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A weighted, semidiscrete, fast optimal transport (OT) algorithm for reconstructing the Lagrangian
positions of protohalos from their evolved Eulerian positions is presented. The algorithm makes use of a
mass estimate of the biased tracers and of the distribution of the remaining mass (the “dust”) but is robust to
errors in the mass estimates. Tests with state-of-art cosmological simulations show that if the dust is
assumed to have a uniform spatial distribution, then the shape of the OT-reconstructed pair correlation
function of the tracers is very close to linear theory, enabling subpercent precision in the baryon acoustic
oscillation distance scale that depends weakly, if at all, on a cosmological model. With a more sophisticated
model for the dust, OT returns an estimate of the displacement field which yields superb reconstruction of
the protohalo positions and, hence, of the shape and amplitude of the initial pair correlation function of the
tracers. This enables direct and independent determinations of the bias factor b and the smearing scale Σ,
potentially providing new methods for breaking the degeneracy between b and σ8.
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Baryon acoustic oscillations (BAOs) are frozen sound
waves from the predecoupling era that leave a peak in the
two-point correlation function (2PCF) of the linear matter
distribution [1] on scales of the order of 140 Mpc. This
“BAO peak” provides an important distance scale for
measuring the expansion history of the Universe [2].
However, gravitational evolution shifts and smears this
peak in the late-time baryon plus dark matter distribution
[3–5]. This potentially biases the inferred distance scale, so
most BAO analyses aim to sharpen the peak and remove
its shift by undoing the effects of gravity [6,7]. This
“reconstruction” is complicated by the fact that we observe
only biased tracers of the full density field. Therefore, most
density field reconstruction methods make assumptions
about the background cosmology and the growth of
perturbations in it, as well as the nature of the bias between
the observed tracers and the dark matter [8–10]. In what
follows, we describe and test a method in which such
assumptions enter much more weakly.
Optimal transport (hereafter OT) is a powerful math-

ematical framework which has recently found applications
in diverse branches of science [11–14]. In the present

context, OT is a deterministic algorithm that recovers the
initial Lagrangian positions q of a given final Eulerian
distribution of particles x by solving the Monge-Ampère-
Kantorovich problem [15,16]. In semidiscrete OT [17,18],
the final particle distribution is considered to have evolved
from a smooth, uniform, continuous initial field (rather than
a discrete Cartesian grid). In this setting, instead of a single
point, a patch of Lagrangian space, a Laguerre cell, is
assigned to each evolved object. The map that assigns the
Laguerre cells to final Eulerian positions is the unique
solution to a semidiscrete optimization problem as well
[19]; it is specified by that set of ψ i values which max-
imizes the “Kantorovich dual” [20–22]:

KðψÞ ¼
X
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subject to Vψ
i ≠ ∅ for all i. Equation (1) assumes that the

Lagrangian density field is uniform, so vi is the volume of
the ith Laguerre cell, imposed as a constraint (the vi sum up
to the total volume). The ψ i coefficients correspond to the
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Lagrange multiplier associated with the constraint (if all ψ i
are equal, the Laguerre diagram reduces to the Voronoi
diagram [23]). Whereas previous semidiscrete OT recon-
structions used the same vi for all cells [17], the weighted
semidiscrete OT we use here allows vi ≠ vj (see Fig. 1).
The objective function KðψÞ is concave—guaranteeing

the existence and uniqueness of ψ—and smooth (C2).
Therefore, the exhaustive combinatorial computation of the
discrete-discrete Monge problem can be replaced with an
efficient and convergent Newton method [24–26]. Hence,
our semidiscrete approach scales as OðNLC logNLCÞ [17],
where NLC is the number of Laguerre cells: a significant
improvement over previous algorithms.
For the dark matter field, comprised of equal mass

particles, the assumption of uniform initial conditions
implies that all the vi in Eq. (1) are equal. The associated
OT algorithm accurately recovers the set of displacements
x − q which maps the z ¼ 0 position x of each dark matter
particle to the barycenter of its associated Laguerre cell q
[17]. Treating biased tracers, and halos, in particular, is
more complicated because of the following. (i) Halos
typically span a range of masses. (ii) Whereas the initial
dark matter field was uniform, the initial protohalo dis-
tribution was not. Moreover, the Lagrangian-space cluster-
ing of the protohalo patches depends on their mass [27,28].
Accommodating (i) is straightforward: The assumption of
uniform initial conditions means that one simply sets vi ∝
mi in Eq. (1), where mi ¼ nimp is the mass of each object
(mp is the particle mass). However, in principle, (ii) seri-
ously complicates the OT approach. To address this, we
include a model for the Eulerian dust—the mass that is not
associated with the biased tracers—since the initial dis-
tribution of (mass-weighted) tracers plus dust should be
uniform. Typically (e.g., for BAO surveys), the biased
tracers account for only ∼20% of the total mass density.
Fortunately, our OT algorithm is fast, so the additional

computational load required to reconstruct dust as well as
the biased tracers is offset by the simplicity of the initial
condition.
We present results for two dust models: (U) Dust is

uniformly distributed; if the total mass in dust isMd, we use
Nd particles each of mass md ¼ Md=Nd to model it.
(W) The dust is arranged in a cosmic “web,” represented
by a random subset of the dark matter particles in a
simulation which were not assigned to the biased
tracers.Implementing (U) in real data is straightforward;
(W) will be more complicated.
Although both dust models make an assumption about

the background density, the results to follow are robust to
∼10% variations in this density. Since the background
density is already known to much higher precision, other
than when converting angles and redshifts to distances, our
method requires no other assumption about the background
cosmological model.
In particular, since the OT reconstructed field is uniform,

all previous OT work measured spatial statistics using
qþDðzÞðx − qÞ, for some DðzÞ ≪ 1, rather than q itself.
Since this resembles the linear Lagrangian “Zel’dovich”
approximation, the analysis appeared to be cosmology
dependent, even though the OT step did not assume a
cosmology. In contrast, the Lagrangian distribution of
biased tracers is nontrivial, so the BAO feature can be
obtained directly from the OT-reconstructed positions q.
(We show elsewhere that this can be done even for the dark
matter if one estimates the Lagrangian 2PCF by weighting
each Laguerre cell by the divergence of x − q or by plotting
the Laplacian of the correlation function of the displace-
ment field.)
We demonstrate our results using halos identified in 20

realizations of the HADES simulations of Ref. [29]. Each
simulation follows the gravitational evolution of 5123 iden-
tical particles, each of mass mp ¼ 6.566 × 1011h−1M⊙, in a

FIG. 1. Schema showing how our fast, weighted, semidiscrete algorithm reconstructs Laguerre cells from the present distribution of
biased tracers (halos) and dark matter field particles (dust). The volume of each Laguerre cell represents the mass of the object (halo or
dust) to which it corresponds. The initial power spectrum or 2PCF is obtained directly from the distribution of the barycenters of the
Laguerre cells; there is no need to make any additional cosmological model-dependent assumptions.
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periodic cube of side L ¼ 1h−1 Gpc in which the back-
ground cosmology is flat, ΩΛ ¼ 1 −Ωm, with ðΩm;ΩbÞ ¼
ð0.3175; 0.049Þ, and Hubble constant today H0 ¼
100h km s−1 Mpc−1, with h ¼ 0.6711. The initial fluc-
tuation field is Gaussian, so it is completely specified by
its power spectrum PLinðkÞ, which is taken from CLASS,
with shape ns ¼ 0.9624 and amplitude set by σ8 ¼ 0.833.
Halos were identified in the z ¼ 0 output of each box using
a friends-of-friends algorithm with linking length b ¼ 0.2.
We use only halos with more than 20 particles. About 75%
of the particles in the box are not bound up in such halos:
These make up the dust.
Our OT algorithm takes as input the list of halo masses

(results are robust to factor-of-two or -three errors) and
positions and a model for the spatial distribution of the dust.
For (W), we select dust particles randomly with probability
p; our results (which used p ¼ 1) are not sensitive to its
value. For (U), we simply randomize the positions of these
dust particles.
The list of ni particles which makes up a halo of mass

mi ¼ nimp defines a protohalo patch in the initial con-
ditions. We refer to the center of mass of this halo at the
time it was identified (z ¼ 0) as its Eulerian position xi and
that of the protohalo as the Lagrangian position qi (z ¼ ∞;
strictly speaking the initial conditions are at zIC ¼ 99, but
the zIC to ∞ displacement is negligible).
Figure 2 compares 2PCFs averaged over 20 simulation

boxes. In each panel, the solid orange curve shows the
average halo correlation function ξEulðrÞ (i.e., using the
Eulerian positions jxi − xjj), and the yellow bands around
it show the standard deviation. The purple curve shows ξLag

of the Lagrangian protohalos (which is built from the
jqi − qjj pairs). The blue and green curves show ξOT-U
and ξOT-W, respectively, which are built from the
OT-reconstructed Laguerre cell barycenters with the two
dust models [(U) and (W)].
To show that our results do not depend on the halo

sample, in the right-hand panel we weighted each halo by
its mass when computing the pair counts (this weight is the
same for the corresponding protohalos and Laguerre cells).
Additionally, mass-weighting halos (above some threshold)
gives a good first approximation for galaxy, as opposed to
halo, pair counts [30]. Comparison with the left-hand panel
shows that mass weighting increases the amplitudes of all
the 2PCFs, as expected [28]. (The mass-weighted correla-
tion function of all the particles—i.e., including the dust—
is zero, confirming that, once all the mass is included, the
OT algorithm has indeed converged to a uniform density
initial condition.) Except for this, the qualitative trends
in the two panels are the same: ξEul > ξOT-U > ξLag and
ξOT-W ≈ ξLag.
We are most interested in the shapes of these ξ, since

differences in amplitude alone will not bias cosmological
constraints. Therefore, the smooth curves in each panel
show b2ξLin, for three choices of the “linear,” “scale-
independent” bias factor b. The dashed (uppermost) curve
has bEul ¼ 1.4 in the left-hand panel and 1.9 in the right.
This shows clearly that, compared to the shape of ξLin, the
BAO feature is smeared out in ξEul (orange). This is well
understood [3–5] and is why reconstruction is necessary.
The dot-dashed curves have bU ¼ 0.84 and 1.45 in the

two panels and show that ξOT-U (blue) is extremely close in

FIG. 2. Number- (left) and mass-weighted (right) 2PCFs measured in nonoverlapping bins of width 2h−1 Mpc. The thick orange curve
shows ξEul of the z ¼ 0 halo centers averaged over 20 simulations, and the yellow band shows the rms scatter around this mean. The
thick purple curve and error band show ξLag of the corresponding Lagrangian (i.e., z ¼ ∞) protohalo centers. The thick blue curve and
error band show ξOT-U measured in our OT reconstructed field when the Eulerian dust is assumed to be uniformly distributed. The thick
green curve and error band—which is very similar to ξLag—shows ξOT-W measured in our OT reconstructed field when the dust
(correctly) traces the cosmic web. Smooth dashed, dotted, and dot-dashed curves show b2ξLin, ðb − 1Þ2ξLin, and b2UξLin, respectively,
where ξLin is the 2PCF of the dark matter in linear theory. In both panels, the difference in shape between ξEul and b2ξLin is why
reconstruction is necessary. Our reconstructed ξOT-U reproduces the shape of ξLin around the BAO feature very well. The difference in
shape between ξLag and ðb − 1Þ2ξLin, which ξOT-W reproduces exquisitely, is due to scale-dependent Lagrangian bias.
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shape to ξLin (on BAO scales). In fact, OT-U has recovered
the linear theory shape better than all published recon-
struction algorithms to date.
Finally, the dotted curves have bLag ¼ bEul − 1 because,

for tracers of a fixed number density, such as Eulerian halos
and their Lagrangian protohalos, if

ξEul ≈ b2EulξLin; then ξLag ≈ ðbEul − 1Þ2ξLin ð2Þ

[27,28,31,32]. These curves show that, while the ampli-
tude of ξLag (purple) scales as expected, its shape is
typically more peaked than ξLin. The reason for this
“scale-dependent bias” is well understood [33–35], but
this shape difference is ignored—or simply not reproduced
—by essentially all other reconstruction schemes (e.g.,
Refs. [7,9,10,36]). In contrast, ξOT-W (green) reproduces
ξLag (purple) on these scales exquisitely, whatever the value
of bEul. Figure 3 highlights this by showing ξEul, b2ξLin,
½b=ðb − 1Þ�2ξLag, ½b=ðb − 1Þ�2ξOT-W, and ðb=bUÞ2ξOT-U.
The agreement between ξOT-W and ξLag is a significant

success. However, since ξOT-W (like ξLag) differs in shape
from ξLin, we now address how to estimate the BAO scale.
(Note that this is not an issue for ξOT-U.)
The traditional approach fits a fiducial ξLin template

shape to the reconstructed 2PCF, but as ξOT-W and ξLin have
different shapes, this might lead to a bias. Instead, “peaks
theory” [33–35] provides a much better fiducial template;
we report on its use elsewhere. The second, motivated by
Refs. [7,35], corrects the shape of ξOT-W so that it becomes
more like ξLin by using the OT-W displacements to distort a
uniform grid. The third, described below, does not require
prior knowledge of ξLin.
Figure 3 shows that ξEul, b2ξLin, ½b=ðb − 1Þ�2ξLag,

½b=ðb − 1Þ�2ξOT-W, and ðb=bUÞ2ξOT-U intersect at a scale

that is approximately halfway in between the peak and dip
scales. Evidently, rLP ≡ ðrpeak þ rdipÞ=2 is relatively
immune to both evolution and scale-dependent bias [37],
so we will use it to quantify the gain from using ξOT-W
rather than ξEul.
To estimate rLP we fit polynomials, or more carefully cho-

sen basis functions, to ξ over the range r ¼ ½60; 120�h−1 Mpc
and then differentiate the fit [38–40]. The peak andLP scales
in ξEul, ðrpeak; rLPÞ=h−1 Mpc ¼ ð98.5; 91.1Þ, are shifted by
1% from their values in ξLin, (99.8, 92.7); this is why
reconstruction was necessary. In contrast, they are (100.7,
92.6) in both ξLag and ξOT-W and (99.8, 92.6) in ξOT-U.
Evidently, (i) rLP is indeed insensitive to scale-dependent
bias, and (ii) OT reconstruction provides a nearly unbiased
constraint on the cosmological distance scale.
Distance scale estimates use the shape of ξOT but not its

amplitude. In most analyses, this amplitude is proportional
to the product of bσ8, where σ8 is the amplitude of
fluctuations in the dark matter field. The fidelity and
robustness of ξOT-W potentially enable a number of novel
analyses for breaking the bσ8 degeneracy.
Analysis I is more standard.—Ratios of the 2PCF and

3PCFs yield b independent of σ8 [41]. In the Eulerian field
these ratios involve terms coming from evolution as well as
from bias. However, since our OT-W reconstructions are so
faithful to the Lagrangian field, measuring these ratios in
the OT-W field is both feasible and easy to interpret (no
evolution, only bias). Moreover, combining them with
similar measurements in the evolved field should provide
useful constraints on the contribution from evolution.
Analysis II.—Because ξEul=ξOT-W ≈ ð1 − 1=bÞ−2 on

∼50–70h−1 Mpc scales (Fig. 2), one could combine mea-
surements over a range of r by fitting for that multiplicative
factor A which brings ξEul and ξOT-W into agreement over
this range of scales. Since A ¼ ð1 − 1=bÞ2, this furnishes a
direct estimate of b with no assumptions about the shape or
amplitude of ξLin.
Analysis III.—Figure 4 shows that OT-W also recon-

structs the shape and position of each protohalo patch quite
well. Reconstructing the shapes is nontrivial [42,43], but
here we focus on the positions. Figure 4 shows that the
barycenter of the Laguerre cell qOT-W is extremely close to
the actual protohalo q, even though both are offset from the
Eulerian x. It is because jx − qj ≠ 0 that the BAO feature
in ξEul is smeared out compared to ξLag, and, because
x − q ≈ x − qOT-W for all halos, ξOT-W ≈ ξLag. Therefore,
ΣOT-W, the rms of jx − qOT-Wj, must be very similar to Σdisp,
the rms of jx − qj. If we ignore redshift space distortions,
Σ2
disp ≈

R
dkPLinðkÞ=2π2 is independent of b [39,40].

Following Ref. [40], let Σ2
obs denote the result of performing

this integral with the observed PEulðkÞ in place of PLinðkÞ.
Since PEul ≈ b2PLin, the ratio Σobs=ΣOT-W ≈ b. [N.B.
ð2=3ÞΣ2

OT-W can be used directly in the Laguerre
reconstruction algorithm of Refs. [39,40] to provide a

FIG. 3. The same as the right-hand panel in Fig. 2, but now
yellow, blue, green, and purple curves show the mean of ξEul,
ðb=bUÞ2ξOT-U, ½b=ðb − 1Þ�2ξOT-W, and ½b=ðb − 1Þ�2ξLag, respec-
tively, and we show only error bands around the blue (OT-U)
curve. All curves intersect at approximately the same “linear
point” scale.
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consistency check of the BAO distance scale.] In practice,
errors on the input halo masses will impact ΣOT-U and
ΣOT-W and, hence, the estimated b. Quantifying this,
extending OT to work with redshift-space distorted posi-
tions (following, e.g., Refs. [17,44,45]) and modeling the
dust (e.g., Refs. [46–48]), before applying it to data, are all
work in progress.
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