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Quantum metrology with entangled resources aims to achieve sensitivity beyond the standard quantum
limit by harnessing quantum effects even in the presence of environmental noise. So far, sensitivity has
been mainly discussed from the viewpoint of reducing statistical errors under the assumption of perfect
knowledge of a noise model. However, we cannot always obtain complete information about a noise model
due to coherence time fluctuations, which are frequently observed in experiments. Such unknown
fluctuating noise leads to systematic errors and nullifies the quantum advantages. Here, we propose an
error-mitigated quantum metrology that can filter out unknown fluctuating noise with the aid of
purification-based quantum error mitigation. We demonstrate that our protocol mitigates systematic
errors and recovers superclassical scaling in a practical situation with time-inhomogeneous bias-inducing
noise. Our result is the first demonstration to reveal the usefulness of purification-based error mitigation for
unknown fluctuating noise, thus paving the way not only for practical quantum metrology but also for
quantum computation affected by such noise.
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Introduction.—Quantum metrology with entangled
resources has been shown to reach the Heisenberg limit
of sensitivity with respect to the number of qubits [1–7]. It
may provide significant improvements for versatile appli-
cations such as atomic-frequency [8,9] and electron-spin-
resonance measurements [10,11], magnetometry [12,13],
thermometry [14], and electrometers [15].
The Heisenberg limit is susceptible to decoherence; for

example, under the effect of Markovian dephasing, the
sensitivity of entangled states scales to the standard
quantum limit (SQL), as do separable states [8]. Several
theoretical studies predict that scaling beyond the standard
quantum limit is possible: they include the superclassical
scaling, which is also called Zeno scaling, under the time-
inhomogeneous noise model [16,17], quantum scaling by
quantum teleportation [18,19], using the collective effect of
open quantum systems [20,21], and applying quantum
error correction [22,23]. So far, however, sensitivity scaling
has been mainly discussed from the viewpoint of statistical
errors under the assumption that the noise model can be
fully characterized [Fig. 1(a)].
In experiments, we cannot always obtain complete

information of a noise model typically due to coherence-
time fluctuations [24–27]; accordingly, noise characteriza-
tion becomes intractable, leading to “systematic errors”
[Fig. 1(b)]. Systematic errors usually result from a difference

between the actual situation and the theoretical estimator
used by experimentalists to estimate the target parameter.
Intractable noise characterization leads to a biased estimator
and induces systematic errors in estimations. In practice,
systematic errors are fatal to quantum metrology because
they cannot be reduced even when the number of qubits
increases, thus seriously limiting any sensitivity improve-
ment [10,28,29]. Despite systematic errors typically being
present in experiments, there is as yet no general approach to
dealing with them, although some studies have tackled
specific scenarios [30–33].
In the present Letter, we propose a quantum-metrology

protocol incorporating quantum error mitigation (QEM) to
mitigate systematic errors, thereby improving the scaling of
sensitivity even in the presence of unknown fluctuating
noise [Fig. 1(c)]. While conventional QEM methods have
been designed for suppressing systematic errors in the
expectation values produced by near-term quantum algo-
rithms [27,34–43], they are not suitable for suppressing the
systematic errors coming from unknown fluctuating noise.
For example, probabilistic error cancellation cancels the
effect of noise by inverting the noise map based on the
characterization of the noise [35,36], while error extrapo-
lation assumes the precise control of the noise model
[35,37]; thus, unknown fluctuating noise seriously degrades
the performance of QEM. To deal with this problem, we
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construct the protocol of error-mitigated quantummetrology
based on purification-basedQEM[44,45], so that it can filter
out unknown fluctuating noise that differs from one experi-
mental run to another. It is noteworthy that our Letter is the
first proposal to use purification-basedQEMfor overcoming
unknown time-fluctuating noise. In numerical simulations,
we used it to suppress bias-inducing Markovian and time-
inhomogeneous noise and thereby restore the scaling of
sensitivitywith respect to the number of qubits. In particular,
we observed the superclassical scaling with our method.
Quantum metrology with systematic errors.—Here, we

describe a general theory for systematic errors in a Ramsey-
type measurement of quantum metrology [46–48]. In a
typical quantum-metrology setup, we prepare an initial
state, expose this state to the target fields characterized by
a parameter ω, and obtain a state ρ. Then, we perform a
measurement on this state that can be described by a
projection operator P producing a binary outcome. The
measurement outcome, mj ∈ f−1; 1g, is obtained from the
measurement probability,

p ¼ Tr½Pρ� ¼ xþ yω; ð1Þ

where x and y are some scalars. Here, we have assumed that
ω is small and have ignored the higher order terms of ω.
Repeating the measurement Nsamp times yields the average

value of data, SN ¼ PNsamp

j¼1 mj=Nsamp. To estimate the

parameter ω, we need to fit this experimental data with
a theoretical estimator. To obtain the estimator, we first
consider the theoretical density matrix ρe and calculate the
estimated probability as

pe ¼ Tr½Pρe� ¼ xe þ yeω; ð2Þ

where xe and ye denote the estimated values of x and y,
respectively. By reference to Eq. (2), we calculate the
estimator of ω as ωe ¼ ðSN − xeÞ=ye and estimate ω using
the average data SN with the estimator. If we have imperfect
knowledge of noise model, ρe would be different from the
true one and leads to a biased estimator, thereby leading to
systematic errors.
Systematic errors require us to consider the estimation

uncertainty of the target quantity [46–48]. The estimation
uncertainty of ω is defined as δ2ω ¼ hðω − ωeÞ2i, with the
brackets denoting the ensemble average, and is calcu-
lated as

δ2ω ¼ 1

y2e
½Var½p� þ ðx − xeÞ2�; ð3Þ

where Var½p� is the variance of p, which is typically
Var½p� ¼ pð1 − pÞ=Nsamp, and we have neglected the
higher order terms of ω because ω is small. Most of the
previous theoretical studies focused on the first term in

FIG. 1. Schematic illustration of the present Letter. In the standard quantum metrology, we prepare the initial state ρ composed of L
qubits, expose it to the target field described by the time-evolution operator Uω, where some noise process occurs, and measure the
parametrized final state. After many iterations, we obtain the average data. Separately, we theoretically calculate the estimator to
estimate ω from the average data. (a) Even under noise, perfect knowledge of the noise model provides the unbiased estimator and leads
to no systematic errors. (b) Imperfect knowledge of the noise model induced by, e.g., unknown coherence-time fluctuation leads to a
biased estimator and involves systematic errors, thus resulting in deterioration of scaling of δ2ω, the estimation uncertainty of ω. (c) In
the error-mitigated quantum metrology, 2n copies of the states after time evolution are put into QEM circuits. Then we calculate the
error-mitigated estimator to estimate ω with the average data. Our protocol reduces systematic errors and recovers the scaling of δ2ω.
Note that the schematic picture of the scaling shows a case of Markovian noise.
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Eq. (3) by assuming ρ ¼ ρe, which comes from the statis-
tical error, as it decreases with increasing Nsamp. The
second term in Eq. (3) comes from the systematic error
x − xe induced by the incorrect estimation of the proba-
bility p ≠ pe. Since x − xe remains even when Nsamp incre-
ases, it spoils the scaling of δ2ω. In the following, we focus
on reducing the systematic error x − xe by using QEM.

Error-mitigated quantum metrology.—Here, we introduce
our general framework of error-mitigated quantum metro-
logy, which is inspired by purification-based QEM [44,45].
We assume that we implement Nsamp experimental runs and
the noise fluctuates from one experimental run to another,
i.e., we assume a different quantum state for the ith
measurement described by ρi in the ith experimental
run. The key quantity of our framework is the following
error-mitigated expectation value of the observable O
measured in the quantum circuit in Fig. 2(a):

hOimit ¼
Tr½ρnO�
Tr½ρn� ; ð4Þ

where ρn ¼ ð1=NsampÞ
PNsamp

i¼1 ðρiÞn is the unnormalized
purified density matrix made from n copies of noisy
density matrices; later, we will discuss its filtering effect
on fluctuating noise.
Our protocol is described as follows [Figs. 1(c) and 2]:

(1) make 2n copies of the initial state ρð0Þ; (2) expose these
2n copies to the target field simultaneously (or almost at the
same time) for an interaction time t, so that we can obtain
the 2n copies of ρiðtÞ even with fluctuating noise; (3) divide
these 2n copies of ρiðtÞ in half; (4) input n of 2n density
matrices to the purification circuit and obtain a “single
shot” measurement outcome to calculate the numerator in
Eq. (4); (5) input the remaining n density matrices in a
similar manner to Eq. (4) but with setting O ¼ I, to
calculate the denominator in Eq. (4) [49]; (6) repeat
(1)–(5) and average the obtained data, Snum for Tr½ρnO�
and Sdenom for Tr½ρn�: then, compute SNmit

≡ Snum=Sdenom as
the estimator for hOimit; (7) calculate the error-mitigated
estimator for ω as ωe ¼ ðSNmit

− xmitÞ=ymit by calculating
hOimit ≡ xmit þ ymitω using estimated ρe, and then estimate
ω. Note that the density matrix for the ensemble of Nsamp

states input to the purification circuit can be described as
ρin ¼ ð1=NsampÞ

PNsamp

i¼1 ρ⊗n
i ; we can then obtain Eq. (4)

from a simple calculation [50].
Now, we show that our protocol can filter out the noisy

states and extract a dominant pure state even in the presence
of fluctuating noise. Denoting the spectral decomposition

of ρi as ρi ¼
P

k p
ðiÞ
k jψ ðiÞ

k ihψ ðiÞ
k j, we have

ρn ¼ 1

Nsamp
ðpmaxÞn

X
ik

�
pðiÞ
k

pmax

�n

jψ ðiÞ
k ihψ ðiÞ

k j

¼ ðpmaxÞn
Nsamp

jψmaxihψmaxj ðn → ∞Þ; ð5Þ

where pmax ¼ maxi;kp
ðiÞ
k and jψmaxi is the corresponding

eigenstate. Thus, the contribution of states other than
jψmaxi is exponentially suppressed as the number of copies
n increases, which means that our method can filter out
unknown fluctuating noise. In general, the dominant
eigenvector of the mixed state is distorted by noise and
differs from the ideal quantum state, which is called
coherent mismatch [62]. Nevertheless, our method clearly
eliminates the systematic errors, to allow for a dramatic
improvement in δ2ω in practical scenarios, as we will see
later in the numerical simulations.

Demonstration of error-mitigated quantum metrology.—We
demonstrate that our protocol mitigates systematic errors
even under unknown fluctuating noise and improves the
scaling of δ2ω using entanglement quantum metrology.
Here, we consider Markovian and time-inhomogeneous
local amplitude damping. We choose the initial probe state
ρð0Þ ¼ jGHZihGHZj as the L-qubit Greenberger-Horne-
Zeilinger (GHZ) state jGHZi ¼ ðj0…0i þ j1…1iÞ= ffiffiffi

2
p

,
where j0i and j1i are the eigenstates of the Pauli Z operator
σz σzj1i ¼ j1i and σzj0i ¼ −j0i. We consider a uniform

magnetic field described by the Zeeman Hamiltonian H ¼P
L
j¼1 ωσ

ðjÞ
z =2 with a parameter ω determined by the target

field. Throughout the present Letter, we set ℏ ¼ 1 and
assume small Lωt. We also assume that the time needed for
state preparation, error mitigation, and readout is much
shorter than the interaction time with the magnetic fields.
We consider that in the ith experimental run, the local
amplitude damping with different error rates, ϵiðtÞ, affects
each state of the 2n copies in the time evolution. The

FIG. 2. (a) Error-mitigated metrology protocol for the ith run.
2n copies of the initial states are exposed to the magnetic field,
and n copies are put to purification circuit [44] with O ¼ Y and
the remains are put with O ¼ I. (b) Schematic illustration of
estimating ω. Using estimated T1, we calculate the error-
mitigated estimator hPyimit ¼ Tr½ρðtÞnPy�=Tr½ρðtÞn� and estimate
ω with the data obtained in (a).
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state after the time evolution is described as ρiðtÞ ¼
EðϵiÞ½e−iHtρð0ÞeiHt�. Here, EðϵiÞ is the error map denoting
the local amplitude damping, in which a single-qubit ampli-
tude damping described by the Kraus operators, K1ðϵiÞ ¼
j0ih0j þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϵiðtÞ
p j1ih1j and K2ðϵiÞ ¼

ffiffiffiffiffiffiffiffiffi
ϵiðtÞ

p j0ih1j, acts
on every L qubit. The effect of fluctuating noise is included
in ϵiðtÞ ¼ 1 − expð−t=T1;iÞ for Markovian noise and in
ϵiðtÞ ¼ 1 − exp½−ðt=T1;iÞ2� for time-inhomogeneous noise,
where T1;i is the coherence time in the ith experimental run;
we consider the actual coherence time drifting from 1.0 to
0.5 as T1;i ¼ 1.0 − 0.5i=Nsamp with uniform random fluc-
tuation between ½−0.25; 0.25�, while the estimated coher-
ence time is assumed to be T1;e ¼ 1.0 [Fig. 2(b)]. We also
fix the total experimental time as T ¼ Nsampt ¼ 100. From

the 2n copies of ρiðtÞ, we obtain Tr½ρðtÞn� with O ¼ I and
Tr½ρðtÞnY� with O ¼ Y, as shown in Eq. (4), where
Y¼2Py−I, Py¼jGHZyihGHZyj, and jGHZyi¼ðj0…0i−
ij1…1iÞ= ffiffiffi

2
p

. These expectation values lead to an error-
mitigated probability of hPyimit ¼ Tr½ρðtÞnPy�=Tr½ρðtÞn�:
see the Supplemental Material (SM) [50] for detailed
calculations.
We now turn our attention to the numerical results. The

performance of our protocol is evaluated by comparing δ2ω
with and without QEM; see the numerical details in
SM [50]. The ideal case is shown by the black dotted line
in Figs. 3(a) and 3(b), when we consider that the actual
coherence time is constant and correctly estimated, T1;i ¼
T1;e ¼ 1.0: δ2ω follows the conventional SQL scaling for
Markovian noise, δ2ω ∼ L−1, and superclassical scaling for
time-inhomogeneous noise, δ2ω ∼ L−1.5 [16,17]. However,
when the actual coherence time is drifted as described
above, the systematic error occurs and significantly spoils
the scaling of δ2ω as shown by the blue line with points in
Figs. 3(a) and 3(b): δ2ω ∼ L0 for Markovian noise and
δ2ω ∼ L−1 for time-inhomogeneous noise. The crucial
reason for this deterioration is that the systematic error
is not reduced by increasing L for both cases as
jx − xej ∼ L0, while the statistical error is reduced. Thus,
for large enough L, the second term in Eq. (3) coming from
the systematic error is dominant and spoils the scaling.
Now, we show that our protocol mitigates the systematic

error and dramatically improves the scaling of δ2ω. In
Figs. 3(a) and 3(b), the red line with triangles (for n ¼ 2)
and the green line with squares (for n ¼ 3) show δ2ω in our
error-mitigated quantum metrology; they demonstrate that
our protocol recovers the SQL scaling for Markovian noise
and superclassical scaling for time-inhomogeneous noise
even when the estimated coherence time is different from
the actual one. This demonstrates that our protocol success-
fully mitigates systematic errors and recovers the scaling;
we also demonstrate the usefulness of our protocol for
generalized amplitude damping in SM [50]. In the purifi-
cation-based QEM, as we increase the number of copies n,

systematic errors are reduced better with an exponentially
higher sampling cost [44]. Therefore, the increase of n
improves (reduces) the sensitivity when the systematic
(statistical) error is dominant. Accordingly, we see the
crossover between n ¼ 1 and n ≥ 2 in Figs. 3(a) and 3(b).
We also investigate how the number of copies of the GHZ
states affects the uncertainty δ2ω to obtain the quantum
enhancement in SM [50].
Considering the trade-off between mitigating systematic

error and increasing the statistical error, one may expect
that there should be a crossover point between n ¼ 2 and
n ¼ 3; indeed we can see it in the plot for another model in
Fig. S4 [50]. In the present example in Fig. 3, however,
there is no crossover point between different n for n ≥ 2,
and thus n ¼ 2 is always optimal for large enough L. This
is because the systematic error decays as fast as or faster
than the statistical error by increasing L for n ≥ 2; the
former scales as L−ðn−1Þ (L−n), while the latter scales
as L−1 (L−3=2) for Markovian (time-inhomogeneous) noise.
Therefore, the statistical error is always dominant for large
enough L for n ≥ 2, and n ¼ 2 is optimal due to its least
statistical error among n ≥ 2. This phenomenon comes
from the L dependence of the systematic error for n ≥ 2 in

FIG. 3. Estimation uncertainty δ2ω for (a) Markovian and
(b) time-inhomogeneous local amplitude damping. Although
the ideal scaling is realized by the unbiased estimator with the
correct estimation of the noise model (black dotted line), a biased
estimator with an incorrect estimation of the noise model leads to
systematic errors and spoils the scaling (blue line with circles).
Our protocol mitigates systematic errors and recovers the
ideal scaling (red and green lines with triangles and squares,
respectively).
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the present example, jxe − xj ∼ L−ðn−1Þ [50]. We can relate
the L dependence of jx − xej to the Rényi entropy of the
error states [50], which is related to the performance of
purification-based QEM [44]. In general, L entangled
qubits provide an exponentially increasing state space,
and this typically increases the Rényi entropy of error
states. Thus, we expect that our protocol will work very
well in quantum metrology using entangled states: see also
the demonstrations of various models with different Rényi
entropy in SM [50].

Conclusion and outlook.—We proposed an error-mitigated
quantum metrology to reduce systematic errors coming
from an incorrect estimation of unknown noise typically
induced by coherence-time fluctuations. Our error-
mitigated quantum metrology, inspired by purification-
based QEM, filters out fluctuating noise that differs
from one experimental run to another. We used our
method to suppress bias-inducing Markovian and time-
inhomogeneous noise, where systematic errors spoil scal-
ing of δ2ω, and demonstrated restoration of the scaling. In
particular, for the latter case, our method led to super-
classical scaling. Here, we should mention that the number
of copies of the input density matrix in our method may be
reduced by using other methods related to purification-
based QEM [63–65] and that coherent error may be further
reduced by combining our method with generalized sub-
space expansion [66]. Our results suggest that our scheme
would be useful not only for quantum metrology affected
by unknown fluctuating noise but also for quantum
computation affected by such noise.
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