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We present I ¼ 1=2 D�π scattering amplitudes from lattice QCD and determine two low-lying JP ¼ 1þ

axial-vector D1 states and a JP ¼ 2þ tensor D�
2. Computing finite-volume spectra at a light-quark mass

corresponding to mπ ≈ 391 MeV, for the first time, we are able to constrain coupled JP ¼ 1þ D�π
amplitudes with 2Sþ1lJ ¼ 3S1 and 3D1 as well as coupled JP ¼ 2þ Dπð1D2g andD�πð3D2g amplitudes via
Lüscher’s quantization condition. Analyzing the scattering amplitudes for poles we find a near-threshold
bound state, producing a broad feature in D�πf3S1g. A narrow bump occurs in D�πf3D1g due to a D1

resonance. A single resonance is found in JP ¼ 2þ coupled toDπ andD�π. A relatively low mass and large
coupling are found for the lightest D1, suggestive of a state that will evolve into a broad resonance as the
light-quark mass is reduced. An earlier calculation of the scalarD�

0 using the same light-quark mass enables
comparisons to the heavy-quark limit.

DOI: 10.1103/PhysRevLett.129.252001

Introduction.—Since their discovery, the lightest scalar
D-meson excitations have raised questions about their mass
ordering, widths, and composition. Heavy-quark spin
symmetry suggests the same questions apply to the axial
vectors. At the same time, the D-meson resonances are
exemplary for several charmed states [1–4], some mani-
festly exotic, arising in coupled-channel systems and close
to thresholds. They may therefore serve as a place to obtain
a more general understanding of QCD dynamics among
charmed hadrons.
In experiment, there are four low-lying positive-parity

D-mesons [5]: a scalar D�
0ð2300Þ, two axial vectors

D1ð2430Þ and D1ð2420Þ, and a tensor D�
2ð2460Þ. The

scalar and D1ð2430Þ are very broad and are thought to
couple strongly to their respective Dπ and D�π decay
modes. The D1ð2420Þ and the tensor D�

2 are relatively
narrow, the D�

2 decaying into both Dπ and D�π.
Several theoretical approaches have been applied to

understand these states. Quark potential models [6] provide
a useful qualitative starting point leading to four states
arising from the l ¼ 1 singlet 1P1 and triplet 3PJ combi-
nations. Charge conjugation is not a good symmetry so 1P1

and 3P1 mix. This produces one JP ¼ 0þ, two 1þ, and a 2þ
state at similar masses [6]. Approaches accounting for the
presence of decay channels [7–12] are necessary when
strong S-wave decay modes are present. Recent studies
have shown that the scalar D�

0 pole may be far below its
currently reported value [8,13–18], and the same could be
true of the broad D1 [10,19].
One particularly useful theoretical perspective is

obtained by considering the behavior when the charm
quark becomes infinitely heavy with respect to both the
light quarks and the scale of QCD interactions [7,14,20–
25]. In this limit the spin of the heavy quark is conserved,
and the D-meson states can be characterized by the vector
sum of the orbital angular momentum and the light-quark
spin. For the quark-model l ¼ 1 states two doublets arise.
One doublet contains theD�

0 and one of theD1 mesons, and
in the infinitely heavy-quark limit they decay exclusively
via S-wave interactions. The other contains aD1 and theD�

2

decaying entirely by D-wave interactions.
Recent advances have enabled computations of the

properties of hadron resonances using lattice QCD.
Evidence for highly excited D mesons has been obtained,
including patterns of states beyond the quark model with
apparent gluonic content [26–28]. These methods are able
to determine the scattering amplitudes and their spectro-
scopic content to compare with experiment. Relevant for
the axial-vector D1 mesons, the scattering of hadrons with
spin in coupled 3S1-3D1 amplitudes was first studied in a
weakly interacting system [29] and later in the context of
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the b1 resonance [30]. The scalar charmed resonances have
been investigated in both the charm-light [18,31,32] and
charm-strange [33–38] flavors. A large coupling to the
strong-decay channels was found in both cases. The axial
vectors were also studied in Refs. [31,35,36].
In this Letter, we determine theD1 masses and couplings

to I ¼ 1=2D�π scattering from QCD. We also compute the
D�

2 and its couplings to both D�π and Dπ decay modes.
With the D�

0 determined from the same lattices [18,32], we
compare these states to experiment and probe the predic-
tions from the heavy-quark limit.
Computing finite-volume spectra.—Lattice QCD is a

numerical approach through which first-principles predic-
tions of strongly coupled QCD can be obtained by
Monte Carlo sampling the QCD path integral. Working
in a discretized finite Euclidean volume L3 × T with spatial
and temporal lattice spacings as and at, correlation func-
tions can be computed that determine the QCD spectrum in
that volume.
The rotational symmetry of the finite cubic spatial

boundary differs from an infinite volume. At rest, we
compute spectra within irreducible representations (irreps)
of the finite cubic group, rather than the continuous
orthogonal group. This results in a linear combination of
multiple partial waves of definite JP within each irrep.
Amplitudes grow at threshold with k2l which commonly
suppresses all but the lowest few partial waves at low
energies. We also consider nonzero overall momentum
P⃗ ¼ ð2π=LÞði; j; kÞ ¼ ½ijk�, where the symmetry is further
reduced; notably, partial waves with both parities are
present in the corresponding irreps. The partial waves
contributing to the irreps used in this calculation are
described in Ref. [29]. Irreps are labeled by ½ijk�ΛðPÞ.

We use lattices with 2þ 1 dynamical flavors of quark,
where the strange quark is approximately physical and the
light quark produces a pion with mπ ≈ 391 MeV. The ratio
of the spatial and temporal lattice spacings on this aniso-
tropic lattice is as=at ≈ 3.5 [39,40]. We use three volumes
with ðL=asÞ3 × T=at ¼ f163; 203; 243g × 128. The scale is
estimated using the Ω baryon [41]. This corresponds to
as ≈ 0.12 fm, resulting in physical volumes between
ð2 fmÞ3 and ð3 fmÞ3. The distillation approach is used,
which both enhances signals from the required low energy
modes, and allows all of the Wick contractions specified by
QCD to be computed efficiently [42]. The charm quark
uses the same action as the light and strange quarks [26].
Crucial to this study, the vector D� is stable at this light-
quark mass [27].
The variational method is used to extract spectra from

correlation functions [43–45]. Special care is needed in
choosing operators with good overlap onto all the states
present within the investigated energy range. In this Letter,
we use a large basis of approximately local qq̄- and meson-
meson-like operators. The latter are constructed from pairs
of mesons obtained variationally from large bases of qq̄-
like operators to reduce excited state contributions [46–48].
The correlation functions form a matrix that is diagonalized
using a generalized eigenvalue approach. The time depend-
ence of the eigenvalues yields the finite volume spectrum
fEng. These spectra expose the underlying scattering
amplitude through Lüscher’s finite volume quantization
condition, and extensions thereof [49–62]—these methods
are reviewed in Ref. [63].
In Fig. 1 we present the finite volume spectra computed

in irreps with P⃗ ¼ ½000� and [001] with contributions from
JP ¼ 1þ and 2þ. In ½000�Tþ

1 and ½001�A2, we observe three

FIG. 1. The black and gray points show the finite volume spectra obtained from irreps up to jP⃗j ¼ 1 that contain JP ∈ f1þ; 2þg. Only
black points are used in the fit. The thin solid curves show the spectrum anticipated in the absence of interactions betweenD�π (purple),
Dπ (red), andD�η (green). Dotted lines represent kinematic meson-meson thresholds. TheDπ threshold lies below the displayed energy
range. The light yellow bands correspond to solutions of the determinant condition [Eq. (1)] using the described parametrization.
Additional irreps are shown in the Supplemental Material, Sec. A [64].
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energy levels below atE ¼ 0.45 (≈2550 MeV) where only
a single energy level would have been expected based on
the noninteracting spectrum. This indicates nontrivial
interactions in JP ¼ 1þ. The ½000�Eþ and ½000�Tþ

2 irreps
also contain an extra energy level, suggestive of significant
JP ¼ 2þ interactions. Irreps where J− waves are leading
only appear to have small energy shifts in this energy
region; additional levels that may correspond to higher
resonances are observed to appear at energies well above
the region considered here [27]. Further irreps and a list of
the operators used are given in the Supplemental Material,
Secs. A and B [64].
Scattering amplitude determinations.—The extension of

Lüscher’s determinant condition for the scattering of
hadrons with arbitrary spin can be written [62] as

det½1þ iρðEÞ · tðEÞ · ð1þ iMðE;LÞÞ� ¼ 0; ð1Þ

where E is the cm energy, L is the spatial extent, t is the
infinite volume scattering t matrix, and M is a matrix of
known functions of energy, which is dense in partial waves
and dependent on the irrep. ρ is a diagonal matrix of phase-
space factors. Since t has multiple unknowns at each value
of energy, it is necessary to introduce a parametrization.
The JP ¼ 1þ wave can be parametrized using a symmetric
2 × 2 K matrix, indexed by the 3S1 and 3D1 channel labels.
A threshold factor is included to promote the natural
threshold behavior of each t-matrix element,

t−1ij ¼ ð2kiÞ−liK−1
ij ð2kjÞ−lj þ Iij; ð2Þ

where ki are the cm momenta, Kij are the K-matrix
elements, and Iij is a diagonal matrix. To respect unitarity,
ImIij ¼ −ρiδij, where ρi ¼ 2ki=E are the phase-space
factors. The real part is either set to zero or a Chew-
Mandelstam phase space is used [65], where a logarithm is
generated from the known imaginary part.
One useful form of K is

Kij ¼
X2
p¼1

gp;igp;j
m2

p − s
þ γij: ð3Þ

The K-matrix pole mass mp and couplings gp;i are free
parameters that can efficiently produce resonances in a t
matrix. The γij form a real symmetric matrix of constants.
The free parameters are determined in a χ2 minimization as
defined in Eq. (8) of Ref. [65], to find an amplitude that best
describes the finite volume spectra obtained in the lattice
calculation. We choose to search for the solutions of Eq. (1)
using the eigenvalue decomposition method outlined in
Ref. [66], which is ideally suited to problems with multiple
channels and partial waves.

We determine the JP ¼ ð1; 2Þþ and ð0; 1; 2Þ− partial
waves (everything up to l ¼ 2) simultaneously from the
irreps in Fig. 1, plus ½011�A2; B1; B2, ½111�A2; E2, and
½002�A2, resulting in 94 energy levels (JP ¼ 0þ does not
contribute to any of these irreps). Each wave is para-
metrized using a version of Eq. (3) with various parameters
fixed to zero. For example, for the 1þ wave we use the poles
and the γ3S1;3S1 element, and fix the other γij to zero. We use
a single pole for the 2þ amplitudes. We find that the J−

waves can be described by simple weakly interacting
amplitudes; a constant γ is sufficient in each case.
Further details of the parametrization and the parameter
values resulting from the χ2 minimization are given in the
Supplemental Material, Sec. C [64]. A χ2=Nd.o.f. ¼
½95.0=ð94 − 15Þ� ¼ 1.20 is obtained. The spectra from
using these amplitudes in Eq. (1) are shown as orange
curves in Fig. 1. The amplitudes are plotted in Fig. 2.
The parametrization given in Eq. (3) is one of many

reasonable choices. In order to reduce possible bias from a
specific choice, we vary the form. We obtain 21 different
parametrizations that describe the spectra, summarized in
the Supplemental Material, Sec. D [64]. These are used
when computing pole positions, couplings, and their
uncertainties.
Poles and interpretation.—Scattering amplitude poles

describe the spectroscopic content consisting of both unsta-
ble resonances and stable bound states. The amplitude is
analytically continued to complex s. There is a square-root
branch cut beginning at each threshold leading to sheets that
can be labeled by the sign of the imaginary part of the
momentum in each channel i, Imki. Close to a pole, the t
matrix is dominated by a term tij ∼ ½cicj=ðs0 − sÞ�, where s0
is the pole position and ci are the channel couplings.
In the JP ¼ 1þ amplitudes, we find a bound state close to

threshold, strongly coupled to the 3S1 amplitude, that
produces a broad enhancement over the energy region
where the amplitudes are constrained. The 3D1 amplitude
has a coupling to this pole consistent with zero, as shown in
the lower left panel of Fig. 3. Because of the proximity of
the bound-state pole to threshold, the klii factor severely
dampens any 3D1 coupling. The narrow peak in the 3D1

amplitude is produced by a resonance pole dominantly
coupled to the 3D1 amplitude, with only a small 3S1
coupling. We find a small but nonzero width in all but
two of the parametrizations. Both are rejected due to a
larger χ2 than the rest of the amplitudes; the more subtle
case is described further in the Supplemental Material,
Sec. E [64].
An additional pole is found at the upper edge of the

fitting range close to where the 3S1 amplitude touches zero,
as seen in Fig. 2. When a zero occurs on the physical sheet,
it is usually accompanied by a pole on an unphysical sheet
at a similar energy. Since this pole is so close to both the
upper limit of the energy range and the D�η and D�

sK̄
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channel openings, higher energy levels are required to be
certain of its presence. In one of the rejected amplitudes,
this pole does not arise. A similar feature occurs in
Dπf1S0g elastic scattering that either disappears or moves

to higher energies once the coupled-channel Dη and DsK̄
amplitudes are introduced [32]. We thus exclude this pole
from the remaining discussion.
One pole is found in JP ¼ 2þ, coupled to both Dπf1D2g

and D�πf3D2g. No other nearby poles are found.
In summary, poles are found at

ffiffiffiffiffiffiffi
sD�

0

p ¼ 2276ð2Þ MeV ðþÞ ðfrom Refs: ½18; 32�Þ
ffiffiffiffiffiffiffi
sD1

p ¼ 2397ð2Þ MeV ðþÞ
ffiffiffiffiffiffiffi
sD0

1

p ¼
�
2475ð3Þ − i

2
5ð3Þ

�
MeV ð−Þ

ffiffiffiffiffiffiffi
sD�

2

p ¼
�
2524ð2Þ − i

2
10ð4Þ

�
MeV ð−;−Þ:

The signs in curved brackets indicate the sign of Imki, and
thus the sheet where the pole is located. The quoted values
correspond to the envelope of uncertainties of all accepted
parametrizations as well as mass and anisotropy variations.
The couplings are (in MeV)

D�
0 ∶ jcDπf1S0gj ¼ 760ð164Þ ðfrom Refs: ½18; 32�Þ

D1 ∶ jcD�πf3S1gj ¼ 1007ð123Þ jcD�πf3D1gj ¼ 2ð3Þ
D0

1 ∶ jcD�πf3S1gj ¼ 32ð33Þ jcD�πf3D1gj ¼ 239ð77Þ
D�

2 ∶ jcDπf1D2gj ¼ 234ð11Þ jcD�πf3D2gj ¼ 137ð126Þ:

Comparing to experiment, the larger-than-physical light-
quark mass must be accounted for. D-meson masses larger
than those found in experiment are expected. The D�

2 is
found some 80 MeV above the experimental state, and the
narrow D0

1 is 52 MeV above experiment. The bound-state

FIG. 3. The t-matrix poles and couplings determined in this
study. The top and middle show pole positions; the bottom shows
couplings. The colored error ellipses are the results from
individual parametrizations and are used to determine the quoted
envelope over all parametrizations shown in black.

FIG. 2. Scattering amplitudes for JP ∈ f0þ; 1þ; 2þg. The outer
uncertainty bands are obtained by varying the hadron masses and
anisotropy entering Eq. (1) within their uncertainties. The energy
levels from irreps with a contribution from the respective JP are
shown in black below the horizontal axis. The 0þ amplitude
determination is from Refs. [18,32].
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pole that produces the broad feature in S wave however is
15 MeV below theD1ð2430Þ found at 2412(9) MeV [5,67].
Considering the similarity ofDπf1S0g andD�πf3S1g along
with the light-quark mass dependence of theD�

0 determined
in Ref. [18], the broad D1ð2430Þ could in reality be
produced by a pole at a much lower mass. Another
difference that arises as the light-quark mass is reduced
is thatDππ opens and may introduce more mixing between
channels. Recent developments of three-body formalism
will be essential in understanding these processes [68–78].
The pole couplings are observed to be relatively insen-

sitive to the quark masses used, both in unitarized chiral
amplitudes [79–81] and from lattice calculations [30,82–
85], and can thus be used to make connection to experi-
ment. Crudely extrapolating the couplings to lighter pion
masses requires a kinematic factor, leading to jcex:j ¼
jcjjkex:ðmex:

r Þ=kðmrÞjl [82,85]. The D0
1 couplings, fixing

mex:
D0

1
¼ 2422 MeV [5], produce a consistent width to that

observed experimentally, ΓD0
1
¼ 48� 30 MeV. The D�

2

couplings, fixing mex:
D�

2
¼ 2461 MeV [5], correspond to

ΓD�
2
¼ 24� 13 MeV, a little narrower than that observed

in experiment. The large coupling found for the bound D1

suggests this will evolve into a broad resonance as the light-
quark mass is reduced [18,86].
Extrapolations in the pion mass have been performed

using unitarized chiral amplitudes applied to heavy-light
systems by assuming the low-energy constants of the chiral
expansion are independent of the pion mass [11,87,88], in
particular Refs. [15–17,89,90] that consider the same
masses used in this lattice QCD calculation. This method
has been demonstrated to work well for the closely related
case of S-wave Dπ scattering [15–17], and similar ampli-
tudes exist for the JP ¼ 1þ3S1 component [10,19,87].
D�K in I ¼ 0 is related to D�π in I ¼ 1=2 by SU(3)

flavor symmetry [15,38] and has similarities. The exper-
imental axial-vector Ds1 hadron masses follow a similar
pattern to that observed here, with one bound state and one
narrow resonance. The bound state is significantly more
bound, and the resonance is narrower. Evidence of a bound
Ds1 was also found in other lattice studies [35,36].
Heavy-quark limit comparisons.—The heavy-quark limit

(as described in Refs. [7,14,20–24]) captures many of the
features observed in these states. Notably, the prediction of
decoupling between the two 1þ states is upheld in our
results. We could not rule out a 3S1 component in the
narrow D0

1 resonance; many of the parametrizations favor a
small but nonzero coupling. The Dπf1S0g and D�πf3S1g
amplitudes are remarkably similar in terms of both singu-
larities and energy dependence, producing near-threshold
bound states strongly coupled to the relevant nearby
channel. Binding energies are found to be 2(1) MeV and
6(2) MeV respectively. Heavy-quark symmetry can also be
used to relate the couplings of the narrow D0

1 and D�
2. The

results found here are not inconsistent with expectations

from the heavy-quark limit; a proper test needs a more
precise determination of the couplings, in particular
cD�πf3D2g.
The heavy-quark limit and apparent consistency between

1S0 and 3S1 amplitudes working at this light-quark mass,
along with the results of Refs. [17,18], implies a broad D1

resonance with a pole mass well below 2400 MeV for
physical light-quark masses.
Summary.—The dynamically coupled 2Sþ1lJ ¼ 3S1 and

3D1 D�π scattering amplitudes in I ¼ 1=2 have been
computed from QCD for the first time. Working at
mπ ≈ 391 MeV, the D�πf3S1g amplitude is dominated
by a pole just below threshold, whose influence extends
over a broad energy region. This pole is found below the
experimental state despite the larger pion mass, analogous
to the scalar sector. There is a narrow resonance coupled
dominantly to the D�πf3D1g amplitude. The D�πf3S1g →
D�πf3D1g amplitude is consistent with zero in the con-
strained energy region.
The importance of understanding S-wave interactions

between pairs of hadrons in QCD cannot be understated.
The strength of interactions observed here between a vector
and a pseudoscalar not only extends our understanding of
D-meson decays; it may point toward a resolution of some
of the many other puzzles found with interacting charmed
hadrons.
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