as the hypothesised con-
formality bound on the sound velocity for other observables
such as the tidal deformability along the lines of, e.g.,
Refs. [77,78]. Future multimessenger observations,
which are expected to pin down the maximum mass of
NSs [79–82], and radius measurements together with the
tidal deformability inferred from the merger will help to test
our conjecture of the positive trace anomaly.

We thank Neill Warrington for discussions. Y. F. would
like to acknowledge useful conversations with Greg
Jackson and Sanjay Reddy. K. F. thanks Shi Chen for
illuminating discussions. The work of Y. F., L. M., and
M. P. was supported by the U.S. DOE under Grant No.
DE-FG02-00ER41132. K. F. was supported by JSPS
KAKENHI Grants No. 22H01216 and No. 22H05118.

*yfuji@uw.edu
†fuku@nt.phys.s.u-tokyo.ac.jp
‡mclerran@me.com
§michal.praszalowicz@uj.edu.pl

[1] For the non-Abelian gauge theories coupled to fermions
scale invariance implies conformality; see Ref. [2].
Throughout this paper conformality means hΘi ¼ 0.
Conversely, we dub hΘi ≠ 0 as a trace anomaly.

[2] J. Polchinski, Phys. Rev. D 27, 1320 (1983).
[3] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland,

M. Lutgemeier, and B. Petersson, Phys. Rev. Lett. 75, 4169
(1995).

[4] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland,
M. Lutgemeier, and B. Petersson, Nucl. Phys. B469, 419
(1996).

[5] D. E. Miller, Phys. Rep. 443, 55 (2007).
[6] M. Cheng et al., Phys. Rev. D 77, 014511 (2008).
[7] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg,

and K. K. Szabo, Phys. Lett. B 730, 99 (2014).
[8] A. Bazavov, T. Bhattacharya, C. DeTar, H. T. Ding, S.

Gottlieb et al. (HotQCD Collaboration), Phys. Rev. D 90,
094503 (2014).

[9] J. O. Andersen, L. E. Leganger, M. Strickland, and N. Su,
Phys. Rev. D 84, 087703 (2011).

[10] C. Drischler, J. W. Holt, and C. Wellenhofer, Annu. Rev.
Nucl. Part. Sci. 71, 403 (2021).

[11] B. A. Freedman and L. D. McLerran, Phys. Rev. D 16, 1130
(1977); 16, 1147 (1977); 16, 1169 (1977).

[12] A. Kurkela, P. Romatschke, and A. Vuorinen, Phys. Rev. D
81, 105021 (2010).

[13] T. Gorda, A. Kurkela, P. Romatschke, S. Säppi, and A.
Vuorinen, Phys. Rev. Lett. 121, 202701 (2018).

[14] T. Gorda, A. Kurkela, R. Paatelainen, S. Säppi, and A.
Vuorinen, Phys. Rev. Lett. 127, 162003 (2021); Phys. Rev.
D 104, 074015 (2021).

[15] T. Gorda, A. Kurkela, J. Österman, R. Paatelainen, S. Säppi,
P. Schicho, K. Seppänen, and A. Vuorinen, arXiv:2204
.11279. (2022).

[16] Y. Fujimoto and K. Fukushima, Phys. Rev. D 105, 014025
(2022).

[17] L. Fernandez and J.-L. Kneur, arXiv:2109.02410
[Phys. Rev. Lett. (to be published)].

[18] T. Kojo, AAPPS Bull. 31, 11 (2021).
[19] S. Altiparmak, C. Ecker, and L. Rezzolla, arXiv:2203.

14974.
[20] C. Ecker and L. Rezzolla, arXiv:2207.04417.
[21] L. McLerran and R. D. Pisarski, Nucl. Phys. A796, 83

(2007).
[22] D. C. Duarte, S. Hernandez-Ortiz, K. S. Jeong, and L. D.

McLerran, Phys. Rev. D 104, L091901 (2021).
[23] T. Kojo, Phys. Rev. D 104, 074005 (2021).
[24] T. Kojo and D. Suenaga, Phys. Rev. D 105, 076001 (2022).
[25] K. Fukushima and T. Kojo, Astrophys. J. 817, 180 (2016).
[26] L. McLerran and S. Reddy, Phys. Rev. Lett. 122, 122701

(2019).
[27] K. S. Jeong, L. McLerran, and S. Sen, Phys. Rev. C 101,

035201 (2020).
[28] S. Sen and N. C. Warrington, Nucl. Phys. A1006, 122059

(2021).
[29] G. Cao and J. Liao, J. High Energy Phys. 10 (2020) 168.
[30] N. Kovensky and A. Schmitt, J. High Energy Phys. 09

(2020) 112.
[31] G. ’t Hooft, Nucl. Phys. B72, 461 (1974).
[32] E. Witten, Nucl. Phys. B160, 57 (1979).
[33] R. D. Pisarski, Phys. Rev. D 103, L071504 (2021).
[34] M. Hippert, E. S. Fraga, and J. Noronha, Phys. Rev. D 104,

034011 (2021).
[35] H. K. Lee, Y.-L. Ma, W.-G. Paeng, and M. Rho, Mod. Phys.

Lett. A 37, 2230003 (2022).
[36] M. Marczenko, L. McLerran, K. Redlich, and C. Sasaki,

arXiv:2207.13059.
[37] A. Cherman, T. D. Cohen, and A. Nellore, Phys. Rev. D 80,

066003 (2009).
[38] P. M. Hohler and M. A. Stephanov, Phys. Rev. D 80, 066002

(2009).
[39] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J.

Hessels, Nature (London) 467, 1081 (2010); E. Fonseca
et al., Astrophys. J. 832, 167 (2016).

[40] J. Antoniadis et al., Science 340, 6131 (2013).
[41] H. T. Cromartie et al. (NANOGrav Collaboration), Nat.

Astron. 4, 72 (2020); E. Fonseca et al., Astrophys. J. Lett.
915, L12 (2021).

[42] R. W. Romani, D. Kandel, A. V. Filippenko, T. G. Brink,
and W. Zheng, Astrophys. J. Lett. 934, L18 (2022).

[43] P. Bedaque and A.W. Steiner, Phys. Rev. Lett. 114, 031103
(2015).

[44] I. Tews, J. Carlson, S. Gandolfi, and S. Reddy, Astrophys. J.
860, 149 (2018).

[45] Y. Fujimoto, K. Fukushima, and K. Murase, Phys. Rev. D
98, 023019 (2018); 101, 054016 (2020); J. High Energy
Phys. 03 (2021) 273.

PHYSICAL REVIEW LETTERS 129, 252702 (2022)

252702-5

https://doi.org/10.1103/PhysRevD.27.1320
https://doi.org/10.1103/PhysRevLett.75.4169
https://doi.org/10.1103/PhysRevLett.75.4169
https://doi.org/10.1016/0550-3213(96)00170-8
https://doi.org/10.1016/0550-3213(96)00170-8
https://doi.org/10.1016/j.physrep.2007.02.012
https://doi.org/10.1103/PhysRevD.77.014511
https://doi.org/10.1016/j.physletb.2014.01.007
https://doi.org/10.1103/PhysRevD.90.094503
https://doi.org/10.1103/PhysRevD.90.094503
https://doi.org/10.1103/PhysRevD.84.087703
https://doi.org/10.1146/annurev-nucl-102419-041903
https://doi.org/10.1146/annurev-nucl-102419-041903
https://doi.org/10.1103/PhysRevD.16.1130
https://doi.org/10.1103/PhysRevD.16.1130
https://doi.org/10.1103/PhysRevD.16.1147
https://doi.org/10.1103/PhysRevD.16.1169
https://doi.org/10.1103/PhysRevD.81.105021
https://doi.org/10.1103/PhysRevD.81.105021
https://doi.org/10.1103/PhysRevLett.121.202701
https://doi.org/10.1103/PhysRevLett.127.162003
https://doi.org/10.1103/PhysRevD.104.074015
https://doi.org/10.1103/PhysRevD.104.074015
https://arXiv.org/abs/2204.11279
https://arXiv.org/abs/2204.11279
https://doi.org/10.1103/PhysRevD.105.014025
https://doi.org/10.1103/PhysRevD.105.014025
https://arXiv.org/abs/2109.02410
https://doi.org/10.1007/s43673-021-00011-6
https://arXiv.org/abs/2203.14974
https://arXiv.org/abs/2203.14974
https://arXiv.org/abs/2207.04417
https://doi.org/10.1016/j.nuclphysa.2007.08.013
https://doi.org/10.1016/j.nuclphysa.2007.08.013
https://doi.org/10.1103/PhysRevD.104.L091901
https://doi.org/10.1103/PhysRevD.104.074005
https://doi.org/10.1103/PhysRevD.105.076001
https://doi.org/10.3847/0004-637X/817/2/180
https://doi.org/10.1103/PhysRevLett.122.122701
https://doi.org/10.1103/PhysRevLett.122.122701
https://doi.org/10.1103/PhysRevC.101.035201
https://doi.org/10.1103/PhysRevC.101.035201
https://doi.org/10.1016/j.nuclphysa.2020.122059
https://doi.org/10.1016/j.nuclphysa.2020.122059
https://doi.org/10.1007/JHEP10(2020)168
https://doi.org/10.1007/JHEP09(2020)112
https://doi.org/10.1007/JHEP09(2020)112
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1016/0550-3213(79)90232-3
https://doi.org/10.1103/PhysRevD.103.L071504
https://doi.org/10.1103/PhysRevD.104.034011
https://doi.org/10.1103/PhysRevD.104.034011
https://doi.org/10.1142/S0217732322300038
https://doi.org/10.1142/S0217732322300038
https://arXiv.org/abs/2207.13059
https://doi.org/10.1103/PhysRevD.80.066003
https://doi.org/10.1103/PhysRevD.80.066003
https://doi.org/10.1103/PhysRevD.80.066002
https://doi.org/10.1103/PhysRevD.80.066002
https://doi.org/10.1038/nature09466
https://doi.org/10.3847/0004-637X/832/2/167
https://doi.org/10.1126/science.1233232
https://doi.org/10.1038/s41550-019-0880-2
https://doi.org/10.1038/s41550-019-0880-2
https://doi.org/10.3847/2041-8213/ac03b8
https://doi.org/10.3847/2041-8213/ac03b8
https://doi.org/10.3847/2041-8213/ac8007
https://doi.org/10.1103/PhysRevLett.114.031103
https://doi.org/10.1103/PhysRevLett.114.031103
https://doi.org/10.3847/1538-4357/aac267
https://doi.org/10.3847/1538-4357/aac267
https://doi.org/10.1103/PhysRevD.98.023019
https://doi.org/10.1103/PhysRevD.98.023019
https://doi.org/10.1103/PhysRevD.101.054016
https://doi.org/10.1007/JHEP03(2021)273
https://doi.org/10.1007/JHEP03(2021)273


[46] C. Drischler, S. Han, J. M. Lattimer, M. Prakash, S. Reddy,
and T. Zhao, Phys. Rev. C 103, 045808 (2021).

[47] C. Drischler, S. Han, and S. Reddy, Phys. Rev. C 105,
035808 (2022).

[48] M. Al-Mamun, A.W. Steiner, J. Nättilä, J. Lange, R.
O’Shaughnessy, I. Tews, S. Gandolfi, C. Heinke, and S.
Han, Phys. Rev. Lett. 126, 061101 (2021).

[49] G. Raaijmakers, S. K. Greif, K. Hebeler, T. Hinderer, S.
Nissanke, A. Schwenk, T. E. Riley, A. L. Watts, J. M.
Lattimer, and W. C. G. Ho, Astrophys. J. Lett. 918, L29
(2021).

[50] T. Gorda, O. Komoltsev, and A. Kurkela, arXiv:2204.
11877.

[51] S. Coleman, Aspects of Symmetry: Selected Erice Lectures
(Cambridge University Press, Cambridge, U.K., 1985).

[52] J. C. Collins, A. Duncan, and S. D. Joglekar, Phys. Rev. D
16, 438 (1977).

[53] N. K. Nielsen, Nucl. Phys. B120, 212 (1977).
[54] Our Δ is equivalent to C defined in Ref. [55] apart from an

overall constant, 1=3.
[55] R. V. Gavai, S. Gupta, and S. Mukherjee, Phys. Rev. D 71,

074013 (2005).
[56] E. Annala, T. Gorda, A. Kurkela, J. Nättilä, and A.

Vuorinen, Nat. Phys. 16, 907 (2020).
[57] B. D. Serot and J. D. Walecka, Int. J. Mod. Phys. E 06, 515

(1997).
[58] J. D. Bjorken, Phys. Rev. D 27, 140 (1983).
[59] T. Appelquist, A. G. Cohen, and M. Schmaltz, Phys. Rev. D

60, 045003 (1999).
[60] Y. B. Zel’dovich, Zh. Eksp. Teor. Fiz. 41, 1609 (1961).
[61] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys.

Rev. C 58, 1804 (1998).
[62] D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592

(2001); Phys. At. Nucl. 64, 834 (2001).
[63] S. Cotter, P. Giudice, S. Hands, and J.-I. Skullerud, Phys.

Rev. D 87, 034507 (2013).
[64] K. Iida and E. Itou, arXiv:2207.01253.

[65] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170,
299 (1971).

[66] J.W. Negele and D. Vautherin, Nucl. Phys. A207, 298 (1973).
[67] C. E. Rhoades, Jr. and R. Ruffini, Phys. Rev. Lett. 32, 324

(1974).
[68] S. Koranda, N. Stergioulas, and J. L. Friedman, Astrophys.

J. 488, 799 (1997).
[69] F. Özel, D. Psaltis, T. Güver, G. Baym, C. Heinke, and S.

Guillot, Astrophys. J. 820, 28 (2016).
[70] T. E. Riley et al., Astrophys. J. Lett. 918, L27 (2021).
[71] M. C. Miller et al., Astrophys. J. Lett. 918, L28 (2021).
[72] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 82,

035804 (2010).
[73] L. Engvik, G. Bao, M. Hjorth-Jensen, E. Osnes, and E.

Ostgaard, Astrophys. J. 469, 794 (1996).
[74] G. Baym, S. Furusawa, T. Hatsuda, T. Kojo, and H. Togashi,

Astrophys. J. 885, 42 (2019).
[75] H. Müther, M. Prakash, and T. L. Ainsworth, Phys. Lett. B

199, 469 (1987).
[76] M. Linares, T. Shahbaz, and J. Casares, Astrophys. J. 859,

54 (2018).
[77] E. Annala, T. Gorda, A. Kurkela, and A. Vuorinen, Phys.

Rev. Lett. 120, 172703 (2018).
[78] E. Annala, T. Gorda, E. Katerini, A. Kurkela, J. Nättilä, V.

Paschalidis, and A. Vuorinen, Phys. Rev. X 12, 011058
(2022).

[79] B. Margalit and B. D. Metzger, Astrophys. J. Lett. 850, L19
(2017).

[80] M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi, K.
Kyutoku, Y. Sekiguchi, and M. Tanaka, Phys. Rev. D 96,
123012 (2017).

[81] L. Rezzolla, E. R. Most, and L. R. Weih, Astrophys. J. Lett.
852, L25 (2018).

[82] M. Ruiz, S. L. Shapiro, and A. Tsokaros, Phys. Rev. D 97,
021501(R) (2018).

[83] The data are adopted from http://xtreme.as.arizona.edu/
NeutronStars/.

PHYSICAL REVIEW LETTERS 129, 252702 (2022)

252702-6

https://doi.org/10.1103/PhysRevC.103.045808
https://doi.org/10.1103/PhysRevC.105.035808
https://doi.org/10.1103/PhysRevC.105.035808
https://doi.org/10.1103/PhysRevLett.126.061101
https://doi.org/10.3847/2041-8213/ac089a
https://doi.org/10.3847/2041-8213/ac089a
https://arXiv.org/abs/2204.11877
https://arXiv.org/abs/2204.11877
https://doi.org/10.1103/PhysRevD.16.438
https://doi.org/10.1103/PhysRevD.16.438
https://doi.org/10.1016/0550-3213(77)90040-2
https://doi.org/10.1103/PhysRevD.71.074013
https://doi.org/10.1103/PhysRevD.71.074013
https://doi.org/10.1038/s41567-020-0914-9
https://doi.org/10.1142/S0218301397000299
https://doi.org/10.1142/S0218301397000299
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevD.60.045003
https://doi.org/10.1103/PhysRevD.60.045003
https://doi.org/10.1103/PhysRevC.58.1804
https://doi.org/10.1103/PhysRevC.58.1804
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1134/1.1378872
https://doi.org/10.1103/PhysRevD.87.034507
https://doi.org/10.1103/PhysRevD.87.034507
https://arXiv.org/abs/2207.01253
https://doi.org/10.1086/151216
https://doi.org/10.1086/151216
https://doi.org/10.1016/0375-9474(73)90349-7
https://doi.org/10.1103/PhysRevLett.32.324
https://doi.org/10.1103/PhysRevLett.32.324
https://doi.org/10.1086/304714
https://doi.org/10.1086/304714
https://doi.org/10.3847/0004-637X/820/1/28
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ac089b
https://doi.org/10.1103/PhysRevC.82.035804
https://doi.org/10.1103/PhysRevC.82.035804
https://doi.org/10.1086/177827
https://doi.org/10.3847/1538-4357/ab441e
https://doi.org/10.1016/0370-2693(87)91611-X
https://doi.org/10.1016/0370-2693(87)91611-X
https://doi.org/10.3847/1538-4357/aabde6
https://doi.org/10.3847/1538-4357/aabde6
https://doi.org/10.1103/PhysRevLett.120.172703
https://doi.org/10.1103/PhysRevLett.120.172703
https://doi.org/10.1103/PhysRevX.12.011058
https://doi.org/10.1103/PhysRevX.12.011058
https://doi.org/10.3847/2041-8213/aa991c
https://doi.org/10.3847/2041-8213/aa991c
https://doi.org/10.1103/PhysRevD.96.123012
https://doi.org/10.1103/PhysRevD.96.123012
https://doi.org/10.3847/2041-8213/aaa401
https://doi.org/10.3847/2041-8213/aaa401
https://doi.org/10.1103/PhysRevD.97.021501
https://doi.org/10.1103/PhysRevD.97.021501
http://xtreme.as.arizona.edu/NeutronStars/
http://xtreme.as.arizona.edu/NeutronStars/
http://xtreme.as.arizona.edu/NeutronStars/
http://xtreme.as.arizona.edu/NeutronStars/
http://xtreme.as.arizona.edu/NeutronStars/

