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Quantum communication is often investigated in scenarios where only the dimension of Hilbert space is
known. However, assigning a precise dimension is often an approximation of what is actually a higher-
dimensional process. Here, we introduce and investigate quantum information encoded in carriers that
nearly, but not entirely, correspond to standard qudits. We demonstrate the relevance of this concept for
semi-device-independent quantum information by showing how small higher-dimensional components can
significantly compromise the conclusions of established protocols. Then we provide a general method,
based on semidefinite relaxations, for bounding the set of almost qudit correlations, and apply it to remedy
the demonstrated issues. This method also offers a novel systematic approach to the well-known task of
device-independent tests of classical and quantum dimensions with unentangled devices. Finally, we also
consider viewing almost qubit systems as a physical resource available to the experimenter and determine
the optimal quantum protocol for the well-known random access code.
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Introduction.—The Hilbert space dimension of a system
is a key property in quantum theory. Most experiments
assume knowledge of it because it reflects the number of
relevant independent degrees of freedom. Indeed, even the
fundamental unit of quantum information, namely, the
qubit, is expressed in terms of the (minimal meaningful)
quantum dimension. It is natural that much research has
been devoted to the quantum dimension: the device-
independent certification of it [1–5], investigating the
cost of classically simulating qubits [6–8], the advantage
of using d-dimensional quantum systems (qudits) over
classical systems (dits) in useful tasks [9–11], and perform-
ing quantum protocols in experiments where nothing but the
dimension is assumed [12–15]. A large number of experi-
ments have followed (see, e.g., [16–23]). Typically, these
studies have focussed on prepare-and-measure scenarios,
i.e., experiments in which a sender communicates quantum
systems and a receiver measures them.
However, assigning a fixed dimension to a real-world

quantum system is often an idealization. It is typically an
approximation of what is actually an infinite-dimensional
system. Common platforms for qubit communication, such
as weak coherent pulses or polarization photons obtained by
spontaneous parametric down-conversion constitute relevant
examples. Indeed both very nearly correspond to harmonic
oscillator qubits and polarization qubits, respectively, but the
former still features higher-order oscillations and the latter
still features multiphoton emissions. Whereas such dimen-
sional deviations may often be viewed as negligible noise in

device-dependent settings, it is much less clear whether the
same is true in semi-device-independent quantum informa-
tion protocols, namely, when experimental devices are
mostly uncharacterized and we must assume that these
deviations conspire against the experimenters. In fact, the
practical challenges associated with assuming fixed quantum
dimension have in recent times partly motivated semi-
device-independent frameworks based assumptions entirely
different from the dimension [24–29]. These approaches are
based on limiting the distinguishability of quantum states in
other ways, sometimes by specialization to a specific plat-
form [25].
Here, we aim to remedy the shortcomings of dimension-

based semi-device-independent quantum information pro-
tocols while maintaining basic interest in the quantum
dimension. To this end, we introduce and investigate systems
that only nearly admit a faithful description in terms of
qudits. These “almost qudits” are formulated operationally,
i.e., in a platform-independent way, and can thus be readily
adapted to various quantum systems commonly modeled
with a fixed dimension. We formalize the concept in the
ubiquitous prepare-and-measure scenario and demonstrate
its relevance by revisiting two established dimension-based
quantum information protocols, for random number gen-
eration [30,31] and for certification of multioutcome mea-
surements [22], and showcase how tiny higher-dimensional
contributions can significantly compromise their conclu-
sions. Small deviations from the assumed quantum dimen-
sion can cause compromised security for random number
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generation and false positives for measurement certification.
These observations motivate us to develop general tools for
analyzing almost qudit correlations. We introduce a hier-
archy of semidefinite programming relaxations for bounding
the set of almost qudit quantum correlations. We demon-
strate its usefulness by fully resolving the issues observed for
the two dimension-based protocols. Then, we change
perspective and consider almost qudits as a resource for
the experimenter; we show how to control the higher-
dimensional components in order to optimally boost the
performance of the QRAC [32]. Lastly, we discuss how our
semidefinite programming hierarchy constitutes a general
and useful tool for the well-researched task device-indepen-
dent dimension certification.
Almost qudits in the prepare-and-measure scenario.—A

qudit is a quantum state that can be represented by a density
matrix in a Hilbert space of dimension d, i.e., ρ ∈ DðCdÞ.
We say that quantum states in an experiment can be
described by almost qudits ρ, if the states in principle
require a representation in a countably unbounded Hilbert
space [ρ ∈ DðCDÞ for any D ≥ d], but their support is
almost entirely on a d-dimensional subspace. Formally, we
require that one can choose a representation such that

TrðρΠdÞ ≥ 1 − ϵ; ð1Þ
for all states ρ where Πd ¼

P
d
j¼1 jjihjj is the projector

onto the qudit subspace and ϵ ∈ ½0; 1� is a deviation
parameter quantifying the failure to admit a qudit descrip-
tion. The limiting cases, ϵ ¼ 0 and ϵ ¼ 1, correspond to a
standard qudit and to an arbitrary quantum state, respec-
tively. Here, we are mainly interested in the regime
0 < ϵ ≪ 1. As a simple example, the optical coherent
state jαi ¼ e−ðjαj=2Þ

P∞
n¼0ðαn=

ffiffiffiffiffi
n!

p Þjni has D ¼ ∞ in the
Fock basis but for small average photon numbers (i.e.,
jαj ≪ 1) it corresponds to an almost qubit (d ¼ 2)
with ϵ ¼ 1 − e−jαjð1þ jαj2Þ ≈ jαj.
The condition Eq. (1) is equivalent to the trace-norm

condition kρ − ΠdρΠdk1 ≤ ϵ, with the operational inter-
pretation that no experimental procedure can distinguish
an almost qudit from its (unnormalized) qudit projection
with accuracy greater than ϵ. More generally, consider a
prepare-and-measure experiment featuring a sender, Alice
and a receiver, Bob. Alice selects an input x ∈ f1;…; nXg
and prepares a qudit state ρx that is sent to Bob, who in turn
selects an input y ∈ f1;…; nYg and performs a corre-
sponding quantum measurement fMbjygb with outcome b.
The correlations are

pðbjx; yÞ ¼ TrðρxMbjyÞ: ð2Þ
If the states ρx in the experiment are not exactly qudits,

but only almost qudits (1) associated with the deviation
parameters ϵx, the probabilities can change by at most
jpðϵxÞðbjx; yÞ − pð0Þðbjx; yÞj ≤ 2ϵx. In the Supplemental
Material (SM) Sec. I [33] we also show that for any linear

functionalW ¼ P
bxy cbxyp

ðϵxÞðbjx; yÞ, for real coefficients
cbxy, the maximal value based on Alice preparing almost
qudits (WðϵxÞ) can be bounded by a perturbation of the
maximal value associated to standard qudits (Wð0Þ),
namely,

WðϵxÞ ≤ Wð0Þ þ 2
X

xy

ϵxmax
b

jcbxyj: ð3Þ

Since the correction is of order maxx ϵx, one might believe
that the practical impact of almost qudits on dimension-
based quantum information protocols is accordingly small,
and that such a perturbative approach would suffice.
However, as we will show explicitly, such intuition is
often misguided. A more sophisticated analysis is needed
to remedy the limitations of dimension-based protocols
without rendering their success rates considerably sub-
optimal or even vanishing.
Finally, as with dimension-based correlations but unlike

some other prepare-and-measure frameworks [26,29],
almost qudit correlations have a natural classical analog.
The classical case corresponds to assuming that all states are
diagonal in the same basis, i.e., ρx ¼

P
m pðmjxÞjmihmj.

The assumption (1) simplifies to ∀ x∶
P

d
m¼1 pðmjxÞ ≥

1 − ϵx. It follows that the set of classical correlations is a
polytope. Without loss of generality, it can be characterised
using a finite alphabet for m by following the methods
of [28].
Impact of almost qubits on random number generation.—

We investigate the impact of tiny higher-dimensional
contributions on a well-known qubit-based protocol for
random number generation [30,31]. The protocol relies on
the quantum random access code (QRAC) in the scenario
ðnX; nY; nBÞ ¼ ð4; 2; 2Þ, where Alice’s input is represented
as two bits x1 and x2: Bob randomly selects one, which he
aims to recover. On average, the probability of success
reads pRAC ¼ 1

8

P
x1;x2¼0;1

P
y¼1;2 pðb ¼ xyjx; yÞ. When

Alice sends qubits, the optimal quantum protocol achieves
pQ
RAC ¼ ½ð2þ ffiffiffi

2
p Þ=4�. The protocol uses pRAC as a secu-

rity parameter to certify that b is random [e.g., when
ðx; yÞ ¼ ð1; 1Þ] also for an adversary who controls the
devices via classical side information λ. The randomness
can be quantified by the conditional min-entropy
R ¼ −log2ðPgÞ, where Pg is the largest probability of
guessing b, i.e., Pg ¼ maxfpð1j1; 1Þ; pð2j1; 1Þg, compat-
ible with the observed value of pRAC.
Consider for simplicity a perfect value pRAC ¼ pQ

RAC,
which certifies R ¼ −log2ðpQ

RACÞ ≈ 0.228 bits of random-
ness [30] under a qubit assumption. The randomness reduces
considerably if the physical implementation uses almost
qubits. Choosing only ϵx ¼ 10−3, we found via seesaw a
much less random quantum model, implying the upper
bound R≲ 0.152 bits. Thus, a 0.1% deviation dimension
deviation leads to a standard qubit-based analysis overesti-
mating the randomness by at least about 50%. Playing the
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role of the adversary,we systematically searched numerically
for quantummodels for some small choices of ϵwith the aim
ofmaximally compromising the amount of certified random-
ness. The results are illustrated in Fig. 1. We see that the
amount of certified randomness drops rapidly with ϵ and that
the detrimental impact is largest for well-performing experi-
ments that approach the optimal value pQ

RAC.
Impact of almost qubits on measurement certification.—

As a second example, we consider the impact of almost
qubits on a qubit-based protocol for certifying genuine
four-outcome measurements. In Ref. [22], such a scheme
is reported in the scenario ðnX; nYÞ ¼ ð4; 4Þwhere the first
three measurement settings have binary outcomes
(b ∈ f1; 2g) but the fourth setting has four possible
outcomes (b ∈ f1; 2; 3; 4g). The task corresponds to the
following objective:

A≡ 1

12

X4

x¼1

X3

y¼1

pðtx;yjx; yÞ −
1

5

X4

x¼1

pðxjx; y ¼ 4Þ; ð4Þ

where t ¼ ½1; 1; 1; 1; 2; 2; 2; 1; 2; 2; 2; 1�. The optimal
value for qubits is AQ ¼ ½ð3þ ffiffiffi

3
p Þ=6� ≈ 0.7887. To

achieve this, the setting y ¼ 4 must correspond to a qubit
symmetric informationally-complete positive operator-
valued measurement. It was proven that A≳ 0.78367
implies that y ¼ 4 corresponds to a genuine four-outcome
measurement, i.e., a measurement that cannot be reduced
to a classical mixture of measurements with at most three
outcomes. This was experimentally certified by observing
A ≈ 0.785 14 [22].
Using a seesaw routine, we found an almost qubit

model with deviation parameter ϵx ≈ 5 × 10−4 that repro-
duces the observed certificate using only a ternary-outcome
measurement. This would constitute a false positive when
the lab states are not exactly qubits. Moreover, using only
ϵx ≈ 3 × 10−3, ternary-outcome measurements can even

exceed the qubit quantum limit AQ. These results are part
of the systematic numerical search, see Fig. 2, for the trade-
off between A and ϵ for ternary-outcome measurements.
Finally, in SM Sec. II [33], we also investigate the impact

of almost qubits on self-testing protocols based on the
QRAC [14,34–36]. It quantitatively benchmarks a prepa-
ration device that aims to emit the four states used in the
BB84 quantum key distribution protocol.
Semidefinite relaxations.—The considerable impact of

small dimension deviations on protocols naturally moti-
vates the development of methods for characterizing the set
of almost qudit correlations. We introduce a hierarchy of
semidefinite programming relaxations for bounding this set
in arbitrary prepare-and-measure scenarios. This consists of
a sequence of computable necessary conditions for the
existence of an almost qudit model for a given distribu-
tion pðbjx; yÞ.
Define S ¼ f1; V; ρ1;…; ρnX ;M1j1;…;MnBjnYg where 1

is the identity on CD and V is an auxiliary operator whose
properties are to be specified. While in general ρx can be
mixed, we can without loss of generality assume that it is
pure (ρx ¼ ρ2x) for the purposes of the semidefinite relax-
ation; see SM Sec. III [33]. Also, we can w.l.g. assume that
the measurements are projective (MbjyMb0jy ¼ δb;b0Mbjy)
because of the possibility of Neumark dilations. We then
build a monomial list S which consists of products of the
elements of S. Which products to include is a degree of
freedom and corresponds to the level of the relaxation.
Then, associate a jSj × jSj moment matrix Γu;v ¼ Trðuv†Þ,
for u; v ∈ S. Importantly, the quantum probabilities (2)
appear as elements in Γ and are therefore fixed to the values
pðbjx; yÞ. Because of rules such as normalization of states,
cyclicity of trace, and projectivity of measurements, many
elements in Γ are equivalent. The remaining entries are
viewed as free variables. By construction Γ is positive
semidefinite.

FIG. 1. Randomness certified by the observed parameter pRAC
for different deviation parameters ϵ. The black curve corresponds
to the standard qubit-based protocol. These curves match, up to
numerical precision, the lower bounds from the SDP hierarchy
introduced around (5).

FIG. 2. Correlation functionA versus the deviation parameter ϵ
for almost qubits with ternary-outcome measurements (full black
line). Dashed lines are ternary (red) and quaternary (blue) bounds
on A assuming perfect qubits. These curves match, up to
numerical precision, the upper bounds from the SDP hierarchy
introduced around (5).
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Next, we impose the almost qudit property. To this end,
we use the operator V to emulate the projection operator
Πd. Thus, we insist that V is projective (V ¼ V2) and its
trace is d (TrV ¼ d). The former impacts the equivalences
among the entries of Γ while the latter implies the addi-
tional constraint Γ1;V ¼ d. The almost qudit constraint (1)
can then be imposed through explicit constraints on Γρx;V .
A necessary condition for the existence of a quantummodel
is the feasibility of the following semidefinite program:

findΓ such that ∀ x∶Γ1;ρx ¼ 1; Γ1;V ¼ d

Γρx;V ≥ 1 − ϵx; and Γ≽0: ð5Þ

Furthermore, this tool can be immediately adapted to
bounding the maximal quantum value of a generic linear
objective function: simply substitute the feasibility problem
(5) for a maximization problem in which Γρx;Mbjy are now
free variables appearing in the objective function.
Almost qudit protocols.—We showcase the utility of the

semidefinite relaxation hierarchy by applying it to the
previously considered protocols. In Fig. 1, we reported
upper bounds on the randomness under the almost qubit
assumption. In order to be able to certify randomness, we
require lower bounds. Upper bounds on the guessing
probability Pg (lower bounds on R) under quantum corre-
lation constraints are typically compatible with semidefinite
relaxations [37]. Using our method with a moment matrix of
size 115 we reproduced the curves in Fig. 1 up to solver
precision. Thus, these curves certify the optimal random-
ness extraction for almost qubits. It is instructive to compare
to a naive perturbation analysis of the standard qubit
scenario, following Eq. (3). This approach is considerably
suboptimal (see SM, Sec. I [33]). For instance, for
ϵ ¼ 0.1%, the amount of certified randomness is

underestimated by 46%, and already for ϵ ¼ 1% random-
ness cannot be certified at all.
Similarly, using a moment matrix of size 235 we can

prove that the previously reported value of ϵ for a falsely
positive genuine four-outcome measurement is optimal.
More generally, we obtain tight upper bounds on A for any
ϵ under ternary-outcome measurements. These accurately
coincide with the lower bounds reported in Fig. 2. Thus, the
certification can be performed under the almost qubit
assumption. Again, performing the same analysis using
the perturbative approach (3) leads to significantly sub-
optimal bounds (see SM, Sec. I [33]). For example, under
ternary-outcome measurements, a perturbative analysis
deduces a deviation parameter ϵ ≈ 5 × 10−4 from the
experimental value of A in [22], five times smaller than
the optimal deviation parameter.
Bounding standard qudit correlations.—An important

special case of our method is ϵx ¼ 0, corresponding to
standard qudits. Naturally, bounding qudit correlations has
been the subject of prior research [10,38–40]. The leading
established method is also based on semidefinite relaxa-
tions [10] but differs significantly from ours. While [10]
requires numerical sampling to construct the moment
matrix, ours is fully deterministic. Also, although not
strictly necessary, it typically favors separate semidefinite
programs for all rank combinations of the measurement
operators [39]. This scales very quickly in all three
parameters ðnY; nB; dÞ. In contrast, our method requires
only a single semidefinite program. A key distinguishing
feature of our method is that the complexity of the program
is independent of d. Furthermore, it also applies to the
classical case, relevant when linear programming becomes
too expensive, simply by imposing commutation con-
straints ½ρx; ρx0 � ¼ 0 and ½Mbjy;Mb0jy0 � ¼ 0 in the moment
matrix. The main drawback is that our method does not
converge (see SM, Sec. III [33], for an example). The basic
reason is that our method actually characterizes a superset
of qudit systems, namely, correlations obtained from
systems whose dimension, when averaged over a hidden
variable, is d [39,41]. Although convergence is also not
known for the established method [39], it performs better in
some cases.
We exemplify the usefulness of our method by address-

ing intermediate-scale dimensions in the simplest variant
of a QRAC for which no analytical solution is presently
known. Alice has three trits x1x2x3 ∈ f1; 2; 3g and com-
municates a d-dimensional system. Bob receives y ∈
f1; 2; 3g and aims to output b ¼ xy. The success proba-
bility is qRAC ¼ ð1=81ÞPx1x2x3y pðb ¼ xyjx; yÞ. Invoking
the symmetries of the RAC (see Ref. [40]) to reduce the
number of independent variables, we used semidefinite
relaxations of size 1128 to bound qRAC for every
d ¼ 2;…; 20. Crucially, because the complexity of the
computation is independent of d, we can readily evaluate
higher-dimensional cases. In Fig. 3 we plot the resulting

FIG. 3. Upper and lower bounds on the success probability of
the three-trit QRAC for qudits of dimensions d ¼ 2;…; 20.
Upper bounds were computed using partially symmetrized semi-
definite relaxations (variable elimination methods but no block
diagonalization) at level 2 of the hierarchy. Lower bounds were
computed by seesaw.
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upper bounds together with lower bounds on qRAC
obtained via seesaw. These bounds are not expected to
be optimal, but we conclude from the narrow gap between
the upper and lower bounds that our upper bounds are at
worst only nearly optimal. Importantly, we see that the gap
narrows with increasing dimension, which attests to the
accuracy of the semidefinite relaxation method on the
scale when it is most relevant, namely, for higher dimen-
sional systems.
Almost qubits as a resource.—So far, we considered

situations in which the experimenter aims to prepare a qudit
but fails to control the small higher-dimensional compo-
nents of the lab state. Consider the complementary situation
in which the experimenter has the ability to manipulate the
entire almost qudit. Then, almost qudits become a resource
for boosting quantum communication beyond standard
qudits. An example of this is when Alice prepares the states

jϕ00i ¼
ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
j0i þ ffiffiffi

ϵ
p j2i; jϕ10i ¼

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
sþ01 −

ffiffiffi
ϵ

p
sþ23;

jϕ11i ¼
ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
j1i þ ffiffiffi

ϵ
p j3i; jϕ01i ¼

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
s−01 −

ffiffiffi
ϵ

p
s−23;

where s�ij ¼ ½ðjii � jjiÞ= ffiffiffi
2

p �. These allow for boosting the
success probability of the QRAC [32]. By optimally
choosing the measurement operator fM0jyg as the projector
onto the positive eigenspace of the operator Oy ¼P

x1;x2
ð−1Þxy jϕx1x2ihϕx1x2 j, one finds the success probability

pRACðϵÞ ¼ 1
2
þ ð1=2 ffiffiffi

2
p Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϵ − 4ϵ2

p
. We have proven

that this strategy is the best allowed by quantum theory by
employing a moment matrix of size 107. For the most
relevant case of small ϵ, there is an immediate connection to
the standard qubit scenario: the first-order approximation is
pRACðϵÞ ≈ ½ð2þ ffiffiffi

2
p Þ=4� þ ðϵ= ffiffiffi

2
p Þ, which is a linear cor-

rection to the success probability pQ
RAC of the standard

QRAC. Note that a perturbative approach (3) would over-
estimate the correction term, at 2ϵ.
Discussion.—We presented several examples demon-

strating how tiny deviations from an assumed dimension
can significantly compromise the conclusions of estab-
lished protocols. We introduced almost qudits as an avenue
to remedy these problems and developed general tools to
characterize their correlations.
Our Letter leaves several natural questions. Which

experimental platforms are most and least prone to dimen-
sional deviations? What resources could an eavesdropper
use to efficiently hack them? How do we wisely tailor
protocols to perform well for almost qudit systems? These
matters are particularly relevant in the context of the
increasing interest in high-dimensional quantum informa-
tion [42–46]. Moreover, what is the magnitude of quantum
advantage possible from almost qudits, as compared to
classical almost dits? Is it possible to add additional
constraints that would lead to a convergent hierarchy?
Can these ideas be leveraged to qubit-based quantum key

distribution protocols [12,13]? Finally, the notion of almost
qudits can be extended into entanglement-based scenarios.
Do our methods also apply and how do they compare to
established semi-definite program hierarchies for the
dimension-bounded Bell scenario [10,47]?
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Brunner, Self-testing quantum states and measurements in
the prepare-and-measure scenario, Phys. Rev. A 98, 062307
(2018).

[15] A. Tavakoli, Semi-Device-Independent Certification of
Independent Quantum State and Measurement Devices,
Phys. Rev. Lett. 125, 150503 (2020).
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zation of Quantum Correlations with Local Dimension
Constraints and its Device-Independent Applications, Phys.
Rev. X 4, 011011 (2014).

PHYSICAL REVIEW LETTERS 129, 250504 (2022)

250504-7

https://doi.org/10.1038/s41467-022-28767-x
https://doi.org/10.1038/s41467-022-28767-x
https://doi.org/10.1038/s41567-022-01658-0
https://doi.org/10.1038/s41567-022-01658-0
https://doi.org/10.1103/PhysRevX.4.011011
https://doi.org/10.1103/PhysRevX.4.011011

