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Ultracold molecules undergo “sticky collisions” that result in loss even for chemically nonreactive mole-
cules. Sticking times can be enhanced by orders of magnitude by interactions that lead to nonconservation
of nuclear spin or total angular momentum.We present a quantitative theory of the required strength of such
symmetry-breaking interactions based on classical simulation of collision complexes. We find static
electric fields as small as 10 V=cm can lead to nonconservation of angular momentum, while we find
nuclear spin is conserved during collisions. We also compute loss of collision complexes due to
spontaneous emission and absorption of black-body radiation, which are found to be slow.
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Ultracold molecules are promising for the realization of
quantum simulation with tunable anisotropic long-range
interactions [1–4], quantum computation [5–8], preci-
sion measurement [9,10], and the exploration of chemi-
stry in a coherent quantum mechanical regime [11–15].
Unfortunately, the realization of these prospects has been
hampered by universal collisional losses that occur in
short-range encounters between molecules. These colli-
sional losses limit the lifetime of ultracold molecular
gases [12,16–19], limit our ability to collisionally cool
molecules to high phase-space densities [20–24], and
spoil Feshbach resonances that could otherwise form a
control knob to tune interactions [25–28]. Initially, colli-
sional losses were attributed to chemical reactions
[12,29], but similar loss has been observed for non-
reactive species [16–19], and therefore it is not fully
understood what causes or how one might eliminate
collisional loss.
Pioneering work by Mayle et al. [30,31] has proposed

that collisions between ultracold molecules might be
“sticky.” Collision complexes have a high density of states,
yet at ultracold temperatures can only dissociate in a single
scattering channel. The idea put forward is that the collision
complexes will chaotically explore available phase space,
leading to excessively long sticking times determined by
the density of states through Rice-Ramsperger-Kassel-
Marcus (RRKM) theory. During these sticky collisions
the molecules are vulnerable to collisions with a third body
[30–32] or photoexcitation by the trapping laser [33]. This
Letter has shaped the way the field thinks about collisional
loss [34–37], although the debate is not settled on even the
order of magnitudes of sticking times [38], nor on what
physical loss processes might occur during that time.
Some of the present authors have proposed a theoretical

framework to compute the density of states of ultracold
collision complexes [32], and the rate of loss by photo-
excitation of these complexes by the trapping laser [33].

These predictions were later confirmed quantitatively by
two independent experiments using reactive KRb mole-
cules [39] and nonreactive RbCs [40]. These experiments
used modulated optical dipole traps, which maintain a time-
averaged trapping potential while the dark time, during
which the modulated trap is off, can exceed the collision
complex’s sticking time. This reduced photoexcitation loss
even though the loss rate is saturated with light intensity
when the trap light is on. Subsequent experiments on NaK
and NaRb molecules, however, could not observe such
suppression of collisional loss in a modulated trap [41], nor
could collisional loss be eliminated by trapping the
molecules in a repulsive box potential [42]. These obser-
vations remain unexplained, and form the main motivation
for the present study.
It has been speculated that the sticking time could be

enhanced by orders of magnitude by symmetry breaking
that leads to the nonconservation of otherwise conserved
quantum numbers, as this would drastically increase the
effective phase-space volume that collision complexes
explore ergodically. In particular, total angular momentum
is strictly conserved only in the absence of external fields.
Using the methods of Ref. [32] one can compute sticking
times in the two limiting cases that total angular momentum
is either strictly conserved or completely scrambled, but it
is unclear at what external field strengths the transition
between these limits occurs. Similarly, there are hints that
nuclear spin degrees of freedom do not participate in the
collision dynamics [14], but it is unclear for which
molecules and under which conditions this is the case.
Another possible explanation is that there exist additional
loss mechanisms that limit the lifetime of collision com-
plexes in the dark. It is, however, difficult to conclusively
rule out all possible loss mechanisms.
In this Letter, we develop classical simulations of ultra-

cold collision complexes. First, we show the simulated
dynamics is consistent with chaotic dynamics and RRKM
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theory. Next, we study the effect of a finite electric field.
Because of the dynamics of a collision complex, its dipole
moment fluctuates rapidly. The autocorrelation function of
these fluctuations determines the coupling between differ-
ent total-angular-momentum states. We find static electric
fields as small as 10 V=cm can lead to nonconservation of
angular momentum. We also apply the formalism to
nuclear spin couplings, and find nuclear spin states are
conserved during the sticking time in NaKþ NaK and
RbCsþ RbCs collisions. Finally, we apply the dipole
autocorrelation function to compute loss of collision com-
plexes by spontaneous emission and absorption of black-
body radiation. Both processes result in slow loss.
We perform classical simulations of the sticky ultra-

cold collision complexes NaKþ K, NaKþ NaK, and
RbCsþ RbCs, as illustrated in Fig. 1(a) and explained
in detail in Supplemental Material [43]. In short, we model
the interactions using diatomics-in-molecules [43,79],
which describes spin-dependent pairwise interactions
between all atoms. The trajectories were initialized with
molecules at their equilibrium bond length, for random
orientations, and without vibrational or rotational kinetic
energy, ensuring zero total angular momentum. The radial
kinetic energy was chosen such that the total energy
equaled the lowest dissociation limit. After a short thermal-
ization time, we then simulated classical trajectories using a
fourth-order symplectic propagator, which ensures con-
servation of phase-space volume and long-term numerical
stability.
First, we investigate whether the simulated dynamics of

the collision complexes is consistent with RRKM theory, as
has been proposed by Mayle et al. [30,31]. The central
result in RRKM theory is that the time spent in a phase-
space region is given by

τRRKMS ¼ 2πℏρS
NS

; ð1Þ

where ρS is the density of states in that region, andNS is the
number of states at the boundary, which is known as the
dividing surface. Applied to ultracold collisions where at
dissociation there is only a single open channel NS ¼ 1,
this yields the sticking time τRRKMstick ¼ 2πℏρS. Furthermore,
there exists a clear separation of length scales of the
complex, where the density of states ρS is supported by
intermolecular separations R shorter than tens of Bohr radii
[43], and the length scale of long-range interactions of
hundreds of Bohr radii. Hence, one can unambiguously
define a suitable dividing surface at intermediate R.
When simulating the dynamics classically, however, at

zero collision energy NS → 0, not NS → 1, as the dividing
surface is moved outward. Hence, one cannot converge the
calculation by moving the dividing surface outward.
Instead, we pick a dividing surface at a convenient distance
RS ≃ 20 a0. We then observe that the mean time elapsed

before the trajectory crosses the dividing surface τtrajS
becomes consistent with Eq. (1) if we account for the
larger number of states NS at the dividing surface, which is
computed independently as a phase space integral. By
extrapolating to the physical case where N ¼ 1, we recover
sticking times τtrajstick ¼ NSτ

traj
S , in agreement with RRKM

predictions based on density of states computed independ-
ently using phase-space integrals, see Fig. 1(b). This
analysis provides support for the physical picture proposed
by Mayle et al. [30,31] of classically chaotic dynamics,
as subsequently assumed in further work [34–37].

(a)

(b)

FIG. 1. Classical simulations of ultracold sticky collisions.
Panel (a) shows schematically the classical simulations on a
simple but realistic high-dimensional potential energy surface.
After a typical time, τtrajS , the classical trajectory crosses the
dividing surface R ¼ RS. At this surface, NS ≫ 1 collision
channels are energetically accessible. We estimate the physical
sticking time in ultracold collisions, where only a single collision
channel is open, by correcting as τtrajstick ¼ NSτ

traj
S . Panel (b) dem-

onstrates quantitatively the steep dependence of τtrajS and NS on
the position of the dividing surface RS and that the sticking time
estimated from classical trajectories τtrajstick is independent of RS

and in quantitative agreement with sticking times obtained from
phase-space integrals τRRKMstick .
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Our approach has the remarkable advantage that we can
study sticking times that are orders of magnitude larger than
the time simulated.
Based on the above analysis, we caution sticking times

cannot be extracted directly from classical simulations of
sticking dynamics without accounting for the effective
number of states at the dividing surface [80,81], which
is furthermore impacted by inclusion of a finite collision
energy, zero-point energy, or the numerically imperfect
conservation of energy [43].
We now turn our attention to the nonconservation of

quantum numbers by a symmetry-breaking perturbation.
Following Feingold and Peres [82], transition moments of
Â between energy eigenstates in a classically chaotic
system can be related to fluctuations of the classical
observable AðtÞ in a microcanonical ensemble. These
fluctuations are quantified by the autocorrelation function
(ACF) and the coupling between energy eigenstates is
given by

jhijÂjjij2 ¼ SAðE;ωijÞ
ℏρ

; ð2Þ

where

SAðE;ωÞ ¼
1

2π

Z
∞

−∞
hAð0ÞAðt0Þi expðiωt0Þdt0 ð3Þ

is the Fourier transform of the coupling’s ACF that is
computed classically, h� � �i indicates a microcanonical
ensemble average, and ℏωij is the energy difference
between energy level i and j. We use the static limit
SAðE;ωÞ ≈ SAðE; 0Þ because the typical transition fre-
quency, in the order of 1=hρ, is much smaller than
1=τACF, where τACF is a typical timescale for the decay
of the ACF. The static limit SAðE; 0Þ is simply the time
integral of the ACF, and roughly in the order of hA2iτACF.
The mean magnitude of the coupling between energy
eigenstates is then in the order of A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τACF=τstick

p
, which

is hand-wavingly interpreted as the magnitude of the bare
coupling A that is dynamically reduced if fluctuations of A
are fast compared to the sticking time.
We specialize the discussion to coupling between J and

J0 ¼ J � 1 states by the Stark interaction Â ¼ −d̂ · E
between the complex’ dipole moment d and an external
static electric field E. We simulated dipole ACFs for
NaKþ K, NaKþ NaK, and RbCsþ RbCs collision com-
plexes in zero field, see Supplemental Material for details
[43]. The resulting ACFs are shown in Fig. 2.
Following Leitner et al. [83], we characterize the

transition from J conservation to nonconservation using
a dimensionless parameter,

Ω ¼ ðρ0 þ ρ1ÞhĤ2
0;1i1=2; ð4Þ

i.e., the root-mean-square coupling between J ¼ 0 and 1 in
units of the mean level spacing. At Ω ≪ 1 angular
momentum is conserved and the sticking time is set by
the J ¼ 0 density of states, whereas at Ω ≫ 1 angular
momentum is scrambled and the sticking time determined
by the total density of states. At intermediate Ω, we
calculate the distribution of time delays as described in
detail in Supplemental Material [43]. This distribution is
then fit with an effective density of states ρeff that is
intermediate between these two extremes. As shown in
Fig. 3, we find the effective density of states increases from
ρJ¼0 at low fields, and approaches the total density of states
at high field, as expected. The transition occurs around
Ω ¼ 1, where the Stark coupling is comparable to the level
spacing. The electric field at which this occurs in different
systems depends strongly on the sticking time, which scales

FIG. 2. Autocorrelation functions (ACFs). Dipole and spheri-
cal-harmonic ACFs for NaKþ K, NaKþ NaK, and RbCsþ
RbCs sticky collisions.
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FIG. 3. Effective density of states as determined by fitting the
distribution of sticking times, see Supplemental Material [43].
The dimensionless parameterΩ represents the Stark interaction in
units of the level spacing, and hence effectively represents the
electric field. The total density of states increases as ð1þ JmaxÞ2
for large Ω, but the transition to J conservation consistently
occurs around Ω ¼ 1 irrespective of the value of Jmax.
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steeply with the masses and the number of degrees of
freedom. For NaKþ K this amounts to an electric field of
∼10 kV=cm, whereas for sticky collisions between typical
diatomic polar molecules electric fields in the order of
∼10 V=cm break total angular momentum conservation, as
summarized in Table I.
In Supplemental Material [43] we consider three alter-

native approaches to determine the transition to J non-
conservation. First, we use a random matrix theory
description of the short-range Hamiltonian, where we
observe the level-spacing statistics as a function of the
electric field. With increasing field strength, we observe a
transition from Poisson to Wigner-Dyson statistics roughly
around Ω ¼ 1, consistent with the above analysis. Second,
we employ the framework of Ref. [37] to use this random
matrix theory description to compute a collisional loss rate.
We set the short-range loss Γ such that ΓρJ¼0 ≪ 1, which
results in a small collisional loss rate. As we apply an
external electric field, the effective density of states
increases and a transition can be observed in the collisional
loss rate as Γρeff ≈ 1. Also this transition occurs roughly
around Ω ¼ 1. Finally, we directly simulated the classical
dynamics in an external field. While J may no longer be
conserved during the complex’ sticking time, it may be
conserved during the short durations we can actually
simulate. Hence, our approach is to record the classical
total angular momentum JðtÞ during the simulation, and fit
to J ∝

ffiffi
t

p
, consistent with diffusion in total angular

momentum. We then solve for the electric field strength
at which JðtÞ diffuses by one quantum during the sticking
time, which is once again roughly consistent with Ω ¼ 1
seen in the other approaches.
The predicted electric field strengths can be tested in

experiments, and are consistent with observations so far. In
the RbCs experiment of Ref. [40], which yielded sticking
times consistent with angular momentum conservation, an
upper limit to the electric field is 7 V=cm [84]. Similarly, in
the KRb experiment of Ref. [39], a static field of 17 V=cm
was present, which should not break angular momentum
conservation given the sticking time is shortened by 3
orders of magnitude due to chemical reactions.
We emphasize that we have here described the effect of

a static electric field on the short-range physics. This is

complimentary to a recent study of the effect of external
fields on the long-range physics [36]. The effects on both
the long-range and short-range physics can be described in
a unified manner [34,37].
Having calculated the dipole autocorrelation function we

are also in a position to discuss absorption or emission of
far IR radiation by collision complexes. Figure 4 shows the
absorption spectrum of black-body radiation at 293 K, and
the spectrum of spontaneous emission. The rates of both
processes are on the order of 0.1 s−1, see Table I, and can be
ruled out on the timescale of sticky collisions.
Finally, we apply the formalism developed here to the

conservation of the nuclear spin state during a collision.
For simplicity, we limit the discussion to the strongest
hyperfine interaction. For RbCs this is the quadrupole
coupling of the Rb nuclear spin i ¼ 3=2 to the electric
field gradient. Apart from constants, this takes the form
½½î ⊗ î�ð2Þ ⊗ Yð2Þðr̂Þ�ð0Þ, where î is a nuclear spin operator,
½Â ⊗ B̂�ðkÞ is a rank-k tensor product, and Yð2Þðr̂Þ is a tensor
of spherical harmonics depending on the polar angles of the

TABLE I. Summary of numerical results. The static limits of the Fourier transform of the dipole and spherical
harmonic ACFs, Sdð0; 0Þ and SY2

ð0; 0Þ, are listed. From this we determine the electric field around which the
transition to nonconservation of total angular momentum occurs, EΩ¼1, and find Ωnucl:spin ≪ 1 indicating nuclear
spin is conserved in sticky collisions. We also list the rates of spontaneous emission and absorption of black-body
radiation. These results are subject to the ambiguity in the precise position of the transition as well as the uncertainty
in the available interaction potentials, see Supplemental Material [43].

System Sdð0; 0Þ (Debye2 ps) EΩ¼1 SY2
ð0; 0Þ (fs) Ωnucl:spin Γspont (s−1) Γblack body (s−1)

NaKþ K 1.2 14.8 kV=cm 0.015 0.082
NaKþ NaK 3.7 48 V=cm 28 0.003 0.049 0.26
RbCsþ RbCs 6.1 3.7 V=cm 71 0.06 0.0023 0.030

FIG. 4. Spectrum of spontaneous emission and absorption of
black-body radiation at 293 K. The integrated intensity yields the
loss rate, which is in the order of 0.1 s−1 and can essentially be
excluded during sticky collisions, see Table I.
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molecular axis r̂. As with the dipole moment before, the
dynamics of the collision complex rapidly reorients the
molecular axis, resulting in a fluctuating coupling for
the nuclear spin. The fluctuations are characterized by
the ACF of the spherical harmonics, which determines the
coupling from an initial spin state, say mi ¼ 3=2, to m0

i ¼
1=2 and −1=2. The jΔmij ≤ 2 selection rule results from
the second-rank coupling, which also changes the mechani-
cal angular momentum from J ¼ 0 to J0 ¼ 2. Numerical
results for the relevant ACFs are shown in Fig. 2. From our
simulations shown in Fig. 3 we can then immediately
conclude nuclear spin is conserved for Ω ≪ 1. For RbCs,
using hyperfine coupling constants form the literature and
the simulated autocorrelation function of the spherical
harmonics, we findΩ ≈ 0.06 such that nuclear spin remains
conserved. A similar analysis accounting for the K nuclear
quadrupole coupling in NaKþ NaK complexes yields
Ω ¼ 0.003, see Table I. This is in qualitative agreement
with experimental sticking times that match theory assum-
ing spin conservation [39,40], and consistent with spin-
conservation in KRbþ KRb collisions [14], although
recent results in RbCs collisions suggest the sticking time
might be hyperfine state dependent [85]. The approach
developed here opens the door to subsequent studies
accounting for all hyperfine couplings, their interaction-
induced variations [86], and to explore the case of nonzero
electronic spin where the fine-structure couplings may be
orders of magnitude larger.
In conclusion, we have developed classical simulations

of sticky collisions between ultracold molecules. The
dynamics is consistent with RRKM theory and the sticking
times predicted previously. We show how the nonconser-
vation of nearly good quantum numbers (such as total
angular momentum) can be calculated using the autocor-
relation function of a perturbation (such as coupling to an E
field). Static electric fields as small as 10 V=cm are found
to lead to nonconservation of total angular momentum. The
same dipole ACF can be used to study loss of collision
complexes by spontaneous emission or absorption of black-
body radiation, which we conclude is slow. In addition, we
show how the same method may be applied to the non-
conservation of nuclear spin, suggesting the nuclear spin is
conserved in sticky collisions, tentatively in agreement with
observations. The framework presented here creates new
possibilities to quantitatively study loss processes in ultra-
cold collision complexes. By understanding the sticking
times and loss processes quantitatively, we can hope to
eliminate collisional loss of ultracold molecules which will
aid the creation of long-lived molecular quantum gases,
collisional cooling, and support Feshbach resonances that
enable control of short-range interactions. The method
employed here is quite general may also be used to
efficiently simulate rare events in other areas of physics.
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