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We show theoretically that Rashba-Dresselhaus spin-orbit coupling (RDSOC) in lattices acts as a
synthetic gauge field. This allows us to control both the phase and the magnitude of tunneling coefficients
between sites, which is the key ingredient to implement topological Hamitonians and spin lattices useful for
simulation perpectives. We use liquid crystal based microcavities in which RDSOC can be switched on and
off as a model platform. We propose a realistic scheme for implementation of a Su-Schrieffer-Heeger chain
in which the edge states existence can be tuned, and a Harper-Hofstadter model with a tunable contrasted
flux for each (pseudo)spin component. We further show that a transverse-field Ising model and classical XY
Hamiltonian with tunable parameters can be implemented, opening up prospects for analog physics,

simulations, and optimization.
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Artificial gauge fields have been synthesized in various
platforms for more than a decade [1]. They constitute the basis
of synthetic topological matter [2] and quantum simulations
[3]. Artificial gauge fields allow one to control complex
hopping amplitudes between lattice sites, enabling the imple-
mentation of topological Hamiltonians, such as Harper-
Hofstadter [4-8] or Haldane [9] models. On the other hand,
classical and quantum simulations are often based on map-
ping tight-binding Hamiltonians to spin models, such as Ising
[10] or XY models [11], where the spin orientation is
represented by the phase of the wave function [12]. The
ground state and dynamics of these spin models can be linked
with a huge variety of computational problems [13], but this
requires a versatile control of the magnitude of the couplings
in a graph [14], either between spins in an original spin model
or between lattice sites in a mapped tight-binding model. The
key ingredient for implementing artificial gauge fields and
controlling the phases and magnitudes of these coupling
coefficients is the spin-orbit coupling (SOC).

In photonics, the vectorial nature of light modes with
transverse-electric (TE) and transverse-magnetic (TM)
polarizations is responsible for the existence of an intrinsic
SOC [15-22]. The combination of photonic SOC with
broken time-reversal symmetry (TRS) achieved through the
Faraday effect (effective Zeeman splitting) makes 2D
cavity modes [23] topologically nontrivial [24-28], char-
acterized by Chern numbers +2. Topological gaps and
related unidirectional edge modes appear when these bulk
topological modes are placed in an appropriate photonic
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lattice [29-35]. The described effect simulates the quantum
anomalous Hall effect [9], being the foundation of topo-
logical photonics. The field is then considerably enriched
with the proposals and realizations of the quantum pseu-
dospin Hall effect which does not require TRS breaking. In
such cases, the pseudospin involved can be the angular
momentum of the ring resonator [6,7], polarization [36,37],
and sublattice (e.g., valley) pseudospins, both in 2D
[38—40] and 1D, essentially in that case through the use of
dimer chains described by a Su-Schrieffer-Heeger (SSH)
Hamiltonian [41-45]. The SSH Hamiltonian is the simplest
topological model supporting topological edge modes.
Contrary to 2D topological models, such as the Harper-
Hofstadter model, it is based on tunneling amplitude
modulation instead of phase modulation.

A new type of photonic SOC being a superposition of
Rashba [46] and Dresselhaus [47] SOCs (RDSOC) with
equal strength has been recently demonstrated. It was
initially studied in solid-state physics [48,49], and realized
with cold atoms [50]. In photonics, it was implemented first
in 1D settings such as metasurfaces with broken inversion
symmetry [51-54], chiral photonic crystals [55], photonic
lattices of waveguide arrays [56], and asymmetric polariton
waveguides [57]. Most recently, its realization has been
reported in planar microcavities either filled with liquid
crystals (LCs) [58] or with a birefringent organic crystal
[59] where it was called emergent optical activity. Together
with TE-TM SOC, effective Zeeman field, and in-
plane potential (lattices), RDSOC plays the role of a
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supplementary control knob for implementing effective
Hamiltonians of interest and for controlling the mode
topology [60]. The crucial property offered by LC micro-
cavities [61-65] is the tunability of the modes by means of
the external voltage applied to the LC molecules. This
allows one to switch the RDSOC on and off electrically. So
far, the effect of the RDSOC (which in 1D is equivalent to
the Rashba SOC) in the SSH setting has been theoretically
discussed in the context of electronic systems [61-65], but
only for a homogeneous or small Rashba SOC resulting in
no topological effects.

In this Letter, we theoretically study tight-binding
Hamiltonians for massive (pseudo)spinor particles includ-
ing RDSOC and in-plane (effective) magnetic field.
Depending on the value of the latter, we show that
RDSOC controls either the phase or the amplitude of
the tunneling coefficients between sites. We show that a
photonic implementation based on LC cavities is suitable to
control both the on-site in-plane field and the RDSOC
magnitude in the links by the applied voltage. For a 1D
dimer chain (SSH), the tuning of the tunneling amplitude
allows us to switch between a trivial phase and a topo-
logical phase hosting edge modes. The access to negative
tunnelings allows us to emulate the transverse-field Ising
model (TFIM) in a whole parameter space. The practical
feasibility of this 1D setting is further supported by full 2D
continuous simulations using realistic experimental para-
meters. In 2D lattices, the control of the phases of
individual tunnelings allows emulation of the TRS-
preserving Harper-Hofstadter Hamiltonian with tunable
flux per plaquette having opposite signs for different spin
components. The control of tunneling amplitude allows a
mapping to the classical XY Hamiltonian possessing a
broad range of simulation perspectives.

A generic Hamiltonian describing 2D massive parti-
cles with 2 internal (pseudo)spin components including
RDSOC reads as follows:

N hZk?
Hy(k) = om

— 2ak,5, + 56, (1)

where m is the mass, k = (k,, k,), k, and k, are the wave
vector components, 6, (6,) is the first (third) Pauli matrix,
—2ak,6, is the RDSOC with magnitude «, and ¢ is the
splitting between 6, components of particle (pseudo)spin.
This Hamiltonian describes electrons [48,49], cold atoms
[50], and photons in planar microcavities with large linear
birefringence [58,59]. In photonic microcavities, birefrin-
gence provides a large-scale splitting bringing in resonance
two modes of different parity (typically N+ 1 and N,
where N is the quantization number of the longitudinal
Fabry-Perot mode) which creates RDSOC. § = (Ey y . —
Ex n)/2 is a small-scale remaining polarization splitting.

The RDSOC acts as an effective Zeeman splitting
proportional to one projection of the wave vector (here
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FIG. 1. Two eigenmodes of H(k) at a given energy (a) and
along k, for 6 =0 (b) and 6§ # 0 (c) (color shows circular

polarization degree); regimes of tunneling phase (6 = 0) (d)
and amplitude (large J) (e) control.

k), like optical activity [59]. Figures 1(b) and 1(c) show
the cross section k, = 0 of the energy bands for § = 0 and
o # 0, respectively. Along the k, axis the splitting is absent
and the modes are degenerate [Fig. 1(a)].

We next consider a tight-binding description of the
coupling between two sites i and j, each hosting
(pseudo)spin 1/2 particles. If the link has an angle 8 with
respect to the RDSOC direction, the two eigenmodes of &,
acquire opposite Aharonov-Casher phase £4,;(0) while
propagating along the link [64,66]:

pi;(0) = cos 0, (2)

aa
h?/2m
with the link length a. The tunneling coefficient reads
Ji;e"i% [Fig. 1(d)], which can be understood as the action
of a spin-dependent synthetic gauge potential. Importantly,
in the limit of large 6 [Fig. 1(e)], the two eigenstates of a
site are well separated (eigenstates of ). In that case, each
site can be treated as hosting a scalar particle (single spin
projection) and the tunneling amplitude reduces to
Jjjcos p;;. It shows that a modulation of RDSOC amplitude
a or orientation @ allows us to tune the magnitude and sign
of the tunneling coefficient.
We now consider the Hamiltonian of an arbitrary lattice
which reads
Hyaiice = Y _J35€"%|j) (il + 86.Ji) (il. (3)

i#]

In the large o limit, it is possible to project the Hamiltonian
on an eigenstate of 6, as

reduced

latllce Z‘Iu COs ﬂl] |]> < | (4)

i#]

We now study a specific simple example of RDSOC
modulation, showing that it allows us to control the
topological properties of a 1D system. The system
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proposed is a zigzag chain with a period d, shown in
Fig. 2(a). The direction of RDSOC is constant in space (red
arrow). Tunnelings (intracell J; and intercell J,) as well as
angles which they form with RDSOC direction (¢, and 6,)

RDSOC couples the sublattice pseudospin (A and B) and
particle (pseudo)spin (+ and —). The spinor chain is more
complex than a spinless SSH chain. The Hamiltonian (3)
reduces to a 4 x4 Hamiltonian which in the basis

are staggered. These angles control the phases f; and fj3,. (AL,A_,B,, B_)T reads
The unit cell consists of two lattice sites A and B. The
|
0 5 JiePr  JyemPremiked 0
. 5 0 0 JiemP 4 JyetPremikid
HO'SSH(k)C) = _'ﬁ ﬁ ik.d (5)
JieTP + Jheze's 0 0 o
0 JyePr 4 JyemiPreikid 1) 0

The eigenvalues are
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where p e = J, cosfy + J,cos B, e and p,ei” =

Jysin By — J, sin 8, e"*x? describe the copolarized and
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FIG. 2. (a) The scheme of SSH chain with RDSOC; the

dispersion of reduced Hamiltonian (b) [Eq. (7), 6 = 8] and
general SSH Hamiltonian (c) [Eq. (5), 6 = 1.8] with staggered
RDSOC for several values of f (for all 3, see Ref. [67]); (d) energy
spectrum of finite SSH chain and Zak phase of the corresponding
bulk dispersion lowest band depending on phase f produced by
RDSOC (the color scale shows the edge localization); (e) SSH
chain corresponding to ferromagnetic (top) and antiferromagnetic
(bottom) phases of TFIM: black arrows correspond to ground
state wave function phase; red (blue) shows positive (negative)
couplings.

|

cross-polarized tunnelings in the linear polarization basis
[67]. The RDSOC allows us to modulate the intracell,
intercell copolarized and cross-polarized tunnelings via
cos f3; and sin f3;. The four bands are separated in two pairs,
symmetric with respect to £ = 0 because of the global
chiral symmetry of the model. If § > J,, J,, it is possible to
use the projected Hamiltonian (4). In that case each doublet
is linearly polarized and becomes described by a standard
SSH Hamiltonian which for the lower H-polarized doublet
reads [67]

. 5 Jycos B +J,cos fremikd
Hggy (k) ~ _<c . s . (7

where c.c. stands for complex conjugate. Thus, modulated
RDSOC reduces the intracell (intercell) tunneling by a
factor cos /3 (cos f3,). It allows us to transform a monomer
chain (J; = J,) into a dimer chain or to swap relations
between the links changing the chain topology, character-
ized by a topological invariant called the Zak phase [67,68].
The Zak phase value (0 or z) determines the absence
or presence of edge states. In spinless SSH, edge states exist
if J; —J, <0 (chain ending with a weak link). With
RDSOC, the topology is nontrivial when

|J1 cos Bi| — |J5cos Br| < O. (8)

This condition is valid in the general case [Eq. (5)] and not
only for high 6. The topological transition occurs when
Jycos i = +J,cos 3, which corresponds to the closing
of the lowest gap [p; = 01in Eq. (6)]. J; cos #; = J, cos 5,
corresponds to a gap closing at the edges of the Brillouin
zone (k, = +x/d, analogously to spinless SSH), whereas
Jycosff;y = —J,cos 3, corresponds to a gap closing at
k, = 0. If a spinless SSH chain is topologically trivial,
the same chain with modulated RDSOC could be either
nontrivial or trivial, depending on the values of ; and f,.

Figure 2(b) shows the energy bands computed in the
large o limit for J; =2, J, =1, f, = 0, and for different
values of f#; (from now on called ). The critical § values
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for which the band topology is changing are z/3 and 27/3,
which corresponds to a gap closing at k, = +x/d and
k., = 0, respectively. In between these f values, a topo-
logical band gap is opened. The edge states lie in the middle
of this gap because the reduced 2 x 2 Hamiltonian (7)
preserves the chiral symmetry. Precisely at f = z/2, the
interference induced by the RDSOC completely suppresses
copolarized tunneling through the “strong” link. The
corresponding band gap reaches its maximum value 2J,
and the bands are completely flat. Figure 2(c) shows the
finite & case, where all four bands have to be taken into
account [same parameters as for Fig. 2(b)]. For any 6, the
gap is again closing at k, = +x/d for f = x/3 and at
k, =0 for f =2x/3. The maximal gap value is still at
f = x/2, but it is smaller than 2J,. There is no symmetry
within the doublet and the edge states are not at the center
of the gap. All these features are summarized in Fig. 2(d)
showing the energy spectrum versus f and the correspond-
ing Zak phase of a finite chain. A trivial gap (zero Zak
phase) is present from =0 to f = /3 where the gap
closes, then immediately reopens as a topological gap
persisting for f € [z/3;27/3] (the edge state energy is
shown in red). The gap closes at ff = 2x/3, becoming
topologically trivial again. For § < |J; cos f3|, the bands are
overlapping (not crossing). There is no real gap anymore,
and therefore no protected edge states. In the case of
nontrivial topology the edge states exhibit period doubling
due to the particular dispersion shape [67].

Another interesting possibility offered by the tuning of
tunnelings is the implementation of the mapping between
the Hamiltonian (7) and the TFIM—the fundamental
quantum many-body model describing the transition
between ordered (ferromagnetic or antiferromagnetic)
and disordered (paramagnetic) phases [69-73]. The TFIM
Hamiltonian reads

I:]TFIM = —J/Z?’?‘A’?H - hZ&f, )

where J' is the coupling term, & is a transverse magnetic
field, and i is the site index. After applying the Jordan-
Wigner transformation, the mapping between Hamiltonians
(7) and (9) is J' = J,cos 5, h = J, cosf;. As shown in
Fig. 2(e), where the spin orientation on each site is given by
the phase of the wave function, the sign modulation of
tunnelings provided by RDSOC allows us to achieve both
ferromagnetic and antiferromagnetic configurations, which
is not the case in TFIM based on usual SSH. Thus,
tunneling amplitude modulation by RDSOC gives access
to the full variety of TFIM configurations.

Next, we simulate a realistic implementation of our
proposal based on a LC microcavity with a patterning
of the distributed Bragg reflector [74] which realizes an in-
plane potential. The potential U(r) [equivalent for both
pseudospins and defined in 2D real space r = (x,y)]
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FIG. 3. (a) 2D SSH potential (in meV) constructed out of
Gaussian wells with RDSOC aligned along intracell coupling;
(b) normalized edge state density; energy spectrum in real (c),(d)
and reciprocal (e),(f) spaces in the absence (c),(e) and presence
(d),(f) of RDSOC; white-black shows normalized density; the red
rectangular shows the edge state [in (f) intensity is increased by
10x for visibility].

corresponding to realistic experimental values is shown
in Fig. 3(a) with the RDSOC being oriented along the
strong link of the zigzag chain. We perform a simulation
beyond the tight-binding approximation by solving
the stationary spinor Schrodinger equation with H,p =
Hy(r) + U(r) in 2D (parameters in Ref. [75]), where A (r)
is a Fourier transform of Eq. (1).

Figures 3(c) and 3(e) show the modes in the real
and reciprocal spaces without RDSOC. The chain exhibits
a clear band gap of 1 meV, but no edge states. Figures 3(d)
and 3(f) show the case with nonzero RDSOC
(¢ = 1.62 meV um [67]). A mode strongly localized on
the edge [also see Fig. 3(b)] appears within the gap. The
asymmetry between the lower and upper bands is enhanced
when going beyond the tight-binding model. However, the
lowest band is flattened analogously to f = /2 in the
tight-binding model [Figs. 2(b)-2(d)]. These simulations
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FIG. 4. (a) Harper-Hofstadter and (b) classical XY model
realizations based on tunneling (a) phase and (b) amplitude
control by RDSOC; green circles and dashed lines represent
lattice sites and tunnelings, respectively; gray squares show
different electrodes controlling in-plane rotation of RDSOC
direction (red arrows) and thus the tunnelings between lattice
sites; the blue elements explain the acquisition of phase when
encircling a plaquette.

clearly demonstrate the possibility to switch between
topologically trivial and nontrivial system states simply
by applying voltage. The edge state exhibits period dou-
bling discussed in Ref. [67].

Finally, we consider 2D lattices where the RDSOC
orientation is controlled for each individual tunneling. In
general, the phases f3;; can be controlled by electrodes with
patterning, determining the in-plane orientation of RDSOC
between every pair of sites (Fig. 4) [76,77]. In the limit of
0=~ 0 [Eq. (3)], the TRS-preserving version of the Harper-
Hofstadter model [6,8] is achievable by proper tuning of
tunneling phases. As shown in Fig. 4(a), x-dependent
rotation of the RDSOC direction for the vertical links
gives rise to an increasing phase factor fx that leads to a
nonzero round-trip phase A(x+ 1) —px = for each
plaquette, independent of its position. The contribution
of the horizontal links is zero. The artificial magnetic flux
felt by the second spin component is opposite, and the
edges of such systems are expected to carry chiral spin
currents, as in the quantum spin Hall effect.

In the limit of large detuning 6> J;; [Eq. (4)], the
orientation of the RDSOC allows us to control the
magnitudes and the signs of the tunneling coeffici-
ents [Fig. 4(b)]. With these abritrary tunnelings, the
Hamiltonian (4) can be mapped to the classical XY
Hamiltonian:

Hyy = ZJCOSﬁij cos (n; —n;), (10)
i#]

with #; being the orientation of the in-plane spin i, encoded
in the phase of the wave function argy; at site i, which
allows one to simulate complex spin-liquid phases, super-
fluids, and superconductors and solve some optimization
problems [11,14,78,79]. The dynamical version of the XY
model is also known as the Kuramoto network, one of the

simplest models describing synchronization and very
important in the field of neural networks. Realizations
using the suggested LC-based simulator would be compact
and benefit from high accessibility to the wave function.

To conclude, we have shown that RDSOC acts as a
synthetic gauge field controlling the magnitude and phase
of the tunneling coefficients. RDSOC can regulate the
topology of a 1D chain and of a 2D lattice (Harper-
Hofstadter model). It allows us to simulate spin lattices
described by the TFIM and XY Hamiltonians within whole
interesting configuration space. We have proposed a
realistic implementation using patterned L.C microcavities.
Interesting perspectives include the non-Hermitian effects
[80,81] and photonic nonlinearities [82]. Also, our proposal
can be realized in other platforms such as electronic and
fermionic atomic systems.

This work was supported by the European Union
Horizon 2020 program, through a Future and Emerging
Technologies (FET) Open research and innovation action
under Grant Agreement No. 964770 (TopoLight). B.P.
acknowledges National Science Centre, Poland, Grant
No. 2017/27/B/ST3/00271. J.S. acknowledges National
Science Centre, Poland, Grant No. 2019/35/B/ST3/04147.
D.S. and G. M. acknowledge the support of the projects
ANR Labex GaNEXT (ANR-11-LABX-0014), ANR
NEWAVE (ANR-21-CE24-0019-01), and of the ANR
program “Investissements d'Avenir” through the IDEX-
ISITE initiative 16-IDEX-0001 (CAP 20-25).

*Corresponding author.
pavel.kokhanchik @uca.fr

[1] M. Aidelsburger, S. Nascimbene, and N. Goldman, C.R.
Phys. 19, 394 (2018).

[2] T. Ozawa and H. M. Price, Nat. Rev. Phys. 1, 349 (2019).

[3] 1. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys. 8, 267
(2012).

[4] P.G. Harper, Proc. Phys. Soc. London Sect. A 68, 874
(1955).

[5] D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976).

[6] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor,
Nat. Phys. 7, 907 (2011).

[7] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. Taylor, Nat.
Photonics 7, 1001 (2013).

[8] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B.
Paredes, and 1. Bloch, Phys. Rev. Lett. 111, 185301 (2013).

[9] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

[10] L. Onsager, Phys. Rev. 65, 117 (1944).

[11] N. G. Berloff, M. Silva, K. Kalinin, A. Askitopoulos, J. D.
Topfer, P. Cilibrizzi, W. Langbein, and P. G. Lagoudakis,
Nat. Mater. 16, 1120 (2017).

[12] M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, Phys.
Rev. Lett. 110, 184102 (2013).

[13] A. Lucas, Front. Phys. 2, 5 (2014).

[14] 1. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys.
86, 153 (2014).

246801-5


https://doi.org/10.1016/j.crhy.2018.03.002
https://doi.org/10.1016/j.crhy.2018.03.002
https://doi.org/10.1038/s42254-019-0045-3
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1038/nmat4971
https://doi.org/10.1103/PhysRevLett.110.184102
https://doi.org/10.1103/PhysRevLett.110.184102
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153

PHYSICAL REVIEW LETTERS 129, 246801 (2022)

[15] K. Y. Bliokh and Y.P. Bliokh, Phys. Rev. E 70, 026605
(2004).

[16] M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett.
93, 083901 (2004).

[17] A. Kavokin, G. Malpuech, and M. Glazov, Phys. Rev. Lett.
95, 136601 (2005).

[18] C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T.C.
Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A.
Bramati, Nat. Phys. 3, 628 (2007).

[19] O. Hosten and P. Kwiat, Science 319, 787 (2008).

[20] K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, Nat.
Photonics 2, 748 (2008).

[21] K. Y. Bliokh, F.J. Rodriguez-Fortufio, F. Nori, and A. V.
Zayats, Nat. Photonics 9, 796 (2015).

[22] Z. Zhang, S. Liang, F. Li, S. Ning, Y. Li, G. Malpuech, Y.
Zhang, M. Xiao, and D. Solnyshkov, Optica 7, 455 (2020).

[23] A.V. Kavokin, J.J. Baumberg, G. Malpuech, and F.P.
Laussy, Microcavities (Oxford University Press, New York,
2017), Vol. 21.

[24] I. A. Shelykh, G. Pavlovic, D.D. Solnyshkov, and G.
Malpuech, Phys. Rev. Lett. 102, 046407 (2009).

[25] C.-E. Bardyn, T. Karzig, G. Refael, and T. C. H. Liew, Phys.
Rev. B 91, 161413(R) (2015).

[26] M. G. Silveirinha, Phys. Rev. B 92, 125153 (2015).

[27] D. Solnyshkov and G. Malpuech, C.R. Phys. 17, 920
(2016).

[28] A. Gianfrate, O. Bleu, L. Dominici, V. Ardizzone, M. De
Giorgi, D. Ballarini, G. Lerario, K. West, L. Pfeiffer, D.
Solnyshkov et al., Nature (London) 578, 381 (2020).

[29] F.D.M. Haldane and S. Raghu, Phys. Rev. Lett. 100,
013904 (2008).

[30] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljaci¢,
Phys. Rev. Lett. 100, 013905 (2008).

[31] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljaci¢,
Nature (London) 461, 772 (2009).

[32] L. Lu, J. D. Joannopoulos, and M. Soljaci¢, Nat. Photonics
8, 821 (2014).

[33] A. V. Nalitov, D. D. Solnyshkov, and G. Malpuech, Phys.
Rev. Lett. 114, 116401 (2015).

[34] T. Karzig, C.-E. Bardyn, N.H. Lindner, and G. Refael,
Phys. Rev. X 5, 031001 (2015).

[35] S. Klembt, T. Harder, O. Egorov, K. Winkler, R. Ge, M.
Bandres, M. Emmerling, L. Worschech, T. Liew, M. Segev
et al., Nature (London) 562, 552 (2018).

[36] A.B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M.
Kargarian, A. H. MacDonald, and G. Shvets, Nat. Mater.
12, 233 (2013).

[37] X. Cheng, C. Jouvaud, X. Ni, S. H. Mousavi, A.Z. Genack,
and A. B. Khanikaev, Nat. Mater. 15, 542 (2016).

[38] L.-H. Wu and X. Hu, Phys. Rev. Lett. 114, 223901 (2015).

[39] T. Ma, A.B. Khanikaev, S.H. Mousavi, and G. Shvets,
Phys. Rev. Lett. 114, 127401 (2015).

[40] S. Barik, H. Miyake, W. DeGottardi, E. Waks, and M.
Hafezi, New J. Phys. 18, 113013 (2016).

[41] W.P. Su, J. R. Schrieffer, and A.J. Heeger, Phys. Rev. Lett.
42, 1698 (1979).

[42] J. K. Asboéth, L. Oroszlany, and A. Pélyi, Lect. Notes Phys.
919, 166 (2016).

[43] D.D. Solnyshkov, A.V. Nalitov, and G. Malpuech, Phys.
Rev. Lett. 116, 046402 (2016).

[44] P. St-Jean, V. Goblot, E. Galopin, A. Lemaitre, T. Ozawa, L.
Le Gratiet, 1. Sagnes, J. Bloch, and A. Amo, Nat. Photonics
11, 651 (2017).

[45] T.H. Harder, M. Sun, O.A. Egorov, 1. Vakulchyk, J.
Beierlein, P. Gagel, M. Emmerling, C. Schneider, U.
Peschel, I. G. Savenko et al., ACS Photonics 8, 1377 (2021).

[46] Y. A. Bychkov and E. L Rashba, JETP Lett. 39, 66 (1984),
http://jetpletters.ru/ps/1264/article_19121.shtml.

[47] G. Dresselhaus, Phys. Rev. 100, 580 (1955).

[48] B. A. Bernevig, J. Orenstein, and S.-C. Zhang, Phys. Rev.
Lett. 97, 236601 (2006).

[49] J.D. Koralek, C.P. Weber, J. Orenstein, B. A. Bernevig,
S.-C. Zhang, S. Mack, and D. Awschalom, Nature (London)
458, 610 (2009).

[50] Y.-J. Lin, K. Jiménez-Garcia, and 1. B. Spielman, Nature
(London) 471, 83 (2011).

[51] N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and
E. Hasman, Phys. Rev. Lett. 105, 136402 (2010).

[52] K. Frischwasser, 1. Yulevich, V. Kleiner, and E. Hasman,
Opt. Express 19, 23475 (2011).

[53] N. Shitrit, I. Yulevich, V. Kleiner, and E. Hasman, Appl.
Phys. Lett. 103, 211114 (2013).

[54] N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V.
Kleiner, and E. Hasman, Science 340, 724 (2013).

[55] V. Yannopapas, Phys. Rev. B 83, 113101 (2011).

[56] Y. Plotnik, M. A. Bandres, S. Stiitzer, Y. Lumer, M. C.
Rechtsman, A. Szameit, and M. Segev, Phys. Rev. B 94,
020301(R) (2016).

[57] I. A. Shelykh, A. V. Nalitov, and L. V. Iorsh, Phys. Rev. B 98,
155428 (2018).

[58] K. Rechcinska, M. Krél, R. Mazur, P. Morawiak, R. Mirek,
K. Lempicka, W. Bardyszewski, M. Matuszewski, P. Kula,
W. Piecek et al., Science 366, 727 (2019).

[59] J. Ren, Q. Liao, F. Li, Y. Li, O. Bleu, G. Malpuech, J. Yao,
H. Fu, and D. Solnyshkov, Nat. Commun. 12, 689 (2021).

[60] L. Polimeno, G. Lerario, M. De Giorgi, L. De Marco, L.
Dominici, F. Todisco, A. Coriolano, V. Ardizzone, M.
Pugliese, C.T. Prontera et al, Nat. Nanotechnol. 16,
1349 (2021).

[61] Z. Yan and S. Wan, Europhys. Lett. 107, 47007 (2014).

[62] M. Bahari and M. V. Hosseini, Phys. Rev. B 94, 125119
(2016).

[63] Y. Yao, M. Sato, T. Nakamura, N. Furukawa, and M.
Oshikawa, Phys. Rev. B 96, 205424 (2017).

[64] Z.-H. Liu, O. Entin-Wohlman, A. Aharony, J. Q. You, and
H. Q. Xu, Phys. Rev. B 104, 085302 (2021).

[65] Z.-H. Liu and H. Xu, J. Appl. Phys. 130, 174301 (2021).

[66] Y. Aharonov and A. Casher, Phys. Rev. Lett. 53,319 (1984).

[67] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.129.246801 for the discussion of uni-
form RDSOC in a monomer chain, Hamiltonian of the SSH
lattice with modulated RDSOC in linear polarization basis,
period-doubling in the tight-binding model and in the solution
of the Schrodinger equation, topology of the SSH chain
depending on RDSOC orientation, dependence of detuning
o0 on voltage V, RDSOC magnitude, and control of RDSOC
direction.

[68] J. Zak, Phys. Rev. Lett. 62, 2747 (1989).

[69] P. De Gennes, Solid State Commun. 1, 132 (1963).

[70] P. Pfeuty, Ann. Phys. (N.Y.) 57, 79 (1970).

246801-6


https://doi.org/10.1103/PhysRevE.70.026605
https://doi.org/10.1103/PhysRevE.70.026605
https://doi.org/10.1103/PhysRevLett.93.083901
https://doi.org/10.1103/PhysRevLett.93.083901
https://doi.org/10.1103/PhysRevLett.95.136601
https://doi.org/10.1103/PhysRevLett.95.136601
https://doi.org/10.1038/nphys676
https://doi.org/10.1126/science.1152697
https://doi.org/10.1038/nphoton.2008.229
https://doi.org/10.1038/nphoton.2008.229
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1364/OPTICA.390386
https://doi.org/10.1103/PhysRevLett.102.046407
https://doi.org/10.1103/PhysRevB.91.161413
https://doi.org/10.1103/PhysRevB.91.161413
https://doi.org/10.1103/PhysRevB.92.125153
https://doi.org/10.1016/j.crhy.2016.07.003
https://doi.org/10.1016/j.crhy.2016.07.003
https://doi.org/10.1038/s41586-020-1989-2
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1103/PhysRevLett.100.013905
https://doi.org/10.1038/nature08293
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1103/PhysRevLett.114.116401
https://doi.org/10.1103/PhysRevLett.114.116401
https://doi.org/10.1103/PhysRevX.5.031001
https://doi.org/10.1038/s41586-018-0601-5
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat4573
https://doi.org/10.1103/PhysRevLett.114.223901
https://doi.org/10.1103/PhysRevLett.114.127401
https://doi.org/10.1088/1367-2630/18/11/113013
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1007/978-3-319-25607-8
https://doi.org/10.1007/978-3-319-25607-8
https://doi.org/10.1103/PhysRevLett.116.046402
https://doi.org/10.1103/PhysRevLett.116.046402
https://doi.org/10.1038/s41566-017-0006-2
https://doi.org/10.1038/s41566-017-0006-2
https://doi.org/10.1021/acsphotonics.0c01958
http://jetpletters.ru/ps/1264/article_19121.shtml
http://jetpletters.ru/ps/1264/article_19121.shtml
http://jetpletters.ru/ps/1264/article_19121.shtml
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRevLett.97.236601
https://doi.org/10.1103/PhysRevLett.97.236601
https://doi.org/10.1038/nature07871
https://doi.org/10.1038/nature07871
https://doi.org/10.1038/nature09887
https://doi.org/10.1038/nature09887
https://doi.org/10.1103/PhysRevLett.105.136402
https://doi.org/10.1364/OE.19.023475
https://doi.org/10.1063/1.4832636
https://doi.org/10.1063/1.4832636
https://doi.org/10.1126/science.1234892
https://doi.org/10.1103/PhysRevB.83.113101
https://doi.org/10.1103/PhysRevB.94.020301
https://doi.org/10.1103/PhysRevB.94.020301
https://doi.org/10.1103/PhysRevB.98.155428
https://doi.org/10.1103/PhysRevB.98.155428
https://doi.org/10.1126/science.aay4182
https://doi.org/10.1038/s41467-020-20845-2
https://doi.org/10.1038/s41565-021-00977-2
https://doi.org/10.1038/s41565-021-00977-2
https://doi.org/10.1209/0295-5075/107/47007
https://doi.org/10.1103/PhysRevB.94.125119
https://doi.org/10.1103/PhysRevB.94.125119
https://doi.org/10.1103/PhysRevB.96.205424
https://doi.org/10.1103/PhysRevB.104.085302
https://doi.org/10.1063/5.0062653
https://doi.org/10.1103/PhysRevLett.53.319
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.246801
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.246801
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.246801
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.246801
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.246801
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.246801
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.246801
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1016/0038-1098(63)90212-6
https://doi.org/10.1016/0003-4916(70)90270-8

PHYSICAL REVIEW LETTERS 129, 246801 (2022)

[71] T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355
(1998).

[72] P. Calabrese, F. H. L. Essler, and M. Fagotti, Phys. Rev. Lett.
106, 227203 (2011).

[73] M. Heyl, A. Polkovnikov, and S. Kehrein, Phys. Rev. Lett.
110, 135704 (2013).

[74] F. Scafirimuto, D. Urbonas, M. A. Becker, U. Scherf, R. FE.
Mahrt, and T. Stoferle, Commun. Phys. 4, 39 (2021).

[75] SSH-like zigzag potential U(x,y) is constructed out of
Gaussian potential wells with 30 meV depth, 1 gm FWHM,
and 1.53 (1.7) pm intracell (intercell) distance, respectively.
The cavity photon mass is m = 1.6 x 107 m,, where m, is
an electron mass; we take value of 6 =5.5 meV and
introduce Lorentzian broadening with 0.5 meV FWHM.

[76] A. Mochizuki, Crystals 11, 337 (2021).

[77]1 A. Mochizuki, J. Mol. Liq. 267, 456 (2018).

[78] M. Parto, W. Hayenga, A. Marandi, D. N. Christodoulides,
and M. Khajavikhan, Nat. Mater. 19, 725 (2020).

[79] R. Tao, K. Peng, L. Haeberlé, Q. Li, D. Jin, G. R. Fleming,
S. Kéna-Cohen, X. Zhang, and W. Bao, Nat. Mater. 21, 761
(2022).

[80] R. Su, E. Estrecho, D. Bieganska, Y. Huang, M. Wurdack,
M. Pieczarka, A.G. Truscott, T.C.H. Liew, E.A.
Ostrovskaya, and Q. Xiong, Sci. Adv. 7, eabj8905 (2021).

[81] M. Krdl, I. Septembre, P. Oliwa, M. Kedziora, K. Lempicka-
Mirek, M. Muszynski, R. Mazur, P. Morawiak, W. Piecek, P.
Kula er al., Nat. Commun. 13, 5340 (2022).

[82] N. Pernet, P. St-Jean, D. D. Solnyshkov, G. Malpuech, N.
Carlon Zambon, Q. Fontaine, B. Real, O. Jamadi, A.
Lemaitre, M. Morassi et al., Nat. Phys. 18, 678 (2022).

246801-7


https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevLett.106.227203
https://doi.org/10.1103/PhysRevLett.106.227203
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1038/s42005-021-00548-w
https://doi.org/10.3390/cryst11040337
https://doi.org/10.1016/j.molliq.2017.12.117
https://doi.org/10.1038/s41563-020-0635-6
https://doi.org/10.1038/s41563-022-01276-4
https://doi.org/10.1038/s41563-022-01276-4
https://doi.org/10.1126/sciadv.abj8905
https://doi.org/10.1038/s41467-022-33001-9
https://doi.org/10.1038/s41567-022-01599-8

