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We demonstrate that the one-axis twisting (OAT), a versatile method of creating nonclassical states of
bosonic qubits, is a powerful source of many-body Bell correlations. We develop a fully analytical and
universal treatment of the process, which allows us to identify the critical time at which the Bell correlations
emerge and predict the depth of Bell correlations at all subsequent times. Our findings are illustrated with a
highly nontrivial example of the OAT dynamics generated using the Bose-Hubbard model.
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Nonclassical correlations, namely entanglement and Bell
correlations, are fundamental properties of the quantum
many-body systems and crucial resources for emerging
quantum technologies. Because of enormous challenges in
fault-tolerant quantum computing, the main goal for
quantum technologies in the next decade is to generate,
characterize, validate, and certificate massively correlated
quantum states [1–6]. To fully exploit many-body Bell
correlations, we need an experimental protocol to generate
such quantum states and a method for classifying the depth
of many-body Bell correlations.
The well-known method for generating entangled states

is the one-axis twisting (OAT), which has been used in
various configurations and is a subject of extensive theo-
retical studies [7–16]. OAT can be realized with a variety of
ultracold systems, utilizing atom-atom collisions [17–20]
and atom-light interactions [21,22]. Theoretical proposals
for the OAT simulation with ultracold atoms in optical
lattices [23–28], effectively simulating Hubbard and
Heisenberg models, are awaiting proof-of-principle exper-
imental demonstration.
It is well understood that OAT creates many-body

entangled states and the two-body Bell correlations inher-
ent in two-body correlations [29,30]. An important ques-
tion in the OAT procedure is about the generation of the
many-body Bell correlated states. In [31–34], authors
provide a set of Bell inequalities based on second-order
correlators and show that their violation implies k pro-
ducibility of nonlocality [35] with k ⩽ 6 for a large number
of parties.
Here, we address the problem of nonlocality for an

arbitrary depth k in the collection of qubits subject to the
OAT procedure by employing a wide family of Bell
inequalities using many-body correlators [36–42]. We
analytically evaluate the many-body correlator providing
a powerful formula allowing us to characterize the depth of
many-body nonlocality at any moment of time. As such, we

indicate the critical time at which the many-body Bell
correlations emerge.
We begin with a brief outline of the OAT dynamics of N

indistinguishable bosons. Each particle has two internal
states a and b, with bosonic operators â and b̂ annihilating a
particle in a given state. The system is conveniently
described by means of the collective angular momentum
(spin) of length j ¼ N=2, and the corresponding operators
Ĵx ¼ 1

2
ðâ†b̂þ âb̂†Þ, Ĵy ¼ ð1=2iÞðâ†b̂ − âb̂†Þ, Ĵz ¼ 1

2
ðâ†â−

b̂†b̂Þ [43]. The OAT Hamiltonian reads

ĤOAT ¼ χĴ2z ; ð1Þ

where χ is an energy-unit constant [8]. The implementation
of the OAT begins with a spin coherent state (CSS),
jðπ=2Þ;φicss ¼ ð1= ffiffiffiffiffiffi

N!
p Þ½ðâ† þ eiφb̂†Þ= ffiffiffi

2
p �N j0i being an

eigenstate of Ĵx for φ ¼ 0, Ĵxjðπ=2Þ; 0icss ¼ ðN=2Þj
ðπ=2Þ; 0icss. This state undergoes the dynamics

ϱ̂ðτÞ ¼
XN

2

n;m¼−N
2

cnc�me−iðn
2−m2Þτjnihmj; ð2Þ

with the period equal to π for dimensionless τ ¼ tχ=ℏ for
evenN. Here, jni is an eigenstate of Ĵz, namely, Ĵzjni ¼ njni
with ðN=2Þ − n bosons inmode a and ðN=2Þ þ n in b, while

cn ¼ 2−N=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð N
ðN=2ÞþnÞ

q
. For times τ ≲ τs, τs ≈ N−2=3 [8,44]

the spin squeezing is generated, quantified by the squeezing
parameter

ξ2 ¼ N
Δ2Ĵ⊥;min

hĴi2 ; ð3Þ

here, hĴi is the length of the mean collective spin and
Δ2Ĵ⊥;min ≡ hĴ2⊥;mini − hĴ⊥;mini2 is the minimal variance of
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the collective spin orthogonally to its direction [45].When ξ2

drops below unity, it signals the presence of entanglement
between the qubits and the potential metrological gain with
respect to the standard quantum limit, namely, the sensitivity
Δθ < 1=

ffiffiffiffi
N

p
of estimation of some parameter θ.

At later times, τ > τs, the state enters a non-Gaussian
regime. Though the time τ is a continuous variable,
some particular instants τq ¼ π=q labeled with integer
q ¼ 2; 4; 6;…, are particularly important, because at these
moments, a macroscopic superposition of coherent states
[46,47]

jψqi ¼
1ffiffiffi
q

p
Xq−1
k¼0

eiτqkðkþNÞ
����π2 ; 2τqk

�
CSS

; ð4Þ

is created. In particular, for τq ¼ π=2, a superposition of
two coherent states is realized, forming the Schrödinger
cat state.
To quantify the extent of many-body Bell correlations

generated in the OAT process, we use a quantum (hence,

labeled with the index “Q”) N-body correlator ẼðQÞ
N which

witnesses the Bell correlations if the inequality

ẼðQÞ
N ¼

���� 1

N!
hĴNþi

����
2

⩽ 2−N; ð5Þ

is violated [42]. Here, Ĵþ ¼ Ĵ1 þ iĴ2, where 1 and 2 denote
any two orthogonal directions spanned by the triple
operators fĴx; Ĵy; Ĵzg. For the derivation of this bound,
see Supplemental Material [48] and Refs. [37–39,42]. The
average hĴNþi determines the coherence between the
extreme elements of the density matrix, namely between
j−ðN=2Þi and jN=2i, where these two kets are the
eigenstates of the operator orthogonal to directions 1 and 2.
Now, we discuss the main results of this Letter. A natural

choice of the orientation of the plane spanned by the Ĵ1 and
Ĵ2 operators is such that it maximizes the Bell correlator

ẼðQÞ
N . This, in turn, is determined by the OAT Hamiltonian

(1) and the state (2). By inspecting Eq. (4), we notice that,
at times τq, the OAT generates superpositions of eigenstates
of Ĵx with varying weights and eigenvalues, depending on
q. However, at τ2 ¼ ðπ=2Þ the NOON state is created, i.e.,

jψ2i ¼
1ffiffiffi
2

p
�����N2

�
x
þ
���� − N

2

�
x

�
; ð6Þ

which is a macroscopic superposition of two states, the one
state withN particles in mode a and the second state withN
particles in mode b. Here, the subscript x denotes that the
two components of the superposition are the eigenstates of
Ĵx specifically. This observation, namely that the OAT
procedure creates superpositions of eigenstates of Ĵx,
indicates that to detect most of quantum features of the

OAT state, one should align 1 and 2 in the plane orthogonal
to x. However, it is more convenient (and equivalent), to
align 1 and 2 in the x-y plane and rotate the OAT state (2)
around the y axis through angle ðπ=2Þ,

ϱ̂rotðτÞ ¼ e−i
π
2
Ĵy ϱ̂ðτÞeþiπ

2
Ĵy ¼

XN
2

n;m¼−N
2

ϱ̃ðτÞnmjnihmj; ð7Þ

where the transformed element of the density matrix is

ϱ̃ðτÞnm ¼
XN

2

n0;m0¼−N
2

d
N
2

nn0

�
π

2

�
djmm0

�
π

2

�
ϱðτÞn0m0 : ð8Þ

Here, djαβðϕÞ denotes the element of the Wigner rotation
matrix [51].
After the rotation, the eigenstates of Ĵx transform into the

eigenstates of Ĵz and the proper choice of the rising
operator to maximize ẼðQÞ

N is Ĵþ ¼ Ĵx þ iĴy, which gives

ẼðQÞ
N ¼ jϱ̃ðτÞ−N

2
;N
2

j2: ð9Þ

For the state (2), we obtain ϱ̃ðτÞ−ðN=2Þ;ðN=2Þ ¼ C̃ðτÞ
−ðN=2ÞC̃

ðτÞ
ðN=2Þ,

where

C̃ðτÞ
−N

2

¼ 1

2N

XN
2

n¼−N
2

�
N

nþ N
2

�
e−iτn

2

; ð10aÞ

C̃ðτÞ
N
2

¼ 1

2N

XN
2

n¼−N
2

�
N

nþ N
2

�
ð−1Þne−iτn2 ; ð10bÞ

are the two coefficients of the state expressed in the basis of
eigenstates of Ĵz with two extreme eigenvalues.
First, we focus on the short-time dynamics to identify the

critical instant τcrit at which the Bell correlations emerge in
the OAT procedure, see Fig. 1(a) and 1(c). To this end, we
notice that when τ is short, and N is large, the sums in
Eq. (10) can be evaluated by approximating the binomial
function with a Gaussian, namely,

1

2N

�
N

nþ N
2

�
≃

ffiffiffiffiffiffiffi
2

πN

r
e−

2
Nn

2

; ð11Þ

which gives

C̃α
−N

2

≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ iκ
p ; C̃α

N
2

≃ 2
eNπ

iðκþπ
4
Þþ1

2ðκ−iÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iκ

p ; ð12Þ

and the Bell correlator becomes

ẼðQÞ
N ≃

4

ð1þ κ2Þ2 e
− π2N
8ð1þκ2Þ; ð13Þ
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with κ ¼ ðτN=2Þ. The τcrit can be obtained by comparing

the logarithm of ẼðQÞ
N with the logarithm of the threshold

attainable by local realistic theories [see Eq. (5)], namely,

ln 4 − 2 lnð1þ κ2Þ − π2N
8ð1þ κ2Þ ¼ −N ln 2: ð14Þ

Note that, for large N, the two logarithms on the left-hand-
side can be neglected giving the critical time at which the
Bell correlations are created in the OAT procedure [52]

τcrit ≃
2

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2

8 ln 2
− 1

r
≈
1.77
N

: ð15Þ

It is worth stressing here that the Bell correlations emerge
before optimal squeezing time as τcrit < τs in the large N
limit. At the instant τcrit, three particles are Bell correlated,
the smallest minimal number for which the correlator (5)
exceeds the local bound [40].
At later times, the continuous approximation fails, as it

cannot capture the genuinely quantum discrete-N interfer-
ence phenomena, see Fig. 1(a) and 1(c). A close analogy is
the series of collapses and revivals in the two-level
dynamics of an atom driven by quantized coherent electro-
magnetic fields [53], which are not captured by the semi-
classical approach.
However, this is when the result of Eq. (4) comes at

hand. At instants τq, when superpositions of coherent states
(4) are formed, the two extreme coefficients can be
calculated analytically, giving

C̃
ðτqÞ
−N

2

¼ 1ffiffiffi
q

p
Xq−1
l¼0

eiτql
2

cosNðτqlÞ; ð16aÞ

C̃
ðτqÞ
N
2

¼ iNffiffiffi
q

p
Xq−1
l¼0

eiτql
2

sinNðτqlÞ: ð16bÞ

Note that the sine and cosine functions in Eqs. (16), when
taken to the power of N, give nonzero values only when
they are close to unity, which is for l ¼ q=2 and l ¼ 0,
respectively. For large N, this gives the Bell coefficient as

ẼðQÞ
N ≃

1

q2
; ð17Þ

for times τq. This is a very simple yet powerful formula
allowing us to predict the extent of Bell correlations in
various many-body systems. The blue dots in Fig. 1(a) and
1(b) show the agreement between this approximate expres-
sion and the exact correlator from Eq. (9) calculated with
the coefficients (10a) and (10b).
Hence, as q drops, so that the time grows (recall that

τq ¼ ðπ=qÞ), the value of the Bell correlator increases to
reach the maximal attainable value ẼðQÞ

N ¼ 1
4
at the half of

the dynamics period. But there is more information about

the many-body Bell correlations that can be extracted from
the expression (17). Namely, when

ẼðQÞ
N >

1

8

1

2N−k ; ð18Þ

the correlator can be reproduced with a system of N qubits,
where the Bell correlations encompass at least k qubits
(in analogy to k-partite entanglement) [40,41]. For in-

stance, when ẼðQÞ
N > 1

8
, all N qubits are Bell correlated, if

ẼðQÞ
N > ð1=16Þ, the Bell correlations extend over at least

N − 1 particles and so on. Note that the correlator from
Eq. (5) can also be used to witness the k-partite entangle-
ment in the system [39,40]. Similar to Eq. (5), when

ẼðQÞ
N ⩽ 4−N; ð19Þ

the many-body correlator can be reproduced with a fully
separable state. The analogy to the k-partite Bell correla-
tions extends further, namely, if

ẼðQÞ
N >

1

16

1

4N−k ; ð20Þ

the correlator is consistent with that of a system where k
qubits form a k-partite entangled state and the other N − k
are separable, just as in Eq. (18).
Since the expression (4), which is used to derive (17) is

valid for τq > τs, hence, we observe that, at the shortest

time when Eq. (17) can be used, it holds that ẼðQÞ
N ≃ N−4

3.

For instance, when N ¼ 103, this gives ẼðQÞ
N ≃ 10−4. Using

Eq. (18), we obtain that, in this case, ẼðQÞ
N ≃ ð1=104Þ > 1

8
1
211
.

Hence, even at such a short time, the Bell correlations
extend over k ¼ 103 − 11 ¼ 989 particles. Generally
speaking, by comparing the value of the correlator at the
critical time with Eq. (18), we learn that, at that instant,

FIG. 1. The Bell correlator ẼðQÞ
N (black solid line) as a function

of χt and for N ¼ 200. (a) Compared with the short-times
approximate behavior (13) (solid red line) and the long-times
solution from Eq. (17) (blue points). (b) The enlargement onto the
long-time behavior and the growing depth of Bell correlations
signaled with dashed grey lines for k ¼ N;N − 1;…; N − 8 from
top to bottom. (c) The focus onto short times up to χt=ℏ ¼ π=10.
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k ¼ N − 4
3
log2N þ 3 qubits are Bell correlated, encom-

passing almost the whole system for large N. Thus, we
show that the OAT procedure naturally generates many-
body Bell correlated states, very early in dynamics when
τ ≳ τcrit, one of the main results of this Letter. In the
Supplemental Material [48], we demonstrate that the Bell
correlations generated with the OAT are robust to the
fluctuations of the number of atoms in the initial state as
long as these fluctuations remain close to the shot-
noise level.
Next, we illustrate our theory for certification of Bell

correlations with OAT in the specific system, namely N
ultracold bosonic atoms in a 1D optical lattice withM ¼ N
sites, each of mass m in two internal states a and b. The
system Hamiltonian reads

Ĥ ¼ Ĥa þ Ĥb þ Ĥab; ð21Þ

where

Ĥa ¼−J
X
j

ðâ†j âjþ1þH:c:ÞþUaa

2

X
j

n̂a;jðn̂a;j−1Þ; ð22Þ

describes nearest-neighbor tunneling and repulsive inter-
action as for the Bose-Hubbard model (BHM), and ana-
logically for Ĥb, while Ĥab ¼ Uab

P
j n̂a;jn̂b;j. Here, âj is

the annihilation operator of the atom at the jth lattice site in
mode a, and n̂a;j is the corresponding particle number
operator. We assume the optical lattice is formed by a
standing laser beam with wave-vector klatt ¼ 2π=λ, where
the optical lattice wavelength is λ ¼ 2d, d is the distance
between neighboring sites. The height of the optical lattice
V0 determines the coupling parameters, i.e., hopping ampli-
tude J ¼ 4=

ffiffiffi
π

p
V3=4
0 e−2

ffiffiffiffi
V0

p
, and contact interaction ampli-

tudes Uαα0 ¼
ffiffiffiffiffiffiffiffi
8=π

p
aαα0V

1=4
0 , with aαα0 being the scattering

lengths. We consider parameters used in [25] which can be
realized in current experiments, it is V0=ER ¼ 0.3, J=Uaa ≈
3 and Uaa ¼ Ubb, Uab ¼ 0.95U. The collective spin
operators can be defined through Ĵþ ¼ P

M
j¼1 â

†
j b̂j,

Ĵ− ¼ P
M
j¼1 b̂

†
j âj, and Ĵx ¼ ðĴþ þ Ĵ−Þ=2, Ĵy ¼ ðĴþ − Ĵ−Þ=

ð2iÞ, Ĵz ¼ ðN̂a − N̂bÞ=2 where N̂a=b is the operator of the
number of atoms in the state a=b.
The OAT model can be simulated with the BHM (21) in

the superfluid phase when the condensate fraction is close
to one [23,25]. To see this, we consider (21) in the Fourier
space, by using âj ¼ ð1= ffiffiffiffiffi

M
p ÞPqn

e−ixjqn âqn with qn ¼
ð2π=NÞn and n ¼ 0;�1;�2;…, is an integer (and ana-
logically for b̂j). Next, when atoms microscopically
occupy the zero momentum mode qn ¼ 0, the system
Hamiltonian considered for zero quasimomentum mode
qn ¼ 0 reduces to the OAT model,

Ĥ ≈ χĴ2z;qn¼0; ð23Þ

when omitting constant energy terms, and where χ ¼
½ðU −UabÞ=M� gives the relevant timescale (for the
derivation, see Supplemental Material [48]). Note here,
the resulting critical time is independent of the total
number of atoms tcrit ¼ τcritℏ=χ ≈ ℏ=ðU −UabÞ when
M ¼ N, as considered here.
We performed many-body numerical calculations [54],

to prepare the initial spin coherent state given by the
symmetric superposition of atoms in states a and b, to
evaluate the unitary evolution and calculate the spin
squeezing parameter (3) and the Bell correlator (5). In
Fig. 2, we show results for N ¼ 8 atoms. One can clearly
see the overall agreement between the Bose-Hubbard (solid
lines) and OAT (closed points) models. However, an

analysis of the evolution of ẼðQÞ
N brings interesting con-

clusions. The lower bound of ẼðQÞ
N¼8 ≈ 4 × 10−3 is marked in

Fig. 2, and Bell correlations emerge for times τcrit ≈ π=8
according to (15). We can see that, around this time, the
states are spin squeezed as ξ2 < 1 (marked by the orange
line) what suggests that there are already nontrivial two-
body correlations in the system.
In the subsequent moments of time, Bell correlations

start to extend over at least three atoms, and the next

four atoms when ẼðQÞ
N¼8 ≳ 7.8 × 10−3, five atoms when

ẼðQÞ
N¼8 ≳ 1.5 × 10−2, etc., and over all eight atoms when

ẼðQÞ
N¼8 ≳ 0.125. Finally, let us comment on the entanglement

depth given by (19), i.e., ẼðQÞ
N¼8 ≳ 1.5 × 10−5, which is

FIG. 2. The Bell correlator ẼðQÞ
N (the three curves and the

vertical scale in the right part of the plot) and the spin-squeezing
parameter ξ2 (the two curves and the vertical scale on the left) for
N ¼ 8. For ẼðQÞ

N : the solid black line is the correlator from Eq. (9),
for the two-component BHM (21) when the system is in the
superfluid phase. The dotted red curve is obtained for the OAT
model, see Eq. (23), while the dashed blue curve shows the result
of the short-times approximation (13). Particular bounds for the
k-qubit Bell correlations (18) are marked by the dashed grey lines
for k ¼ 8; 7;…; 3 from top to bottom. For ξ2: the squeezing
parameter (3) is marked by the solid orange line (exact numerical
results for BHM), while the dashed blue line is calculated with the
OAT (23).
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surpassed for τ ≈ π=20. According to Eq. (20), when

ẼðQÞ
N¼8 ≳ 2 × 10−4 the entanglement extends over four

atoms. Finally, when ẼðQÞ
N¼8 > 1=16 entanglement extends

over the whole system.
In this Letter, we presented a systematic analytical study of

the creation of many-body Bell-correlated states generated
during one-axis twisting dynamics in two-component
bosonic systems. We identified the critical time at which
themany-bodyBell correlations emerge andderived a simple
and powerful formula allowing us to characterize the Bell
correlations- and entanglement-depth at later times. We
applied these findings to classify the generation of many-
body Bell correlations in systems of two-component bosons
loaded into a one-dimensional optical lattice.We showed that
our analytical findings are in very good agreement with the
full many-body numerical calculations.
The experimental verification of our findings requires

access to many-body quantum correlation functions. A
remarkable progress in experimental advances in the control
of many-body quantum systems allows measurement of
correlation functions up to sixth order [55], second Rényi
entropy for N ¼ 4 [56], and N ¼ 5 particles [57] via
extraction characteristic of a quantum state using a con-
trolled-swap gate acting on two copies of the state [58], and
for N ¼ 10 particles [59] via randomized measurements
technique [60–65]. However, for the indistinguishable par-
ticles considered here, the measurement of the proposed
many-body correlator still presents an experimental chal-
lenge for N ≥ 6 atoms. The future research direction would
be to consider single addressable particles, like trapped ions,
and consider thegeneration anddetectionofmany-bodyBell
correlations in noisy intermediate-scale quantum devices.
Our study contributes to the dynamically emerging field

of quantum technologies having both fundamental and
practical aspects.
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