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Predicting Scaling Properties from a Single Fluid Configuration
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Time-dependent dynamical properties of a fluid cannot be estimated directly from a single configuration
without performing a simulation. Here, however, we present a method that predicts the scaling properties of
both structure and dynamics from a single configuration. The method is demonstrated to work well for the
Lennard-Jones fluid as well as the viscous Kob-Andersen Lennard-Jones mixture, both in and out of
equilibrium. The method is conceptually simple and easy to implement and, thus, should become a
standard tool in the study of scaling properties of fluids and liquids.

DOI: 10.1103/PhysRevLett.129.245501

How much can a single configuration tell us about the fluid
under the conditions from which it was taken? To be specific,
consider the positions of N particles in three dimensions
stored in a 3N-dimensional vector, R = (r;,r,,...,1y),
where r; is the position of the ith particle. Obviously,
measures of the structure, such as the radial distribution
function, can be estimated from a single configuration, R,
with a precision that depends on N. Assuming knowledge of
the Hamiltonian, thermodynamic properties such as potential
energy and pressure can also be estimated with a per-particle
error proportional to 1/4/N. On the other hand, time-
dependent dynamical properties such as the mean-square
displacement (MSD) and intermediate scattering function
can not be directly estimated from a single configuration
(some theoretical approaches aim to predict the dynamics
from the structure, see, e.g., [1]). This Letter demonstrates
that the scaling properties of both structure and dynamics can
be easily predicted from a single configuration.

Scaling relations play an important role in physics.
Rosenfeld’s excess entropy scaling [2-7] states that trans-
port coefficients of fluids depend only on the excess
entropy, Sex =S — Sigear (Sidear being the entropy of the
ideal gas at the same density and temperature). Another
scaling principle is the so-called power-law density scaling,
stating that relaxation time and viscosity depend on
temperature, 7, and density, p, only via the combination
p’ /T, where y is a material-dependent scaling exponent [8—
12] (for a more general scaling principle, see Refs. [13,14]).
The scaling requires the use of so-called reduced units,
where the unit of energy is given by e, = kg7, the unit of
length is given by I, = p~'/3, and the unit of time is given
by ty = p~'/3\/m/ kT, where m is a characteristic mass of
the particles. The described scaling properties—including
that they do not always work—are all explained by the
isomorph theory [15-17], which we will return to below.

Given a well working scaling relation, one can, from a
reference state point, predict the behavior at other state
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points along the path in the phase diagram characterized by
the same value of the scaling variable. We will focus on this
aspect, here, by posing the question: How can the dynamics
in reduced units be the same at two different state points
(p1,Ty) and (p,, T»)? The simplest explanation is that it is
the same differential equation governing the dynamics at
the two state points [6]. Restricting ourselves to classical
dynamics, Newton’s second law can be written, F(R) =
md’R/dr?, where F(R) is the 3N dimensional vector
containing the forces on the particles, and m is a diagonal
matrix containing the relevant masses. Denoting reduced
quantities by a tilde, the reduced force is given by: F =
F/(ey/ly) = F/(p'kyT), and Newton’s second law
becomes F(R) = md’R/d#*. Thus, if the reduced force
depends only on the reduced coordinates, then it is the same
differential equation governing the dynamics at the two
state points. This will result in the same trajectory in
reduced units R(f) [6] and, thus, the same reduced-unit
mean-square displacement and intermediate scattering
function, as well as the same reduced-unit structure.

The proposed method works as follows. Given a con-
figuration R; with density p; and temperature 7T;, we
perform an affine scaling to density p,, so that
pé/ 3R2 = p}/ 3R1, i.e., the two configurations are the same
in reduced units, R2 = Rl. Now, our aim is to choose the
temperature 7, so that the reduced forces of R; and R,,
denoted Fl and Fz, respectively, are as similar as possible.
To this end, we define an error function

(FZ B Fl)z _

F? + I3

F, F,

Y ~ A ~~A .
F} + F}

(1)

Taking the derivative of Eq. (1) with respect to T,
(which enters via the reduced units in Fz), we find,
after straightforward manipulations, that the minimum is
located at
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FIG. 1.

(a) Error function, Y [Eq. (1)], for a single configuration of the Kob-Andersen binary LJ mixture. The configuration was taken

from an equilibrium NVT (N = 10000) simulation at (p;,7T;) = (1.20,0.450). Density was increased 20%: p, = 1.44. Inset:
enlargement of minimum, note the scale. Red point: Position of minimum, as calculated by Egs. (2) and (3). (b) Testing the predicted
invariance of dynamics: mean-square displacement of large particles in reduced units. The reduced dynamics at (p,, 7») = (1.44,1.125)
is very close to that of the reference state point, (p;,7) = (1.20,0.45). In contrast, the same density increase on the isotherm,
(p, T) = (1.44,0.45), brings the system to a nonequilibrium glass phase, where particles hardly move beyond “cage rattling.” Dynamics

at (p, T) = (1.44,1.129) is shown as green dashed line.

)
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corresponding to choosing 7', so that the length of the two

reduced force vectors are the same, |F,| = |F,|. The value
of the error function at the minimum is

3 Ey
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(3)

where Ry is the Pearson correlation coefficient of the force
components, giving the cosine of the angle between F; and
F, (and between F; and F,).

In the following, the method is applied to the 80:20
Kob-Andersen binary Lennard-Jones (LJ) mixture [18], a
standard model in simulations of viscous liquids. NVT
simulations using a Nose-Hoover thermostat with N =
10000 particles were performed using RUMD [19], an open
source molecular dynamics package optimized for GPU
computing.

Figure 1(a) shows the error function, Eq. (1), evaluated
for a single configuration taken from an equilibrium
simulation at (p;,T;) = (1.20,0.45). A 20% increase in
density was applied. The minimum is given by 7, = 1.125
[Eq. (2)], and Y = 0.012 [Eq. (3)] corresponding to a
Pearson correlation coefficient Ry = 0.988.

The predicted invariance of the dynamics is tested in
Fig. 1(b). Results for the reference state point (p,7T,) =
(1.20,0.45) (filled black circles) shows a plateau in the
mean square displacement as is characteristic for viscous
liquids. The reduced dynamics at (p,, T,) = (1.44, 1.125)
(red filled circles) is, to a very good approximation, the
same as at the reference state point. From this, we conclude
that the method works very well: from a single configu-
ration, we predicted a new state point at which the reduced

dynamics is indistinguishable from that of the reference
state point. The corresponding invariance of the intermedi-
ate scattering function and structure is shown in the
Supplemental Material [20], Figs. S1 and S2.

What if we had chosen a different configuration to apply
the method to? Applying the method to 178 independent
configurations gives a mean 7, = 1.1249 with a standard
deviation 0.0014 (distribution shown in the Supplemental
Material [20], Fig. S3). Because of the strong temperature
dependence of viscous liquids, we tested whether picking a
configuration from the tail of this distribution, 7, = 1.129,
alters the conclusion; the green dashed line in Fig. 1(b)
shows that this is not the case.

Can the new method predict whether the scaling will work
or not? A necessary requirement is that the force compo-
nents before and after scaling are strongly correlated, i.e.,
that F, and F, are close to being parallel, and thus, F, ~ F,.
Figure 2(a) shows a scatter plot of the force components
before and after scaling for a low density state point where
scaling does not apply (see Supplemental Material [20],
Fig. S4). The inset reveals that a subset of small force
components is correlated with a smaller slope, a feature that
is not present for the high density state point where scaling
works, see Fig. 2(b). This difference does not lead to
significantly different Pearson correlation coefficients
(0.983 and 0.988). Thus, a Pearson coefficient close to
unity, and thereby an error function, Y, close to zero [Eq. (3)]
is a necessary, but not sufficient condition for the method to
work. In contrast, the Spearman correlation coefficient [the
Pearson correlation coefficient of the rank of the data, see
Supplemental Material [20], Fig. S5)], is different for the
two cases: 0.836 and 0.985, respectively. More tests are
needed, but a criterion for expecting the scaling to work
might be that both the Pearson and Spearman correlation
coefficients should be larger than 0.95.
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FIG. 2. Force components, F;;,, of a single scaled configu-
ration versus force components, F'| ; ,, of the same configuration
before scaling. 10% of data points displayed. (a) Low density
state point where scaling does not apply. (b) High density state
point where scaling does apply.

We conclude from the results presented above that
when the scaling works, the two state points are, indeed,
characterized by reduced forces that, to a good approxi-
mation, depend only on the reduced coordinates. The
simplest explanation for this is that the relevant part of
the reduced potential energy surface is the same, except for
an additive constant

U(R,)
kpT,

U(Ry)
= 7 C,
ko)

py Ry = p/"R,. (4)

This is the fundamental assumption of the isomorph theory
[15] (for a more general formulation, see Ref. [17]). Taking
the gradient on both sides of Eq. (4) leads to the reduced
forces being the same for the two state points. This, in turn
leads to the reduced dynamics and structure being the same,
which in turn, also leads to excess entropy, S, being the
same [15]. “Isomorphs” are curves in the phase diagram
where any two state points fulfill Eq. (4) to a good
approximation and, thus, are characterized by approxi-
mately invariant reduced-unit structure, dynamics, and
excess entropy.

In the context of the isomorph theory, the force-based
method presented here is a new method for identifying
isomorphs. For comparison, we will briefly describe the
two most used existing methods, the y method and the
direct isomorph check.

In the y method, a curve in the phase diagram with
constant S, i.e., a configurational adiabat, is traced out
using the general statistical mechanics identity [15]

_ (0T\ _ (AWAU)
Y‘(alnpkx (0P ®)

where (...) denotes canonical (NVT) ensemble average,
and A denotes deviation from the ensemble average. The
right hand side of this equation is evaluated from equilib-
rium NVT simulations, and the configurational adiabat is
traced out by numerically solving the differential equation,

Eq. (5). The main disadvantage of this method is that it
requires small steps in density, which can pose a practical
problem in particular in viscous liquids where long
simulations are needed to accurately evaluate the right
hand side.

Equation (4) can be rewritten as: U(R,) =
(T,/T,)U(R;) + D. This is the basis of the direct iso-
morph check [15]: (i) an equilibrium NVT simulation is
performed at a state point (p;,7;); (ii) a number of
configurations are scaled affinely to a new density p,
[R, = (p1/p2)"?R,]; (iii) the potential energy of the
scaled configurations, U(R,), is plotted against the poten-
tial energy of the unscaled configurations, U(R) in a
scatter plot; (iv) for the isomorph theory to apply U(R,)
and U(R) need to be strongly correlated, in which case the
new temperature can be determined from the slope being
equal to T,/T,. The main advantage of this method is that
large density changes can be performed from a single
equilibrium NVT simulation. For Lennard-Jones type
systems, the direct isomorph check can be performed
analytically [16]

) .
T, P1 2 P 2
where y; is Eq. (5) evaluated at the reference state point.

In Fig. 3(a), the new force-based method [Eq. (2)] is
compared to the analytical direct isomorph check [ADIC,
Eq. (6)], using the same reference point as in Fig. 1, varying
p, from 1.26 to 1.60. The new method clearly outperforms
the direct isomorph check.

In Fig. 3(b), it is shown how to apply the new method to
collapse data covering a broad region of the phase diagram.
In the inset, the reduced diffusion coefficient is plotted as a
function of temperature, T, for different isochores with
density p;. The spread in the data illustrates the well-known
strong state-point dependence of the dynamics of viscous
liquids. Now, we choose p, = 1.6, and, for each state point
(p1,Ty), scale a single configuration to p, and use Eq. (2)
to compute the corresponding value of 7,. For each p;
isochore, this gives a prediction for the dynamics on the p,
isochore. If the method is working correctly, these pre-
dictions should all agree with the p; = 1.6 isochore, i.e.,
the data should collapse on a single curve. The main panel
of Fig. 3(b) shows that this works very well [note, however,
that deviations of around 10% as observed in Fig. 3(a) are
not visible when plotting data as in Fig. 3(b)].

In Fig. 4, the force method is tested for the nonviscous
single component Lennard-Jones system over a broad
range of densities. At high initial densities, where the
Spearmann coefficient is high, the force-based method
traces out paths in the phase diagram along which the
reduced diffusion coefficient is relatively invariant. At low
initial densities, where the Spearmann coefficient is low
(e.g., p1 = 0.2), the reduced diffusion coefficient is also
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(a) Mean-square displacement in reduced units along two paths in the phase-diagram with densities p, = 1.20, 1.26, 1, 32,

1.38, 1.44, 1.60. Black curves: the force based method [Eq. (2)] using a single equilibrium configuration from the reference state point,
(p1,T1) = (1.20,0.45). Red curves: analytical direct isomorph check [ADIC, Eq. (6), shifted 0.5 down]. Here, y; = 5.167 was
calculated from an equilibrium simulation with a duration of approximately 1000 times the alpha relation time at the reference state
point. Inset: Reduced diffusion coefficients relative to the reference state point. Included for comparison: isotherm (blue) and the scaling
expected from the repulsive r~!2 term in the LJ potential (green). (b) Inset: reduced diffusion coefficient as a function of temperature, T,
for six isochores. Main panel: Same reduced diffusion coefficients, plotted as function of 7, as given by Eq. (2) with p, = 1.6.

relatively invariant, but we note that this is not the case for
the reduced structure (see Supplemental Material [20],
Fig. S7). For this system, the force-based method performs
slightly worse than the direct isomorph check at high
densities (compare, e.g., Supplemental Material [20],
Fig. S6). Thus, which method works best depends on
the system and the state point. The methods are uncon-
trolled approximations; they can be derived from assuming
Eq. (4) is exact, but presently, we can not predict the
magnitude of the error in, e.g., the reduced diffusion
coefficient when this is not the case. Consequently,
presently, we can not predict which method performs best
in a given situation beforehand.
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FIG. 4. Reduced-unit diffusion coefficients along ten different
paths in the phase diagram of the single component LJ system
(N = 4000). Each path is generated using Eq. (2) by scaling a
single configuration from a reference state point, (p;, T = 2.0).
p1 varies from 0.1 to 1.0 (close to the freezing line [21]). Blue
dashed lines give the mean value of the reduced diffusion
coefficients for the given path. Color map quantifies the Spear-
man correlation coefficient of force components before and after
scaling, with the black curve identifying the value 0.95.

The new force based method can be applied to a single
configuration, which does not have to be from a constant
volume simulation, nor does it have to be in equilibrium. In
the following, we will showcase an application illustrating
the last two points—to our knowledge, no other method has
these possibilities.

When a glass-forming liquid is cooled continuously, it
eventually falls out of equilibrium and forms a glass. In
Fig. 5, the black circles shows the density of the Kob-
Andersen mixture as a function of temperature during
continuous cooling at pressure P = 10 (MD units). To be
specific, it is the density of individual configurations visited
during the cooling that is plotted. This leads to some scatter
in the data, but a glass transition around 7', = 0.6 is still
clearly observed from the change of slope.

0 02 04 06 038 1 1.2 14
Temperature

FIG. 5. Density, p, versus temperature, 7, for isobaric cooling
curves of the Kob-Andersen mixture. Predictions for cooling
curves at P =20, 3, and O (blue, green, and red open circles)
were calculated from the P = 10 cooling curve (filled black
circles), as described in the text. Good agreement is found with
actual simulated cooling curves (blue, green, and red lines). The
same cooling rate (dT/dt = —2.0 x 107°) was used in all cases.
Adjusting cooling rates to be isomorphic has minimal influence
on the results (Supplemental Material [20], Fig. S8).
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From the P = 10 cooling curve, the “isomorphic” cool-
ing curve for P = 20 can be predicted. For each of the
stored P = 10 configurations (black circles in Fig. 5), the
corresponding isomorphic configuration at P = 20 is found
as follows. The P = 10 configuration is scaled to a higher
density, the isomorphic temperature, 7,, is evaluated
from Eq. (2), and the pressure is evaluated from P =
p2kgTy + paW, /N, where W, is the virial of the scaled
configuration. This procedure is repeated, adjusting the
density until the desired pressure P = 20 is achieved with
satisfactory precision. The resulting (7', p) pairs are plotted
as blue circles in Fig. 5. Corresponding results for P = 3
and P = 0 are shown in green and red, respectively. Actual
simulated cooling curves initiated from equilibrated
samples at (P,T) = (20, 1.5),(3,0.8), (0,0.6), are plotted
as full lines. Deviations are seen at the lowest pressure
P =0, but in general, quite good agreement is observed
between the actual simulated cooling curves and the
predicted cooling curves. This confirms that the force
method can, indeed, be used without constant volume,
and out of equilibrium, as argued above.

To summarize, we have presented an easily applicable
method to predict scaling properties of fluids. The method
was demonstrated to work very well in several applications,
leading to the intriguing consequence that information
about scaling properties is contained in individual con-
figurations. This is in stark contrast, e.g., to Rosenfeld’s
excess entropy scaling [2,3,6], where the excess entropy
usually is calculated by thermodynamic integration, requir-
ing equilibrium data along paths in the phase diagram. A
further feature of the new method is that it does not require
constant volume nor equilibrium conditions, in contrast to
existing methods. Further testing of the method is needed,
in particular, for molecular systems. Since the method
utilizes a key feature of the isomorph theory (the invariance
of reduced forces), the expectation is that the method is
applicable for the many systems where the isomorph theory
has been found to work well. This includes systems where
the interactions are dominated by van der Waals or weakly
ionic and dipolar interactions, as well as metals, but
excludes systems dominated by directional bonds or strong
Coulomb forces [17]. An open question is why does the
method trace out paths of invariant reduced diffusion
coefficient at low densities (e.g., p = 0.2 in the single
component LJ system, Fig. 4)? On the one hand, this is not
explained by the isomorph theory since the structure is not
invariant, on the other hand it is hardly a coincidence.
Investigating this question may lead to new insights into the
physics of the low-density fluid state.

The author thanks Jeppe Dyre, Nicholas Bailey, and
Lorenzo Costigliola for fruitful discussions. This work was
supported by a research Grant (No. 00023189) from
VILLUM FONDEN.
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