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It is hoped that quantum computers will offer advantages over classical computers for combinatorial
optimization. Here, we introduce a feedback-based strategy for quantum optimization, where the results of
qubit measurements are used to constructively assign values to quantum circuit parameters. We show that
this procedure results in an estimate of the combinatorial optimization problem solution that improves
monotonically with the depth of the quantum circuit. Importantly, the measurement-based feedback enables
approximate solutions to the combinatorial optimization problem without the need for any classical
optimization effort, as would be required for the quantum approximate optimization algorithm. We
demonstrate this feedback-based protocol on a superconducting quantum processor for the graph-
partitioning problem MaxCut, and present a series of numerical analyses that further investigate the
protocol’s performance.
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Introduction.—Combinatorial optimization has broad and
high-value applications in many sectors of industry and
science, including for optimization of logistics and supply
chain, and drug discovery [1]. Solving general combinatorial
optimization problems is nondeterministic polynomial-
time (NP) hard and most practical strategies involve devel-
oping good quality approximate solutions. Recently, there
has been much interest in approximate solution of combi-
natorial optimization problems through mapping to quantum
systems, whereby the problem is encoded into an Ising
Hamiltonian Hp [2], such that the solution of problem is
encoded in the ground state of Hp. Then methods such
as quantum annealing [3] or, within the quantum circuit
model, the quantum approximate optimization algorithm
(QAOA) [4] are used to approximately prepare the ground
state of Hp. Although there is no rigorous proof of an
advantage to using such quantum techniques over classical
approximation algorithms, it is widely believed that at some
scale of problem such an advantage should exist.
We introduce a new approach to solving combinatorial

optimization problems using quantum computers that oper-
ates through the use of parametrized quantum circuits and
feedback that is conditioned on qubit measurements at every
quantum circuit layer, in order to determine the circuit
parameter values at subsequent layers. This Feedback-based
ALgorithm for Quantum OptimizatioN (FALQON) makes a
direct connection to quantum Lyapunov control (QLC), a
control strategy that uses feedback to identify the controls to
drive the dynamics of a quantum system in a desired manner
[5–13]. Our approach works within the framework of circuit-
model quantum computing, but avoids a critical challenge
facing the scaling of QAOA, which is the difficulty of

optimizing a large number of variational parameters. In fact,
it was recently shown that, under certain assumptions, this
classical optimization problem is itself NP-hard for QAOA
[14]. Our feedback-based approach circumvents the need for
optimization of variational parameters by using information
from iterative measurements.
In the following, we show that FALQON produces a

monotonically improving estimate of the combinatorial
optimization problem solution with respect to the depth of
the circuit. We then consider the application of FALQON
toward solving the MaxCut problem, and present the results
of an experimental demonstration on quantum hardware.
This is followed by a series of numerical analyses that
explore the performance of FALQON for MaxCut on three-
regular graphs. Finally, we examine the required number
of repeated circuit evaluations and compare this to the
requirements of QAOA in this context. We conclude with a
discussion of the trade-offs between FALQON and QAOA,
outline the additional content in our companion paper [15],
and look to the future.
Feedback-based algorithm for quantum optimization.—

We begin by considering a quantum system whose dynam-
ics are governed by i d

dt jψðtÞi ¼ ½Hp þHdβðtÞ�jψðtÞi,
where jψðtÞi is the system state vector, we have set
ℏ ¼ 1, and Hp and Hd denote the (unitless) “drift” and
“control” Hamiltonians, where the latter couples a scalar,
time-dependent control function βðtÞ to the system. We
seek to minimize hHpi ¼ hψðtÞjHpjψðtÞi [16], and accom-
plish this by designing βðtÞ such that

d
dt

hψðtÞjHpjψðtÞiðtÞ ≤ 0; ∀ t ≥ 0: ð1Þ
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Evaluating the left-hand side of Eq. (1), we see
that d

dt hψðtÞjHpjψðtÞi ¼ AðtÞβðtÞ, where AðtÞ≡
hψðtÞji½Hd;Hp�jψðtÞi. There is significant flexibility in
choosing βðtÞ in order to satisfy Eq. (1), i.e., we may take
βðtÞ ¼ −wf½t; AðtÞ�, for w > 0, where f½t; AðtÞ� is any
continuous function with fðt;0Þ¼0 and AðtÞf½t;AðtÞ�>0
for all AðtÞ≠0 [17]. Here, we present results for w¼1 and
f½t;AðtÞ�¼AðtÞ, such that βðtÞ ¼ −AðtÞ. In practice, we
assign values to βðtÞ as a feedback loop, where
βðtÞ¼−Aðt−τÞ, and τ is a feedback loop time delay.
We now consider alternating, rather than concurrent,

applications of Hp and Hd, leading to a time evolution of
the form U¼UdðβlÞUp���Udðβ1ÞUp, where Up¼e−iHpΔt,
UdðβkÞ¼e−iβkHdΔt, and βk ¼ βðkτ − ΔtÞ for k ¼ 1; 2;…;l
and τ ¼ 2Δt, such that after each period of Δt the applied
Hamiltonian alternates between Hp and Hd. We note that
for small Δt, this yields a Trotterized approximation to
the continuous time evolution of the system. In this
Trotterized framework, we again aim to satisfy Eq. (1)
by suitably choosing each value of βk. We note that during
the time intervals when Hp is applied, d

dt hHpiðtÞ ¼ 0;
although its value does not change, the eigenstates ofHp do
accumulate phases during this time, which impact the
ensuing dynamics. Meanwhile, during the time intervals
when Hd is applied, we recover the same result that
d
dt hHpi ¼ AðtÞβðtÞ. Consequently, we can ensure that

Eq. (1) is satisfied by using the same feedback law, given
by βkþ1 ¼ −Ak, where Ak ¼ hψkji½Hd;Hp�jψki [18]. In
this setting, it is always possible to select Δt small enough
such that Eq. (1) is satisfied [15]. However, if Δt is chosen
to be too large, Eq. (1) will be violated. Based on this
framework, the FALQON algorithm is presented in Fig. 1.
The key feature of FALQON is that it is a constructive,
optimization-free procedure for assigning values to each βk
according to a feedback law. And by design, the enforce-
ment of Eq. (1) ensures that the quality of the solution to the
combinatorial optimization problem under consideration
(quantified by hHpi) improves monotonically with respect
to the depth of the circuit, k.
The circuits used in QAOA have the same alternating

structure as those in FALQON, albeit with additional
parameters γ1;…; γl that enter into Up, such that
UQAOA ¼ UdðβlÞUpðγlÞ � � �Udðβ1ÞUpðγ1Þ. Then, the sol-
ution to the original combinatorial optimization problem is

sought by minimizing hψðγ⃗; β⃗ÞjHpjψðγ⃗; β⃗Þi over the set of
2l circuit parameters γ⃗ ¼ ðγ1;…; γlÞ and β⃗ ¼ ðβ1;…; βlÞ
using a classical processor, where jψðγ⃗; β⃗Þi ¼ UQAOAjψ0i.
However, we emphasize that FALQON is conceptually
distinct from QAOA. Namely, QAOA seeks to minimize

hHpi by classically optimizing over all parameters γ⃗, β⃗
simultaneously, while FALQON seeks to minimize hHpi

FIG. 1. (a) The procedure for implementing FALQON. The initial step is to seed the procedure by setting β1 ¼ 0. The qubits are
then initialized in the state jψ0i, and a single FALQON layer is implemented to prepare jψ1i ¼ Udðβ1ÞUpjψ0i. The qubits are then
measured to estimate A1, whose result is fed back to set β2 ¼ −A1, up to sampling error. For subsequent steps k ¼ 2;…;l, the same
procedure is repeated, as shown in (b): the qubits are initialized as jψ0i, after which k layers are applied to obtain jψki ¼
UdðβkÞUp � � �Udðβ1ÞUpjψ0i, and then the qubits are measured to estimate Ak, and the result is fed back to set the value of βkþ1. This
procedure causes hHpi to decrease layer by layer as per hψ1jHpjψ1i ≥ hψ2jHpjψ2i ≥ � � � ≥ hψljHpjψli, as shown in (c), such that the
quality of the solution to the combinatorial optimization problem monotonically improves with circuit depth. The protocol can be
terminated when the value of hHpi converges or a threshold number of layers l is reached. Then, after the final step, Z basis
measurements on jψli can be used to determine a best candidate solution to the combinatorial optimization problem of interest by
repeatedly sampling from the probability distribution over bit strings induced by jψli and selecting the outcome associated with the best
solution.
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over a sequence of quantum circuit layers, guided by
qubit measurement-based feedback, without classical
optimization.
Applications to MaxCut.—We now consider the appli-

cation of FALQON toward a quintessential combinatorial
optimization problem: MaxCut, which aims to identify a
graph partition that maximizes the number of edges in a
graph that are cut. For an unweighted graph G, with n nodes
and edge set E, the MaxCut problem Hamiltonian is defined
on n qubits as Hp ¼ −

P
i;j∈E

1
2
ð1 − ZiZjÞ, while Hd has

the standard form Hd ¼
P

n
j¼1 Xj, such that i½Hd;Hp� ¼P

i;j∈E YiZj þ ZiYj, where Xj, Yj, and Zj denote the Pauli
operators acting on qubit j. As such, evaluating the feed-
back law βkþ1 ¼ −Ak ¼ −hψkji½Hd;Hp�jψki in this setting
involves measurements of maximally nðn − 1Þ two-qubit
Pauli strings.
As a proof of principle, in Fig. 2 we present the results of

an experimental demonstration of FALQON on a super-
conducting quantum processor for a simple instance of the
MaxCut problem. In particular, we considered an instance of
MaxCut on an unweighted graph composed of n ¼ 3 nodes
connected by two edges, such that Hp¼−1

2
ð2−Z1Z2−

Z2Z3Þ and i½Hd;Hp� ¼ Y1Z2 þ Z1Y2 þ Y2Z3 þ Z2Y3.

The experiment was performed on the publicly accessible
IBMQ_MANILA processor and used three qubits with nearest-
neighbor connectivity matching that of the graph under
consideration. In this setting, l ¼ 10 steps of FALQON
were performed according to the procedure outlined in
Fig. 1, selecting Δt ¼ 0.2. At each step, one circuit was
implemented in order to estimate hHpik natively in the
computational basis. Two additional circuits were imple-
mented in order to estimate the terms in Ak. For each circuit,
the qubits were initialized in the ground state of Hd, and
m ¼ 1024 shots were taken.
As shown in Fig. 2(a), FALQON was successful in

achieving a monotonic decrease of hHpi in this experiment
up to layer 5 (orange point markers). FALQON also
achieves a monotonic increase in the success probability
of measuring the two degenerate ground states, denoted
by ϕ, as shown in Fig. 2(b). The error bars in Figs. 2(a)
and 2(b) present the standard error of the mean, which
estimates how much the reported hHpik and ϕk may deviate
from their true values due to finite sampling. Finally, the
associated values of β, determined according to the feed-
back law βkþ1 ¼ −Ak, are plotted in Fig. 2(b).
Past layer 5, it is evident that FALQON is no longer able

to decrement hHpi using this hardware platform, despite
exhibiting a continued monotonic decrease in associated
noise-free numerical simulations (blue point markers). This
reveals the limitations that hardware noise presents for this
problem instance. Looking ahead, we are optimistic that
continuous improvements to quantum hardware will pave
the way toward applications of FALQON to increasingly
complex combinatorial optimization problems.
In the interim, we explore how FALQON performs on

larger instances of MaxCut through a series of noise-
free numerical illustrations. These illustrations consider
unweighted, connected three-regular graphs with n ∈
f8; 10;…; 20g vertices. For n ∈ f8; 10g we consider all
nonisomorphic graphs; for n ∈ f12; 14;…; 20g we con-
sider 50 randomly generated, nonisomorphic graphs. In our
simulations, the qubits are initialized in the ground state of
Hd, and the performance of FALQON is quantified using
the mean and standard deviations (over the problem
instances) of two figures of merit: the approximation ratio,
rA ¼ hHpi=hHpimin and the success probability of meas-
uring the (potentially degenerate) ground state(s) fjq0;iig,
ϕ ¼ P

i jhψ jq0;iij2. We relate the performance to two
reference values: rA ¼ 0.932, corresponding to the highest
approximation ratio that can currently be guaranteed using
a classical approximation algorithm (i.e., the algorithm of
Goemans and Williamson [19]), and ϕ ¼ 0.25, which
implies that on average, four repetitions will be needed
in order to obtain a sample corresponding to the ground
state. Our only free parameter is the time step Δt, which is
tuned to be as large as possible, a value we call the critical
Δt and denote by Δtc, as long as the condition in Eq. (1) is
met for all problem instances considered. Our results are

(a)

(b)

(c)

FIG. 2. Results from experimental implementation of l ¼ 10
layers of FALQON on a superconducting quantum processor. For
this demonstration, FALQON is applied to an n ¼ 3 qubit
instance of MaxCut on an unweighted graph. Panel (a) shows
that FALQON is successful in achieving a monotonic decrease
of hHpi over layers k ¼ 1;…; 5 in this experiment (orange
point markers), noting that the global minimum value for this
problem instance is hHpimin ¼ −2 (dashed black line). In
addition, in panel (b) a monotonic increase of the probability,
ϕ, of measuring the two degenerate ground states is also observed
up to layer k ¼ 5 (orange point markers). The error bars in (a) and
(b) indicate the standard error. The values of β are plotted in (c).
In (a)–(c), the blue point markers correspond to ideal results
computed numerically.
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collected in Fig. 3. In Fig. 3(b), the mean values of
β1; β2; � � � are plotted as a function of layer for different
values of n, according to the legend in Fig. 3(c), with the
shading representing the standard deviation. We find that
with increasing n, the shape of the resultant β curves
follows a clear trend, and the standard deviation decreases.
In Fig. 3(c), the associated rA and ϕ results are shown
(dashed and solid curves, respectively), and the associated
reference values are plotted in black. For the cases
considered here, we find that FALQON consistently leads
to monotonic convergence toward very high rA and ϕ
values as a function of layer. To determine how the requisite
circuit depths scale with the problem size, in Fig. 3(d) we
plot the average number of layers required to achieve the
reference values of rA and ϕ as a function of n. Finally, in
Fig. 3(e) we plot Δtc for each value of n under consid-
eration. The scaling of the required number of layers and
Δtc seems nearly linear, even up to n ¼ 20, indicating a
favorable runtime scaling of the FALQON algorithm, at
least for this class of MaxCut problems. We remark that in
addition to the analyses presented here, we also tested the
performance of FALQON on weighted three-regular
graphs, and identified instances where the rA and ϕ
convergence is enhanced by introducing one of three
possible heuristic modifications to the FALQON algorithm.
Details can be found in the Appendix.
In our companion paper [15], we present a sampling

complexity comparison between FALQON and QAOA in
the context of MaxCut, as quantified by the total number of
samples (i.e., circuit repetitions) that are required, denoted
Ns. When a gradient algorithm is used for QAOA,
NQAOA

s ¼ OðmqðlÞlÞ, where m denotes the number of
samples needed to estimate the expectation value of a
two-qubit Pauli string Pj, and for simplicity, m is assumed

to be independent of Pj and q denotes the number of
classical optimization iterations. For gradient-free methods,
NQAOA

s ¼ OðmqðlÞÞ. Meanwhile, in FALQON we find
NFALQON

s ¼ OðmdlÞ, where d denotes the degree of the
graph. This suggests that FALQON has a more favorable
sampling complexity than QAOA for cases where the
number of QAOA optimization iterations qðlÞ exceeds
dl in general, or d when a gradient algorithm is used.
Further details can be found in [15].
Discussion and outlook.—We have introduced FALQON

as a constructive, feedback-based algorithm for solving
combinatorial optimization problems using quantum com-
puters. Importantly, FALQON performs optimization with-
out the need for an expensive classical optimization loop.
We have demonstrated its performance on current quantum
hardware and provided numerical analyses of its perfor-
mance toward finding the maximum cut of regular graphs.
By studying the performance with respect to layer and the
problem size n, our numerical analyses show that FALQON
converges to very high approximation ratios and success
probabilities with a favorable scaling of resources with
respect to n, suggesting that FALQON may be a useful
heuristic algorithm for this class of problems.
Our findings also suggest that FALQON can require

relatively deep circuits in order to achieve this convergence,
relative to the shallow circuits typically considered in
QAOA. In our companion article [15], we provide an in-
depth analysis of the trade-offs in the performance and
resource requirements of FALQON and QAOA, and dis-
cuss the resource regimes where each of these methods can
be expected to offer advantages. In short, we expect QAOA
to be favorable in settings where suitable classical opti-
mization resources are available and quantum resources are
restricted to the regime of shallow circuits. Meanwhile,

(a)

(b) (c)

n
(d)

(e)

FIG. 3. (a) Pictorial representation of MaxCut on a three-regular graph with 8 vertices. (b) Mean β values are plotted as a function of
layer for different n values, with shading showing the standard deviations. (c) The performance of FALQON, as quantified by the
approximation ratio (dashed curves) and the success probability of measuring the degenerate ground state (solid curves), is shown for
different values of n. (d) The mean number of layers needed to achieve the reference values of rA ¼ 0.932 (dashed curve) and ϕ ¼ 0.25
(solid curve) is shown; error bars report the associated standard deviation. (e) The critical Δt values for different problem sizes
are plotted.
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FALQON performs well for deep circuits and does not
require any classical optimization resources, meaning that
there is no rising classical cost as the quantum circuit depth
is increased. This indicates that in settings where deep
circuits are feasible, FALQON is a new heuristic that could
offer a considerable advantage.
In addition, our companion paper [15] also includes the

following other important elements. (1) We present an
analysis of convergence criteria for the algorithm. (2) For
the analysis presented here we have assumed ideal, noise-
less access to the expectation values Ak that dictate the
feedback signal, βk; however, in [15] we show that
FALQON is robust to noise in this quantity stemming
from finite sample estimates of these expectations. This
robustness ultimately stems from the flexibility in choosing
β to satisfy Eq. (1). (3) We compare the performance of
FALQON and QAOA, and we also explore how FALQON
can be used to seed QAOA by identifying a set of initial
QAOA parameters that can serve as the starting point for
subsequent iterative optimization. We anticipate that this
seeding procedure could be useful in settings with limited
circuit depth, in cases where FALQON fails to converge on
its own, and in cases where QAOA fails to converge on its
own due to difficulty with effective initialization of the
optimization procedure. (4) We numerically demonstrate
FALQON on weighted MaxCut, detail some possible
extensions to the protocol, and analyze the relationship
between FALQON and quantum annealing protocols.
Finally, we note that FALQON can be applied to

combinatorial optimization problems beyond MaxCut,
e.g., [20], and could have broader implications for
quantum variational algorithms. That is, it is possible
to develop feedback-based alternatives of variational
ansätze for other applications such as electronic structure
or machine learning [21], and these would have the
benefit of needing no classical optimization resources,
at the cost of requiring measurements whose results
condition the feedback.
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Appendix: Heuristic improvements.—Our numerical
illustrations involving MaxCut on unweighted three-
regular graphs show that FALQON converges to very high
approximation ratios and success probabilities. However,
we also tested the performance of FALQON on weighted
graphs, and were able to identify problem instances where
rA appears to converge to very high values, while the
convergence of ϕ is less favorable, i.e., β → 0 prior
to ϕ → 1, indicating that β tends to zero prematurely.
Like behavior has been found in numerical studies of
QAOA, where the inclusion of edge weights leads to the
appearance of many poor-quality local minima in the
optimization landscape [23]. To cope with these situations,
we introduce three heuristic modifications that can be used
to enhance the performance of FALQON.
The first modification is to incorporate random “kicks”

into β. For some βc of our choosing, for all βk < βc, with
probability Pk we set βk ¼ βc. We choose βc ¼ 1 and
Pk ¼ ð1 − βkÞαk, where αk ¼ 0.1sin2½ðπk=2lÞ − ðπ=2Þ� is
designed to decrease to zero as a function of circuit depth.
We also consider a second heuristic inspired by QLC,

where the use of a reference perturbation λðtÞ in the control
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βðtÞ, such that HðtÞ ¼ Hp þ ½λðtÞ þ βðtÞ�Hd, has been
considered in order to improve convergence [17,24,25].
In this setting, we may define System (a) as a system with
drift Hamiltonian Hp and control Hamiltonian Hd, and
System (b) as the perturbed system with drift Hamiltonian
Hp;ðbÞðtÞ≡Hp þ λðtÞHd and control Hamiltonian Hd.
Then, the time derivative of hψðtÞjHp;2ðtÞjψðtÞi, allows
us to define βðtÞ ¼ −AðtÞ as usual to ensure
d
dt hψðtÞjHp;2ðtÞjψðtÞi ≤ 0. Within this framework, if
System (b) converges asymptotically to the ground state
of Hp;2ðtÞ, and if λðtÞ ¼ 0 when this occurs, then System
(b) becomes System (a), such that the ground state of
Hp;ðbÞðtÞ is also the ground state ofHp, and the method has
converged successfully to the desired state. In practice, λðtÞ
can be chosen to be a slowly varying reference function that
tends to 0 as t → ∞. This framework can be translated into
a modified version of FALQON by discretizing as before;
for our numerical illustrations, we chose λk ¼ αk.
Then, using this second heuristic as a baseline, we can

define a third heuristic that uses an iterative QLC procedure
to successively refine β in a manner that is free of any
classical optimization [12]. The procedure begins by
implementing the standard FALQON framework and
obtaining a set of β values for l layers. Then, these initial
β ¼ βð0Þ values are set as a reference perturbation λð1Þ, and a
new set of βð1Þ values are obtained using the second
heuristic approach described above. Then, a new reference
perturbation is defined as λð2Þ ¼ λð1Þ þ βð1Þ, and the process

is repeated. If l is selected to be large enough such that
βl ¼ 0, this iterative procedure guarantees a monotonic
improvement of hHpi with respect to iteration. For further
details, we refer the reader to our companion paper [15].
To illustrate these heuristic modifications, in Fig. 4 we

present the performance of FALQON with and without
these modifications when solving a MaxCut problem on
a weighted, 4-regular graph with n ¼ 8 nodes using
Δt ¼ 0.08, where the edge weights are drawn from a
uniform distribution between 0 and 1.
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