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We develop a nonperturbative theory for hole dynamics in antiferromagnetic spin lattices, as described
by the t-J model. This is achieved by generalizing the self-consistent Born approximation to non-
equilibrium systems, making it possible to calculate the full time-dependent many-body wave function.
Our approach reveals three distinct dynamical regimes, ultimately leading to the formation of magnetic
polarons. Following the initial ballistic stage of the hole dynamics, coherent formation of string excitations
gives rise to characteristic oscillations in the hole density. Their damping eventually leaves behind magnetic
polarons that undergo ballistic motion with a greatly reduced velocity. The developed theory provides a
rigorous framework for understanding nonequilibrium physics of defects in quantum magnets and
quantitatively explains recent observations from cold-atom quantum simulations in the strong coupling
regime.
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Understanding the motion of charge carriers in quantum
spin environments is of great fundamental significance in
condensed matter physics [1–5]. Recently, this problem is
attracting growing interest [6–15], driven by the success of
quantum simulations with ultracold atoms in optical lattices
[16,17]. In particular, the realization of the Fermi-Hubbard
model [16,18–33] combined with single-site resolution
techniques [34–37] makes it possible to probe the structure
and quantum dynamics of lattice defects on a microscopic
level [25,26,32]. The behavior of holes in the Fermi-
Hubbard model and the associated formation of magnetic
polarons is intimately connected to the physics of high-
temperature superconductivity [38–40]. Their dynamics,
furthermore, constitutes a paradigmatic example of a
strongly interacting quantum many-body system out of
equilibrium, whose rigorous description has remained an
open theoretical problem. Quantum Monte Carlo simula-
tions [6,7] have allowed us to study the short-time
dynamics at infinite temperature and discover a crossover
from an initial—ballistic—quantum walk toward a diffu-
sive regime. Recent cold-atom experiments traced the
microscopic motion of holes in a simulated Fermi-
Hubbard model [32] and, instead, found a crossover to
another ballistic regime with a reduced effective hole
velocity. This experimentally indicates the creation of
magnetic polarons and raises exciting open questions about
the dynamical process of quasiparticle formation [41] and
their emerging transport properties.
Here, we address this problem and develop a rigorous

theoretical framework for the nonequilibrium dynamics of
holes in an antiferromagnetic spin lattice. Our starting point

is the self-consistent Born approximation (SCBA) known
to be quantitatively accurate under equilibrium conditions
[15,42,43]. We generalize this approach to nonequilibrium
situations and derive a recursion relation for the time-
dependent many-body wave function of the quantum
magnet. This makes it possible to describe the complex
quantum dynamics of interacting spins as the hole prop-
agates through the underlying antiferromagnetic lattice,
accounting for an arbitrary number of spin excitations. Our
theory provides a remarkably accurate description of the
experimentally observed hole motion at all measured times
and strong interactions [see Fig. 1(b)]. The calculations
reveal three dynamical regimes that characterize the
dynamical emergence of magnetic polarons from localized
lattice defects [Fig. 1(c)]. The theory predicts a ballistic
hole expansion with a universal initial velocity that is
independent of the interaction strength [red region in
Fig. 1(c)]. At intermediate times (blue region), the dynam-
ics is characterized by the formation of magnetic polaron
states as well as string excitations, in which the hole is
confined in the linear potential of flipped spins in its trail
[1,9,44,45]. Quantum interference between the polarons
and the string excitations leads to characteristic oscillations
in the hole dynamics consistent with experimental obser-
vations [32]. Ultimately, string excitations are found to
dampen at long times, with emergent quasiparticle behavior
and ballistic propagation of polarons with a reduced
velocity [green region in Fig. 1(c)].
The system.—We consider the motion of a single hole in

a two-component (spin σ ¼ ↑;↓) Fermi gas in a 2D square
lattice. For strong repulsion, the two spins form a quantum
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antiferromagnet and the system can be described by the t-J
model [40,46]. Using a slave-fermion representation, this
problem can be mapped to the Hamiltonian

Ĥ ¼
X
k

ωkb̂
†
kb̂k þ

X
q;k

gðq;kÞ½ĥ†qþkĥqb̂
†
−k þ H:c:� ð1Þ

within linear spin wave theory [2,4]. Here, b̂†k is a bosonic
operator creating a spin wave with crystal momentum k
and energy ωk ¼ 2J

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2k

p
, where J > 0 is the anti-

ferromagnetic coupling between neighboring spins and
γk ¼ ½cosðkxÞ þ cosðkyÞ�=2 is a structure factor, taking
the lattice constant to be unity. The second term in
Eq. (1) describes how the motion of holes created by the
fermionic operator ĥk makes spin excitations above the
antiferromagnetic (AFM) ground state defined by
b̂kjAFMi ¼ 0. The associated vertex strength is gðq;kÞ ¼
4t · ðukγqþk − vkγqÞ=

ffiffiffiffi
N

p
with N the number of lattice

sites, t the hopping strength, and uk ¼ ½ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2k

p
þ

1Þ=2�1=2 and vk ¼ sgnðγkÞ½ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2k

p
− 1Þ=2�1=2 the

coherence factors. The t-J model is an effective low-energy
description for strong coupling, J ≪ t, of the Hubbard
model realized experimentally [40,46]; we therefore pre-
dominantly focus on this regime.
Time-dependent SCBA.—We now describe our time-

dependent theory for hole dynamics in the antiferro-
magnetic lattice. To describe the experimental situation,
we initiate a single hole at the site d ¼ 0, i.e.,
jΨðτ ¼ 0Þi ¼ ĥ†0jAFMi ¼ P

p ĥ
†
pjAFMi= ffiffiffiffi

N
p

, with τ the
variable of time to distinguish it from the hopping t. We
then have jΨðτÞi ¼ P

p jΨpðτÞi=
ffiffiffiffi
N

p
, with i∂τjΨpðτÞi ¼

ĤjΨpðτÞi. We write jΨpðτÞi ¼ jΨR
pðτÞi þ jΨA

pðτÞi, where
jΨR

pðτÞi ¼ expð−ητÞθðτÞ · jΨpðτÞi and jΨA
pðτÞi ¼

expðητÞθð−τÞ · jΨpðτÞi are the retarded and advanced wave
functions. Fourier transforming the Schrödinger equation
then yields (see Supplemental Material [47])

ðωþ iηÞjΨR
pðωÞi ¼ ijΨpðτ ¼ 0Þi þ ĤjΨR

pðωÞi: ð2Þ

The advanced state is found by jΨA
pðωÞi ¼ ½jΨR

pðωÞi��. In
principle, jΨR

pðωÞi may be expanded in the number of spin
waves. For strong coupling, J=t ≪ 1, however, the corre-
sponding expansion does not truncate in a controlled way
and requires the inclusion of spin waves to infinite order.
We resolve this problem by generalizing the SCBA [2,4]

to nonequilibrium conditions. Note that this approximation
yields quantitatively accurate results for the hole Green’s
function compared to exact diagonalization on small
systems [42] and Monte Carlo simulations [15]. In
the spirit of the SCBA, we retain only noncrossing terms
in the equations of motion for the expansion coefficients of
the wave function to obtain a recursion relation for the
retarded wave function [47]

jΨR
pðωÞi ¼ GRðp;ωÞ½iĥ†pjAFMi

þ
X
k

gðp;kÞ · b̂†−kjΨR
pþkðω − ωkÞi�: ð3Þ

Here,GRðp;ωÞ ¼ ½ω − Σðp;ωÞ þ iη�−1 is the retarded hole
Green’s function with the SCBA self-energy Σðp;ωÞ ¼P

k g
2ðp;kÞGRðpþ k;ω − ωkÞ [2,4]. The recursive struc-

ture in Eq. (3) is similar to the SCBA magnetic polaron
states [14,49] and allows us to compute the nonequilibrium
hole dynamics in an efficient and accurate manner taking an
infinite number of spin waves into account. This yields a
rigorous generalization of the SCBA to the time-dependent
case and represents the main result of this Letter.
Using the single-site resolution of quantum gas micro-

scopes, one can measure the hole density nhðd; τÞ ¼
hΨðτÞjĥ†dĥdjΨðτÞi at a given position d and time τ [32].
Here, we obtain it from

(a)

(b)

(c)

FIG. 1. Nonequilibrium hole dynamics. (a) The hole density
nhðdÞ for J ¼ 0.233t and different times normalized to its
maximal value nmax

h is shown in the first quadrant of the lattice,
exploiting the C4 rotational symmetry. (b) Root-mean-square
distance of the hole as a function of time for indicated interaction
strengths compared to experimental results. At long times, the
dynamics is determined by ballistic propagation of magnetic
polarons (white hole surrounded by red σ ¼ ↑ and blue σ ¼ ↓
fermions), dressed by spin waves (green waves) (inset). (c) We
find three distinct dynamical regimes: a quantum walk at short
times (red), interfering string excitations at intermediate times
(blue), and ballistic transport of magnetic polarons at long
times (green).
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nhðd; τÞ ¼
1

N

X
q

e−iq·d
Z

dν
2π

Nhðq; νÞ; ð4Þ

where Nhðq; νÞ ¼ ð2πÞ−1Pp

R
dωNhðq; ν;p;ωÞ and

Nhðq; ν; p; ωÞ ¼
P

khΨpþqðω þ νÞjĥ†pþqþkĥpþkjΨpðωÞi.
Using Eq. (3), we derive self-consistency equations
for Nh (see Supplemental Material [47]), whereby the
time-dependent hole density nhðd; τÞ is determined non-
perturbatively. We note that the SCBA is a preserving
approximation, whereby the total density of holes remains
unity,

P
d nhðd; τÞ ¼ 1.

Hole dynamics.—In Fig. 1(a), we plot the hole density in
the lattice at different times for J ¼ 0.233t. This illustrates
the spatial expansion of the hole following its localized
creation at site d ¼ 0. From the density, we determine the
rms distance drmsðτÞ ¼ ½Pd d

2 · nhðd; τÞ�1=2, which is com-
pared to experimental measurements [32] in Fig. 1(b) for
two different coupling strengths. We find a clear crossover
between distinct regimes of ballistic expansion with d ¼ vτ
with different velocities v. The final expansion velocity is
greatly reduced compared to a quantum walk of the hole.
For the relevant case of strong coupling, J ¼ 0.233t, for
which the t-J model accurately describes the underlying
Fermi-Hubbard Hamiltonian, our theory agrees quantita-
tively with the experimental data across all timescales. For
J ¼ 0.459t, the agreement is expectedly not as good, since
the mapping from the Fermi-Hubbard Hamiltonian, real-
ized in the experiment [32], to the t-J model becomes less
accurate as J=t increases [40].
The expansion dynamics is investigated in more detail in

Fig. 2, which displays the rms distance and the associated
expansion velocity vrms ¼ ∂τdrms for a range of interaction
strengths. This shows that the crossover to the long-time
ballistic motion of the polaron slows down with increasing

interaction strength t=J. Physically, a hole in a lattice with a
smaller spin-spin coupling J will move further away from
its initial position before it is affected by the underlying
spin order of the quantum magnet. However, a smaller J
also implies stronger dressing of the hole by spin waves in
its final polaron state. This slows down the long-time
ballistic expansion and thereby leads to the nontrivial
crossing of the lines in Fig. 2(a). The calculated dynamics
reveals three distinct dynamical regimes: (i) an initial
quantum walk of the hole, (ii) a crossover stage driven
by string excitations, and (iii) the final formation of
magnetic polarons.
(i) Quantum walk. The results of Figs. 1 and 2 indicate

universal initial hole dynamics that follows a ballistic
expansion with a J-independent velocity, v0rms. Indeed,
the short-time expansion of the t-J model yields a free
quantum walk to leading order in τ with a ballistic
expansion velocity v0rms ¼ 2t [47,50], also observed exper-
imentally [32]. The linear spin wave approximation yields a
slightly lower velocity of v0rms ¼ 1.84t differing from the
exact result by only ∼8% [Fig. 2(b)]. Expanding our wave
function at short times gives drms ≃ v0rms · τ½1 − c3 · ðt · τÞ2�,
where c3 ¼ cð0Þ3 þ cðJÞ3 · ðJ=tÞ2, with interaction-

independent coefficients cð0Þ3 and cðJÞ3 [47]. Setting 1 −
c3ðtτsÞ2 ¼ 1=2 allows us to define the timescale

τs ¼
1

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½cð0Þ3 þ cðJÞ3 · ðJ=tÞ2�

q ; ð5Þ

after which the initial ballistic behavior breaks down,
defining the initial regime shown by the red area in
Fig. 1(c). Consequently, we find τs is proportional to
1=t and 1=J for strong J ≪ t and weak coupling J ≫ t,
respectively.
(ii) Interfering string excitations. After the initial uni-

versal ballistic expansion, the dynamics enters a second
regime characterized by oscillations of the hole velocity
with a period that increases with the interaction strength
t=J. This is explored further in Fig. 3, where we show the
density of holes around its initial position d ¼ 0, revealing
significant oscillations consistent with the experimental
observations [32]. The agreement between theory and
experiment is particularly good at d ¼ 0 and d ¼ 1
[Figs. 3(a) and 3(b)], while accurate comparisons at larger
distances are hindered by a decreasing signal-to-noise ratio
[32]. To understand the origin of these oscillations, we
show the total density of states (DOS) AðωÞ ¼P

p Aðp;ωÞ=N for J=t ¼ 0.233 in Fig. 3(e) and as a
function of J=t in Fig. 3(f). Here, Aðp;ωÞ is the hole
spectral function (see Supplemental Material [47]). One
clearly observes multiple peaks in the DOS, the
lowest corresponding to the emerging magnetic polaron.
Figure 3(f) also shows a characteristic ðJ=tÞ2=3 scaling of
the position of the high-frequency peaks. This is consistent
with string excitations, which correspond to Airy-like

(a)

(b)

FIG. 2. rms distance distance and velocity (a) Time evolution of
the rms distance drms for different indicated values of J=t. (b) The
rms velocity vrms ¼ ∂τdrms for the same interaction strengths. The
black line corresponds to a free quantum walk with v0rms ¼ 2t,
while the gray line, v0rms ≃ 1.84t, follows from linear spin wave
theory.
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eigenstates of the hole, confined in the linear potential
formed by its trail of flipped spins. In the strong coupling
limit of the t − Jz model, this effective potential has a
strength ∝ Jz [4,44]. The presence of transverse spin-spin
couplings broadens the string excitations [15,45], and
using a multi-Lorentzian fit [Fig. 3(e)] we find that their
spectral widths show the same ðJ=tÞ2=3 scaling as their
energies.
To see how these excitations contribute to the inter-

mediate hole dynamics, we compute the Fourier transform
of the Lorentzian fit GðτÞ, which exclusively captures the
contribution from the different peaks. Its norm square
jGðτÞj2 recovers the oscillatory hole motion as shown in
the inset of Fig. 3(a). Indeed, it follows from Eq. (3) that
jGðτÞj2 determines the hole density at the initial site d ¼ 0
to lowest order. We conclude from Fig. 3(a) that the
oscillations arise due to quantum interference between
the polaron states and the string excitations. In the strongly
interacting regime, J ≪ t, these oscillations stretch out as
the spacing between the associated energies diminishes
[Fig. 3(f)]. This interference process defines the second
dynamical regime [blue region in Fig. 1(c)], while the
lifetime of the lowest string excitation [marked as S1 in
Fig. 3(f)] determines the dynamical crossover into the
final propagation stage. The corresponding transition time
scales as ðJ=tÞ−2=3 and J=t for strong and weak coupling,
respectively, and is shown by the upper lines in Fig. 1(c).
(iii) Magnetic polarons. Following the damping of string

excitations, the remaining superposition of magnetic
polaron states once more undergoes ballistic expansion,
at a greatly reduced velocity, evident both from Figs. 1(b)
and 2. Indeed, at times longer than the string lifetime, we
can write our wave function as [47]

jΨðτÞi → 1ffiffiffiffi
N

p
X
p

� ffiffiffiffiffiffi
Zp

p
e−iεpτjΨpol

p i þ
X
k

g1ðp;kÞ
ffiffiffiffiffiffiffiffiffiffi
Zpþk

p
e−iðεpþkþωkÞτb̂†−kjΨpol

pþki þ � � �
�
; ð6Þ

where g1ðp;kÞ ¼ gðp;kÞRe½GRðp; εpþk þ ωkÞ�. The first
term in Eq. (6) corresponds to the ballistic propagation
of magnetic polarons jΨpol

p i with crystal momentum p,
energy εp, and quasiparticle residue Zp. The second term
describes polaron propagation along with a spin wave and
is the first term in a series in the number of spin waves
[Fig. 1(b), inset]. These asymptotics explicitly confirm the
dynamical formation of magnetic polarons, indicated by
experiments [32].
In Fig. 4(a), we show the asymptotic expansion velocity

v∞rms. Motivated by the propagation of magnetic polarons
evident from Eq. (6), we also plot the average polaron
group velocity vpolrms ¼ ½Ppð∇pεpÞ2=N�1=2. In the perturba-
tive limit, the first term in Eq. (6) dominates, and v∞rms and

vpolrms both approach an asymptotic value of 0.41wpol [47],
evident in Fig. 4(a) for J=t ≳ 1. Below J=t ≃ 0.4, however,
these two velocities start to deviate significantly. This
originates in a qualitative change in the quasiparticle
residues, which become very small in certain regions of
the Brillouin zone for strong interactions (see Supplemental
Material [47]). As a result, the associated polaron states
do not contribute to the long-time dynamics, leading
to a sublinear dependency of the expansion velocity on
J [Fig. 4(a)], even though the polaron bandwidth
approaches wpol ∼ 2J [4,51]. For very strong coupling
J=t≲ 0.02 [52], it is expected that the ground state of
the system develops a growing region of ferromagnetic
correlations, the so-called Nagaoka limit [53]. While we

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Local hole density and string excitations. (a)–(d) The
hole density as a function of time for J ¼ 0.459t (red) and J ¼
0.233t (blue) for different indicated distances d. The experimental
data are shown by red dots for J ¼ 0.459t and by blue triangles for
J ¼ 0.233t. (e) Total density of states AðωÞ with a multi-Lor-
entzian fit (dashed green line). In the inset of (a), the norm square of
the Fourier transform of this fit (green line) is compared to the full
solution and experimental data (blue) for J ¼ 0.233t. The low-
frequency peak of AðωÞ corresponds to magnetic polarons (P).
The higher-lying peaks reflect string excitations (Si). Their
energies and spectral widths exhibit a characteristic ðJ=tÞ2=3
scaling for J=t ≪ 1, shown by black lines in (f).
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observe indications of this behavior [14], the total spin is
conserved under the dynamical evolution, which makes it
difficult to observe large ferromagnetic domains in the limit
of very small values of J=t. The importance of this effect
for the motion of holes, hence remains an interesting topic
for future investigations.
In Fig. 4(b), we compare our results for the Manhattan

distance
P

dðjdxj þ jdyjÞ · nhðd; τÞ to recent numerical
simulations of the t-J model using matrix product states
(MPSs) [41]. The good agreement with the numerical
results found at short times confirms the accuracy of our
approach. At longer times, however, we observe significant
deviations, which must be expected due to finite size effects
when the Manhattan distance exceeds half the circum-
ference of the 4 × 18 cylindrical lattice simulated in
Ref. [41]. Reaching large system sizes remains a challenge
in numerical simulations, such that the presented theory
offers an important approach to explore the dynamics of
lattice defects and quasiparticle formation over the com-
plete range of relevant timescales.
Conclusions.—We have developed a nonperturbative

approach for computing the nonequilibrium dynamics of
holes in Heisenberg antiferromagnets. Our theory provides
a quantitative explanation of recent results from cold-atom
experiments [32] at strong interactions. The method yields
a complete characterization of the quantum motion of holes
and reveals three distinct dynamical regimes that character-
ize the emergence and evolution of magnetic polarons.
It explains observed oscillatory behavior in terms of
quantum interference between polarons and string excita-
tions. The presented formalism offers a powerful frame-
work to describe the nonequilibrium quantum dynamics of

impurities in strongly interacting lattice models. For exam-
ple, the method could be utilized to analyze spectroscopic
measurements [54] of holes. Cold-atom experiments also
make it possible to probe spin correlations induced by
adjacent holes [25,26]. Our approach can be used to
describe the dynamical buildup of such correlations and
may reveal the dynamics of correlations between two holes,
which could provide new insights into pairing and potential
mechanisms for high-temperature superconductivity at low
doping [39,46,55–58]. Finally, understanding the impact of
temperature on the properties of magnetic polarons [59]
remains a challenging open problem, which we hope to
explore in the future.
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