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Synchronization is a widespread phenomenon in science and technology. Here, we study noise-induced
synchronization in a quantum spin chain subjected to local Gaussian white noise. We demonstrate stable
(anti)synchronization between the endpoint magnetizations of a quantum XY model with transverse field of
arbitrary length. Remarkably, we show that noise applied to a single spin suffices to reach stable (anti)
synchronization, and find that the two synchronized end spins are entangled. We additionally determine the
optimal noise amplitude that leads to the fastest synchronization along the chain, and further compare the
optimal synchronization speed to the fundamental Lieb-Robinson bound for information propagation.
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Synchronization is ubiquitous in classical nonlinear
systems. Self-sustained periodic oscillators swing in uni-
son, and are thus synchronized, when their phases (frequen-
cies) are locked [1–7]. Synchronous behavior plays a
central role in many interconnected systems in fields
ranging from biology and chemistry to physics and
engineering. Different mechanisms of classical synchroni-
zation have been identified [1–7]. For instance, forced
synchronization may be generated by an external drive,
whereas spontaneous synchronization may be induced by
the mutual coupling between subsystems in the absence of
external forcing. Another intriguing effect is noise-induced
synchronization [8–15], which has recently been observed
in sensory neurons [16] and in lasers [17].
In the past years, the study of synchronization has been

extended to the quantum domain [18–38]. Quantum syn-
chronization has been examined in systems with a classical
analog, such as nonlinear van der Pol oscillators, as well as
in systems without a classical counterpart, such as
qubits [18–38]. Both forced and spontaneous synchroniza-
tions have been investigated in the quantum regime [18–
38]. Quantum entrainment may starkly differ from classi-
cal entrainment: it has indeed been shown to exhibit
counterintuitive nonclassical features, such as enhanced
synchronization of far-detuned oscillators and sup-
pressed synchronization of resonant oscillators [30].
Quantum synchronization has recently been experimentally
observed in spin-one systems [39,40].
Here, we investigate noise-induced synchronization in an

isolated quantum many-body system. By locally applying
Gaussian white noise to a quantum spin chain of arbitrary
length, we show that stable (anti)synchronization between
local spin observables may be achieved when a given
condition, on the length of the chain and on the sites at
which noise is applied, is satisfied. In that case, local
spin observables oscillate with the same frequency, a
dynamical criterion for quantum synchronization that has

been widely applied [21,24,35,37,38,41]. Remarkably,
stable (anti)synchronization can be established between
the two ends of the chain, even when noise is applied to
only a single site in between. While noise is often assumed
to be detrimental for quantum features owing to de-
coherence, we establish that the synchronized end spins
are entangled by evaluating their concurrence [42]. We
finally analyze the time needed to fully synchronize the two
ends of the chain as a function of the noise strength and of
the length of the chain, when noise is added close to one
end. We find the existence of an optimal noise amplitude
that leads to the shortest synchronization time (or fastest
synchronization rate). This optimal time scales like the
cube of the chain length, thus stronger than the linear
dependence given by the Lieb-Robinson bound, which
provides a fundamental upper limit on the speed of
information propagation in a quantum system [43].
Synchronization model.—We consider an isolated quan-

tum many-particle system with Hamiltonian H0 subjected
to a stochastic perturbation of the form ξðtÞV, where ξðtÞ
describes classical noise that couples to operator V. For
concreteness and simplicity, we take a quantum XY chain
of N spins in a transverse field [44]

H0 ¼
J
2

XN−1

j¼1

ðσxjσxjþ1 þ σyjσ
y
jþ1Þ þ h

XN
j¼1

σzj; ð1Þ

where σx;y;zj are the usual Pauli operators, J > 0 is the
interaction parameter, and h ¼ 1 the field strength. We
additionally choose delta-correlated (white) Gaussian
noise, hξðtÞξðt0Þi ¼ Γδðt − t0Þ, with zero mean and ampli-
tude Γ. We will in the following consider various operators
V, depending on the number and on the position of the sites
the noise couples to. This many-particle system may be
implemented using trapped ions [45,46], where noise is
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introduced by locally modulating ac-Stark shifts of the
respective spin states [47].
In order to examine the influence of noise on the

quantum spin chain, and derive the synchronization con-
dition, it is convenient to describe the time evolution of the
system in Liouville space [48]. In this formalism, a density
matrix ρξ is mapped onto a vector jρξ⟫ (often called
supervector) in a higher-dimensional Hilbert space, and
the von Neumann equation, _ρξðtÞ ¼ −i½H0 þ ξðtÞV; ρξðtÞ�,
is transformed into the Schrödinger-like equation [48]

j_ρξðτÞ⟫ ¼ −i½L0 þ ξðτÞV�jρξðτÞ⟫; ð2Þ

which can be analyzed using the usual tools of quantum
mechanics. The Liouville superoperator L0 is given by
the supercommutatorL0 ¼ ⟦H0; 1⟧=J ¼ H0=J ⊗ 1 − 1 ⊗
HT

0=J and the perturbation superoperator by V ¼ ⟦V; 1⟧.
We have further introduced the normalized time τ ¼ Jt.
Equation (2) has the form of a stochastic differential
equation with multiplicative noise (which we interpret
using the Stratonovich convention) [49]. Averaging over
an ensemble of noise realizations, Eq. (2) becomes [50]

j_ρðτÞ⟫ ¼ −ðiL0 þ γV2=2ÞjρðτÞ⟫; ð3Þ

where ρðτÞ ¼ hρξðτÞi is the averaged density operator and
γ ¼ Γ=J is the reduced noise strength.
The stochastic perturbation affects both eigenmodes and

eigenfrequencies of the unperturbed quantum system. We
start from the spectral decomposition of the free evolution,
jρ0ðτÞ⟫ ¼ expð−iL0τÞjρð0Þ⟫, given by

jρ0ðτÞ⟫ ¼
X
k;l

expð−iΛklτÞjνk; νl⟫⟪νk; νljρð0Þ⟫; ð4Þ

where eigenfrequencies Λkl and eigenmodes jνk; νl⟫ of the
Liouvillian L0 are related to the respective eigenvalues Λk
and eigenstates jνki of the Hamiltonian H0=J via Λkl ¼
Λk − Λl and jνk; νl⟫ ¼ jνki ⊗ jνli� [48]. Eigenfrequencies
always come in pairs, Λkl ¼ −Λlk. For weak noise (γ ≪ 1),
eigenmodes and eigenfrequencies of the perturbed system
can be determined using perturbation theory in Liouville
space [63]. To first order, we obtain

Λp
kl ≃ Λkl − iγmkl; jνk; νl⟫p ≃ jνk; νl⟫ð0Þ − γjνk; νl⟫ð1Þ;

ð5Þ
where we have used the superscript p to label the perturbed
quantities [64].
According to Eq. (5), eigenmodes of the quantum many-

body system experience a selective exponential decay with
rate γmkl. Stable synchronization occurs when all the
modes decay to zero except one. This leads to a deco-
herence-free subspace [65] with only a single eigenmode
[66]: after a given time, which we call synchronization time

τs, the system will be in one eigenstate jνk; νl⟫s in Liouville
space and oscillate with the corresponding eigenfrequency
Λs
kl. On the other hand, transient synchronization appears

when there is a clear timescale separation between the
different decay times [41]. In this situation, a Liouville
eigenstate jνk; νl⟫t which oscillates with frequency Λt

kl can
outlive all the others for a very long time—there is no
synchronization otherwise [50]. Both types of synchroni-
zation occur in the quantum spin chain [Eq. (1)]. The above
route to synchronization is reminiscent of the classical
synchronization mechanism known as “suppression of
natural dynamics” [5–7]: beyond a critical forcing (cou-
pling) amplitude in forced (spontaneous) synchronization,
mode locking does not occur, but natural oscillations of the
system are suppressed, leaving it synchronized in a new
mode [67–72]. However, the present quantum phenomenon
is different: (i) it is noise-induced, (ii) it suppresses all the
natural modes of the system except one, (iii) it does not
require a critical noise amplitude, and (iv) it does not rely
on limit cycles.
Stable synchronization condition.—Let us now derive

the stable synchronization condition for the quantum spin
chain [Eq. (1)]. We concretely focus on the local spin
magnetizations, hσzji ¼ Tr½σzjρðτÞ�, at sites j. Our first task
is to connect the abstract eigenstates of the Liouvillian (in
Liouville space) to the physical eigenstates of the qubit (in
Hilbert space). This is achieved by projecting the super-
vector jρðτÞ⟫ onto the supervector jσzj⟫ [50]:

σzjðτÞ ¼ ⟪σzjjρðτÞ⟫ ¼
X
kl

ckl expð−iΛ̃klτÞϵj;kl: ð6Þ

The magnetization eigenmodes of the jth qubit are given by
the projection ϵj;kl ¼ ⟪σzjjνk; νl⟫, and the coefficients ckl ¼
⟪νk; νljρð0Þ⟫ depend on the initial excitations. The mag-
netization frequencies Λ̃kl are thus a subset of fΛklg.
Our next task is to evaluate the decay constants mkl. The

quantum XY model [Eq. (1)] is integrable and can be
diagonalized exactlywith the Jordan-Wigner transformation
[44]. The system has a total of #Λ̃ ¼ bN2=4cmagnetization
eigenfrequencies of which #Λ̃non ¼ bN=2c are nondegen-
erate and #Λ̃deg ¼ bN2=2ðN=2 − 1Þc are twofold degener-
ate (here, b·c denotes the floor function). The degeneracy
strongly affects the decay rates. For nondegenerate eigen-
states, the decay constants (in first-order perturbation theory)
read as 2mkl ¼ ⟪νk; νljV2jνk; νl⟫. On the other hand, since
the noise operator V is real and symmetric in the Jordan-
Wigner representation, the decay constants for de-
generate eigenstates are 2m�

ab ¼ ðV2Þaa � jðV2Þabj, where
fja⟫; jb⟫g denotes the degenerate eigenspace and ðV2Þab ¼
⟪ajV2jb⟫. The perturbation moreover lifts the degeneracy.
The zeroth order eigenmodes are explicitly given by
ja�⟫ ¼ fjb⟫� sgn½ðV2Þab�ja⟫g=

ffiffiffi
2

p
. In the Hilbert space

of H0, we find that ⟪σzjja�⟫ ¼ f1� sgn½ðV2Þab�gϵj;a=
ffiffiffi
2

p
.
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Depending on the sign of ðV2Þab, decay will therefore be
either faster with mþ

ab or slower with m−
ab.

One-site noise: We proceed by applying noise to a
single qubit of the chain located at site u and set accord-
ingly V ¼ σzu [73]. In this case, ðV2Þab < 0, and the rates
are thus m−

ab. We concretely obtain [50]

mu
kljnon ¼

4

N þ 1

�
sin

�
ukπ
N þ 1

�
2

þ sin

�
ulπ

N þ 1

�
2
�

−
16

ðN þ 1Þ2
�
sin

�
ukπ
N þ 1

�
2

sin
�

ulπ
N þ 1

�
2
�
; ð7Þ

for nondegenerate eigenstates, Λ̃kl ∈ Λ̃non. For degenerate
eigenstates, Λ̃kl ∈ Λ̃deg, the second square bracket in
Eq. (7) is multiplied by a factor of 2. The overall decay
scales like 1=N, implying slower decay for longer chains.
Stable synchronization is achieved when all the modes,

except one, decay to zero. From Eq. (7), we find that
mu

kl ¼ 0 for a single mode is only possible when [50]

N þ 1

3
∈ N;

u
3
∈ N;

k ¼ N þ 1

3
; l ¼ 2k ðfor N ≥ 5Þ ð8Þ

is fulfilled [74]. The synchronized mode is then [50]

jϵklis¼
3

Nþ1

�ð1;−1;0;−1;1;…;1;−1ÞT; N even

ð1;−1;0;−1;1;…;−1;1ÞT; N odd:
ð9Þ

with jϵkli ¼ ðϵ1;kl; ϵ2;kl;…; ϵN;klÞT . The corresponding
eigenfrequency is Λs

kl ¼ 2. We see from Eq. (9) that the
end magnetizations are synchronized (antisynchronized)
for N (odd) even. Remarkably, noise at a single site suffices
to (anti)synchronize the endpoints of a chain of arbitrary

length. We note that the amplitude of the (anti)synchron-
ized mode scales inversely to the length.
Figure 1(a) shows the time evolution of the magnetiza-

tion hσzji (colored lines) for a chain of length N ¼ 5 and
white noise applied to site u ¼ 3 (the gray lines in
the background indicate the unperturbed evolution in the
absence of noise for comparison). This case obeys the
stable synchronization condition [Eq. (8)]. Oscillations are
out of phase, and no synchronous behavior is seen, for
times smaller than the synchronization time τs [Fig. 1(b)].
However, for times larger than τs, stable synchronization
between the endpoints of the chain, hσz1i and hσz5i, as well
as between hσz2i and hσz3i, appears (the magnetization hσz3i
is independent of time in this regime) [Fig. 1(c)].
Two-site noise: The effect of noise simultaneously

applied to several sites may be studied in a similar manner.
For two sites, V ¼ σzu þ σzv, we find [50]

mu;v
kl jnon ¼

4

N þ 1

�
sin

�
ukπ
N þ 1

�
2

þ sin

�
vkπ
N þ 1

�
2

þ sin

�
ulπ

N þ 1

�
2

þ sin

�
vlπ

N þ 1

�
2
�

−
16

ðN þ 1Þ2
�
sin

�
ukπ
N þ 1

�
2

þ sin

�
vkπ
N þ 1

�
2
�

×

�
sin

�
ulπ

N þ 1

�
2

þ sin

�
vlπ

N þ 1

�
2
�
; ð10Þ

for nondegenerate eigenfrequencies, and

mu;v
kl jdeg ¼ mu;v

kl jnon −
16

ðN þ 1Þ2
�
sin

�
ukπ
N þ 1

�
sin

�
ulπ

N þ 1

�

þ sin

�
vkπ
N þ 1

�
sin

�
vlπ

N þ 1

��
2

; ð11Þ

(a) (b) (c)

FIG. 1. Stable synchronization. (a) Evolution of the local magnetizations hσzji of the quantum XY spin chain [Eq. (1)] of length N ¼ 5
with white noise amplitude γ ¼ 0.2 applied to site u ¼ 3 (gray lines in the background show the corresponding noise-free evolutions).
The stable synchronization condition [Eq. (8)] is obeyed. The system has #Λ ¼ b52=4c ¼ 6 eigenmodes with respective decay constants
m12 ¼ m14 ¼ m23 ¼ 2=3, m13 ¼ 4=9, m15 ¼ 8=9, and m24 ¼ 0. The smallest nonzero one, r ¼ γm13, sets the decay to the
synchronized state [Eq. (9)] (orange line). (b) No synchronization occurs for times shorter than the synchronization time τs ¼ 5=r.
(c) Stable synchronization between the end spins, hσz1i and hσz5i, as well as between hσz2i and hσz4i, appears for times larger than τs. The
initial state is jΨð0Þi ¼ j1i1 ⊗ ⨂N

j¼2j0ij, where (j0ij, j1ij) are the ground and excited states of qubit j.
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for degenerate eigenfrequencies. The only possible con-
figuration such that mu;v

k;l ¼ 0 for a single mode is [50]

u
3
∈ N;

v
3
∈ N;

N þ 1

3
∈ N;

k ¼ N þ 1

3
; l ¼ 2k. ð12Þ

These conditions are equivalent to those indicated in Eq. (8)
for a single-site noise. They will thus lead to the same
synchronized (antisynchronized) modes. The only differ-
ence is that the overall strength of the noise is twice as large
here. The two time evolutions will hence be the same with
the replacement γ → γ=2.
Figure 2(a) represents the dynamics of the magnetiza-

tions hσzji for a chain of length N ¼ 4 and white noise
applied to sites u ¼ 2 and v ¼ 3. The stable synchroniza-
tion condition [Eq. (12)] is not satisfied here. Yet, after the
synchronization time τs, transient synchronization is
observed between the endpoints of the chain, hσz1i and
hσz4i, as well as between hσz2i and hσz3i. The occurrence of
(transient) in-phase oscillation between these qubits is
further confirmed by the examination of the corresponding
Pearson correlation coefficients, defined as the ratio of
the covariance and the respective standard deviations,

Cij ¼ Covðhσzi i; hσzjiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðhσzjiÞVarðhσzjiÞ

q
[76]. For

τ > τs, both C14ðτÞ and C23ðτÞ converge to one, implying
maximum correlation, and hence synchronous motion,
between the local magnetizations [Fig. 2(b)] [77]. We
mention that the above quantum synchronization phenom-
ena are robust against weak perturbations, as shown in the
Supplemental Material [50].
In order to analyze the entanglement properties of

the synchronized edge spins, we plot in Fig. 2(c) the
concurrence CðρijÞ ¼ max ð0; ffiffiffiffiffi

κ1
p − ffiffiffiffiffi

κ2
p − ffiffiffiffiffi

κ3
p − ffiffiffiffiffi

κ3
p Þ,

where ρij ¼ Trf1;…;ngnði;jÞ½ρðtÞ� is the reduced density ope-
rator obtained by tracing out the rest of the chain, and κn are
the ordered eigenvalues of ρijρ̃ij, with ρ̃ij the spin flipped
state [42]. For stable synchronization [Fig. 1(a)], Cðρ15Þ
exhibits steady oscillations with nonzero amplitude after τs,
revealing that the two end spins are entangled despite the
action of the noise (the nondecaying mode is insensitive to
the external perturbation). By contrast, for transient syn-
chronization [Fig. 2(a)], Cðρ14Þ vanishes after τs, and the
corresponding spins are thus not entangled.
Synchronization time.—The speed of signal propagation

in discrete quantum systems with local interactions is upper
bounded by the Lieb-Robinson velocity [43], which in the
XY model with transverse field is given by vLR ¼ 2J. This
finite group velocity defines an effective light cone beyond
which the amount of transferred information decays expo-
nentially. Consequently, a minimal time is needed for
information to travel along a quantum spin chain. Here,
we investigate the minimal time it takes to fully (anti)
synchronize the two edges of the quantum XY model (1) of
arbitrary length N, as a function of the noise strength γ, and
compare the result to the Lieb-Robinson bound. To that
end, we consider single-site noise applied at site u ¼ 3, and
solve the quantum Liouville equation (3) numerically for
varying N and γ. We compute the eigenvalues −μαðN; γÞþ
iλαðN; γÞ, with real part μαðN; γÞ ≥ 0 and imaginary part
λαðN; γÞ. The eigenvalue with the smallest real and non-
vanishing imaginary part μs ¼ minfμβjλβ ≠ 0g sets the
decay of the synchronized mode. Consequently, rðN; γÞ ¼
minfμα > μsjλα ≠ 0g, sets the relaxation time to the (anti)
synchronized state, as seen in Figs. 1 and 2 (orange lines),
as well as in Fig. 2(b) for the Pearson coefficients (dashed
lines). We thus define the synchronization time as τs ¼ 5=r.
Figure 3(a) displays the decay rate r as a function of the

noise amplitude γ for different chain lengths N. We observe

(a) (b) (c)

FIG. 2. Transient synchronization and entanglement. (a) Evolution of the local magnetizations hσzji of the quantum XY spin chain
[Eq. (1)] of length N ¼ 4 with white noise amplitude γ ¼ 0.2 applied to sites u ¼ 2 and v ¼ 3. The stable synchronization condition
[Eq. (8)] is not satisfied. The system has #Λ ¼ b42=4c ¼ 4 eigenmodes with respective decay constants m12 ¼ m34 ¼ m23 ¼ 1 and
m13 ¼ 1=5. After τs ¼ 5=ðγm13Þ, transient synchronization (with decay rate r ¼ γm12) appears. (b) Pearson correlation coefficients C14

and C23 showing transient synchronization between the endpoints of the chain, hσz1i and hσz4i, as well as between hσz2i and hσz3i. (c) The
concurrence Cðρ15Þ for stable synchronization [Fig. 1(a)] displays nonzero steady oscillations after τs, indicating entanglement between
the edge spins, contrary to transient synchronization Cðρ14Þ [Fig. 2(a)].
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that r first sharply increases with increasing noise strength:
intensifying small noise hence significantly speeds up the
relaxation, and accordingly reduces the synchronization
time. However, beyond an optimal noise amplitude γopt, the
decay rate progressively decreases, and the relaxation is
slowed down. This slowing down is related to the phe-
nomenon of noise-induced quantum Zeno effect [78,79].
The maximum decay rate rmax ¼ rðγoptÞ scales as 1=N3, as
seen in Fig. 3(b), in agreement with the scaling of the
inverse gap of the Liouvillian of the XY model with
boundary dissipation [80]. The synchronization time τs
therefore grows like the third power of the number N of
lattice sites, indicating that bigger systems need longer to
(anti)synchronize. This dependence is stronger than the
1=N scaling of decay rates set by the Lieb-Robinson bound
[75,80]. At the same time, the optimal noise strength γopt
decreases as 1=N, like the related decay ratesmu

kl in Eq. (7),
before saturating at an asymptotic nonzero value γ∞opt,
independent of the length N (blue dashed line).
Conclusions.—We have demonstrated the occurrence of

stable (anti)synchronization of the endpoints of an isolated
quantum spin chain exposed to Gaussian white noise. We
have obtained (equivalent) stable synchronization condi-
tions, (8) for one-site noise and (12) for two-site noise, for
this noise-induced phenomenon to happen in the quantum
domain. We have additionally determined the optimal noise
amplitude corresponding to the shortest synchronization
time, and shown that the latter grows cubically with the
system size, hence stronger than the linear Lieb-Robinson
bound. Remarkably, noise applied at a single spin is enough
to synchronize a chain of arbitrary length, and synchron-
ized edge spins are nonclassically correlated. This opens up

the possibility to employ them for synchronization-based
[81,82] quantum communication systems.
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