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When atoms are excited to high-lying Rydberg states they interact strongly with dipolar forces. The
resulting state-dependent level shifts allow us to study many-body systems displaying intriguing
nonequilibrium phenomena, such as constrained spin systems, and are at the heart of numerous
technological applications, e.g., in quantum simulation and computation platforms. Here, we show that
these interactions also have a significant impact on dissipative effects caused by the inevitable coupling of
Rydberg atoms to the surrounding electromagnetic field. We demonstrate that their presence modifies the
frequency of the photons emitted from the Rydberg atoms, making it dependent on the local neighborhood
of the emitting atom. Interactions among Rydberg atoms thus turn spontaneous emission into a many-body
process which manifests, in a thermodynamically consistent Markovian setting, in the emergence of
collective jump operators in the quantum master equation governing the dynamics. We discuss how this
collective dissipation—stemming from a mechanism different from the much studied superradiance and
subradiance—accelerates decoherence and affects dissipative phase transitions in Rydberg ensembles.
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Introduction.—Rydberg gases allow us to explore the
interplay between strong interactions, external driving
imposed by external fields, and dissipation. This has led
to a whole host of theoretical and experimental works,
investigating, for example, dissipative phase transitions, the
dynamics of epidemic spreading and critical phenomena
[1–6], as well as the dissipative preparation of correlated
quantum states [7–11]. Dissipation typically manifests
through two processes, which are decoherence (of quantum
superposition) and radiative decay [12–15]. Decoherence
leads to a gradual decay of quantum superposition that is
formed between the high-lying Rydberg state and the
atomic ground state from which the Rydberg state is
excited. This process can be controlled by the phase
coherence of the excitation laser and by the temperature
of the Rydberg gas. It is also influenced by strong
interactions among Rydberg atoms [15–18], which can
be exploited for designing single photon absorbers and
emitters [19–23]. Radiative decay, on the other hand, is a
ubiquitous process which is caused by the coupling of the
atomic dipole to the electromagnetic field. This results in
the spontaneous emission of a photon from a Rydberg
excited atom and a concomitant quantum jump from
the Rydberg state to a low-lying electronic state, e.g.,
the ground state.
When considering ensembles of atoms, their coupling to

the radiation field [24,25] can lead to collective behavior as
pointed out byDicke in his seminal work [26]. This emerges
when the typical distance between the atoms becomes
comparable to the wavelength of the emitted radiation.

In this case it is no longer possible to trace an emitted
photon back to a specific atom. This loss of which-way
information results in quantum interference that ultimately
promotes this dissipation froma single-atom to amany-atom
process. A striking consequence of this is the appearance of
subradiant collective states whose lifetime may exceed that
of single atoms by orders of magnitude [27–34]. In typical
experiments, Rydberg atoms are separated by several
micrometers. This is significantly larger than thewavelength
for transitions to low-lying states, which is on the order of a
hundred nanometers. Radiative decay is therefore here not
expected to acquire a collective character and is typically
modeled as a single-atom process. Note, that superradiance
and subradiance can nevertheless occur and have been
investigated in Rydberg gases [35–38]. However, in these
studies the considered radiative transitions take place among
Rydberg states and the associated wavelengths are on the
order of millimeters to centimeters [39].
In this Letter, we demonstrate that strong interactions in

Rydberg gases can nevertheless be responsible for another
mechanism underlying collective dissipation. The funda-
mental observation is that the frequency of a photon that is
spontaneously emitted from a decaying Rydberg atom
depends on the state of the neighborhood of the emitting
atom [cf. Figs. 1(a) and 1(b)]. We unveil this effect and
analyze its consequences in a simple setting, permitting for
the exact derivation of the Markovian quantum master
equation of the Rydberg gas which, as we discuss, features
many-body jump operators. We show that the ensuing
dissipation accelerates decoherence and that it further
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impacts on nonequilibrium phase transitions occurring in
the stationary state of driven Rydberg gases. This collective
state-dependent decay mechanism should be observable in
(precision) experiments and is important for a thermody-
namically consistent and faithful modeling of noise and
error sources in quantum computers and simulators based
on Rydberg atoms.
Interacting Rydberg gas in an electromagnetic field.—

To illustrate the abovementioned effect we focus on a
simple model of a Rydberg gas. The atoms are placed on
the sites of a d-dimensional hypercubic lattice, labeled by
the position vectors rk. Each atom is effectively described
as a two-level (spin) system [see sketch in Fig. 1(a)], with
ground state j↓i and Rydberg state j↑i separated by an
energy difference ωa. We also assume for simplicity that
the atoms only interact with their nearest neighbors with
coupling strength V [see Fig. 1(a)]. This is accounted for by
the Hamiltonian,

Hatom ¼ ωa

X

k

nk þ
V
2

X

jk−mj¼1

nknm; ð1Þ

where nk ¼ j↑kih↑kj is the projector on the Rydberg state
of the atom located at position rk.
The atoms are immersed in an electromagnetic radiation

field, described by the Hamiltonian,

Hrad ¼
X

q;s

ωqa
†
qsaqs: ð2Þ

Here, aqs and a†qs are the annihilation and creation
operators of a photon mode with momentum q, polarization
s, and energy ωq ¼ cjqj (c is the speed of light). The dipole
coupling between the atoms and the electromagnetic field
modes is determined by the interaction Hamiltonian:

Hint ¼
X

k;q;s

ðgqsa†qseiq·rk þ H:c:Þðσþk þ σ−k Þ: ð3Þ

Here, σþk ¼ ðσ−k Þ† ¼ j↑kih↓kj is the atomic raising operator
for the atom located at rk. The coupling constant gqs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðωq=2ϵ0VÞ
p ðd · εsÞ depends on the atomic transition
dipole moment d, the unit polarization vector εs, the
vacuum permittivity ϵ0, and the quantization volume V.
Note that a variant of this model was considered also in
Refs. [40,41], to study superradiance in the presence of
interactions.
Our aim is to integrate out the electromagnetic field

modes in order to obtain a quantum master equation that
describes the open quantum dynamics of the atomic
ensemble. We follow a procedure analogous to the usual
one developed for the description of noninteracting atoms
immersed in the radiation field (see, e.g., Refs. [24,25]).
First, we rotate into the interaction picture with respect to
the atom and radiation degrees of freedom via the unitary
transformation U ¼ exp ½itðHatom þHradÞ�. Because of the
Rydberg interactions, atomic operators acquire an operator-
valued phase which depends on the neighborhood of the
considered atom, e.g.,

Uσþk U
† ¼ σþk expðiωatÞ exp

�
iVt

X2d

ξ¼0

ξPξ
k

�
: ð4Þ

Here, ξ ∈ f0; 1;…; 2dg and Pξ
k is the projector on the

subspace containing exactly ξ excited atoms in the neigh-
borhood of atom k [see Fig. 1(c)]. Similar structures
emerge, for example, in the so-called PXP model or the
quantum hard-squares model, which describe strongly
interacting Rydberg gases [42,43].
As derived in the Supplemental Material [44], after the

Born-Markov and rotating-wave approximations, the quan-
tum master equation reads (in the original lab frame):

_ρ¼−i½Hatom;ρ�þγ
X

k

�X2d

ξ¼0

Pξ
kσ

−
k ρσ

þ
k P

ξ
k−

1

2
fnk;ρg

�
; ð5Þ

FIG. 1. Rydberg atoms and collective dissipation. (a) One-
dimensional lattice gas of interacting atoms resonantly driven by
a laser with Rabi frequency Ω. Neighboring atoms interact with
interaction strength V when simultaneously excited to their
Rydberg state j↑i. Rydberg states decay under the emission of
a photon to the ground state j↓i at rate γ. (b) Decay in a system of
two atoms. When the interaction strength V is larger than the
natural linewidth γ it is possible to discern whether a decaying
Rydberg atom had an excited neighboring atom or not. This
information can be inferred from the frequency of the emitted
photon: ν1, excited neighboring atom; ν0, neighboring atom in the
ground state. (c) Graphical representation of projectors Pξ

k which
project on the subspace where the neighborhood of a reference
atom (empty circle) contains ξ excited atoms (in two dimensions).
Because of the strong nearest-neighbor interaction an emitted
photon carries information on the subspace from which the
emission took place, leading to collective jump operators.
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where γ ¼ ðjdj2ω3
aÞ=ð3πc3ϵ0Þ is the single-atom decay rate.

Note that for the rotating-wave approximation to be valid,
the nearest-neighbor interaction strength V must be much
larger than γ. Moreover, we have assumed that ωa ≫ V,
which allows us to neglect corrections to the spontaneous
emission rate originating from the interaction shift of the
atomic levels in the presence of neighboring excitations,
which are of order ωa=V. Finally, note that we consider the
separation between neighboring atoms to be much larger
than the transition wavelength λ ¼ 2πc=ωa. This allows us
to neglect the effect of coherent dipole-dipole interactions
and collective dissipation (i.e., superradiance and subra-
diance) induced by the radiation field. These conditions are
typically met in current Rydberg quantum simulators using
optical tweezer arrays. For example, in the experiment
reported in Ref. [52], one finds for rubidium-87 atoms
(principal quantum number n ¼ 75, lattice constant 10 μm,
C6 coefficient C6 ¼ ℏ × 2π × 1.947 GHz μm6): ωa ≈
1015 Hz, V ¼ ℏ × 2π × 2 × 106 Hz, and γ ¼ 6 × 103 Hz.
From the master equation (5) one can read off that an

atom at position rk has 2dþ 1 different decay channels,
where d is the dimension of the hypercubic lattice on which
the atoms are positioned. Each of these channels, which is
represented by the collective many-body jump operator
Lc
k ¼

ffiffiffi
γ

p
Pξ
kσ

−
k , corresponds to a different number of

excited atoms ξ in the atom’s neighborhood, and can be
associated to a different frequency of the emitted photons,
νξ ¼ ωa þ ξV [see Fig. 1(b)]. The many-body operators Lc

k
are also consistent with thermodynamic considerations.
While we treat the background radiation field as an
effective zero-temperature reservoir here, which is well
justified since the atomic energy scale ωa is typically much
larger than the temperatures encountered in quantum-
optical experiments, it is in principle straightforward to
extend our approach to thermal environments with finite
inverse temperature β. One would then expect the Gibbs
state ∝ exp½−βðHatomÞ� to be a stationary state of the
corresponding master equation. This condition, which is
indeed met in our many-body approach, is also both
sufficient and necessary for consistency with the second
law of thermodynamics, at least in situations where the
standard weak-coupling, Born-Markov and rotating-wave
approximations are applicable [53,54]. On the other hand, a
simpler model in which each atom would feature a single
decay channel, represented by a jump operator Ls

k ¼
ffiffiffi
γ

p
σ−k

that does not account for interactions between atoms,
would lead to a nonthermal stationary state at finite
temperatures and thus, in general, to violations of the
second law; see also Ref. [55].
Decoherence dynamics.—In order to analyze the

impact of collective jump operators versus the convention-
ally employed single-atom decay, we consider an
atomic ensemble that is initially prepared in the state
jΨ0i ¼ ð1=2ÞN=2 ⊗k ½j↓ik þ j↑ik�. Experimentally, such a
product state can be prepared in an interacting system by a

strong laser pulse whose Rabi frequency Ω is much larger
than the interaction strength V. We study the evolution of
the average single-atom (Rydberg state–ground state)
coherence, which can be measured experimentally [56],
and which we decompose as

XðtÞ ¼ 1

N

X

k

hσ−k iðtÞ ¼
1

N

X

k;ξ

hPξ
kσ

−
k iðtÞ ¼

X

ξ

XξðtÞ:

The evolution equation of the expectation values Xξ is
readily obtained [44]. For the collective dissipation,
described by Eq. (5), we obtain

_Xc
ξ ¼ −

�
iωa þ

γ

2

�
Xc
ξ − ξðγ þ iVÞXc

ξ;

while for the conventionally employed single-atom decay,

_Xs
ξ ¼ −

�
iωa þ

γ

2

�
Xs
ξ − ξðγ þ iVÞXs

ξ þ γðξþ 1ÞXs
ξþ1;

where we use the convention Xs
2dþ1 ¼ 0. These equations

can be exactly integrated with initial condition Xs=c
ξ ð0Þ ¼

ð1=NÞPkhΨ0jPξ
kσ

−
k jΨ0i ¼ 2−2d−1ð2dξ Þ [44]. Here, we

focus on the short-time behavior, which already displays
a qualitative difference between collective dissipation and
single-body decay:

jXsðtÞj ≈ 1

2
−
1

4
γtþ γ2 − 2dV2

16
t2;

jXcðtÞj ≈ 1

2
−
2dþ 1

4
γtþ ½ð2dþ 1Þ2 þ 2d�γ2 − 2dV2

16
t2:

For single-atom decay the initial drop of the coherence
from its initial value 1=2 is independent of the system
geometry. The first collective contribution in jXsðtÞj
emerges from the interaction of an atom with its neighbors,
which involves the interaction strength V and the co-
ordination number 2d and is thus not of dissipative nature.
In contrast, for the case of collective decay, already the
leading term is dependent on the coordination number. This
shows that collective dissipation notably accelerates the
decoherence process as compared to the single-atom case.
We briefly discuss the effect of collective dissipation on
other coherence observables and on quantum correlations
in Ref. [44].
This effect should be even more dramatic in a continuous

gas. Here, the initial rate of decoherence is proportional to
the number of atoms Nint, with which a given reference
atom interacts strongly enough so that the concomitant
energy shift exceeds the single-atom decay rate γ. For a
homogeneous atomic gas with density ϱ0 and Rydberg
states that are interacting with a van der Waals potential
[39], VvdWðrÞ ¼ C6=r6, this number of atoms scales as
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Nint ∼ ϱ0ðjC6j=γÞd=6 and thus the collective decoherence
rate should scale as γc ∼ γϱ0ðC6=γÞd=6.
Stationary state of a laser-driven Rydberg gas.—The

stationary state of the dynamics considered so far is the one
devoid of any Rydberg excitation, since the system is only
coupled with an effectively zero-temperature reservoir. In
the following, we are interested in exploring the stationary
state that emerges when (collective) radiative decay com-
petes with external laser driving. To include the excitation
laser (with frequency ωl, Rabi frequency Ω, and detuning
Δ ¼ ωa − ωl) we consider master equation (5) with the
modified atomic Hamiltonian:

Hatom → Hatom þ
X

k

½Ωσxk þ ðΔ − ωaÞnk�: ð6Þ

This is actually an ad hoc construction, given that the
master equation has to be derived using the modified
Hamiltonian. However, this approach is currently the
standard one for incorporating coherent laser excitation,
interaction, and dissipation in interacting Rydberg gases
[4,12,15,57]. Our expectation at this point is that its
analysis will reveal which quantitative and qualitative
changes to the stationary state—caused by collective jump
operators—one may expect.
We first perform a mean field analysis. Following the

treatment of Ref. [2], this leads to the mean field equations
of motion:

_n ¼ Ωsy − γn;

_sx ¼ −Δsy −
γ

2
ð4dnþ 1Þsx − 2dVnsy;

_sy ¼ −Δsx −
γ

2
ð4dnþ 1Þsy þ 2dVnsx − Ωð4n − 2Þ: ð7Þ

Here, n ¼ hnki, sx ¼ hσkxi, and sy ¼ hσkyi, and translation
invariance is assumed throughout. A noteworthy aspect of
these equations is their dependence on the dimension d.
In the contribution due to interactions, the latter enters
through the combination 2dV, with 2d being the co-
ordination number of the d-dimensional hypercubic lattice.
Therefore, different dimensions simply lead to a rescaling
of the mean field interaction. This is not the case for the
collective decay which results in terms proportional to
γð4dnþ 1Þ, which does not amount to a simple rescaling
when changing dimensionality. This becomes visible in the
stationary state phase diagram displayed in Fig. 2. In the
main figure we show the number of stable stationary mean
field solutions. While for most parameters there is merely
one solution, there exists a region for which two stationary
solutions emerge. This bistability, extensively discussed in
the literature, e.g., in Refs. [2,4,58], is seen in the inset.
There we show the stationary Rydberg excitation density
ncss as obtained from the mean field equations (7) after
setting the time derivatives to zero and solving for n. From a

dynamical perspective bistability typically manifests in
intermittency of the quantum jump statistics [1,59,60].
The important aspect here is that the size and shape of this
region strongly depend on the dimensionality, which is not
the case when single-body decay is considered where one
can simply rescale the interaction strength.
To complement the mean field analysis we numerically

calculate the stationary state of a small one-dimensional
chain containing either N ¼ 4 or N ¼ 8 atoms.
Qualitatively, both single-body and collective decay yield
similar results, which are displayed in Fig. 3. For negative
detunings Δ—where the mean field analysis predicts bista-
ble behavior—there is, however, a substantial quantitative
difference. For example, the excitation density under col-
lective dissipation can exceed the one predicted by single-
atom decay by more than a factor 2. This indicates that the
bistable or metastable (in low dimensions) regions indeed
are located in different regions of the parameter space, as the
mean field result suggests. Note that these features persist in
the presence of weak laser phase noise [44].
Conclusions and future directions.—In this Letter, we

have studied the radiative decay of an interacting Rydberg
gas. We have considered a rather simplified scenario, in
which Rydberg atoms interact with nearest-neighbor inter-
action V, whose value exceeds that of the emission line-
width γ. Realistic interactions have a gradually decaying
tail and there will be distances in which the interaction
strength between the atoms becomes comparable with the
decay rate. Here it is no longer possible to perform a
rotating-wave approximation and the master equation
becomes explicitly time dependent. Moreover, it would
be interesting to include the laser driving systematically in

FIG. 2. Bistability region in the mean field phase diagram in the
presence of single-atom and collective decay. In the gray region
the stationary state of the mean field equations is unique. In the
colored region, whose shape depends on the dimension d, two
stationary solutions exist. The cusps culminate in critical points,
which are marked by crosses. The inset shows a cut of the
stationary state density through the bistability region, taken at
Ω ¼ 2.5γ. The red (blue) curves show the stationary Rydberg
excitation density ncss (nsss), where the superscript c (s) refers to
collective (single-atom) decay of collective (single-atom) decay.
Solid and dashed lines mark the two stationary solutions. We
have set dV ¼ 10γ. The mean field equations for ncss are in Eq. (7)
while those for nsss are given in Ref. [44].
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the derivation of the master equation for the atomic system,
e.g., by using the Floquet-Lindblad approach, which makes
it possible to accommodate strong periodic driving fields in
a thermodynamically consistent way [61]. For the sake of
simplicity, we have focused on an ad hoc approach in
this Letter, where the driving is incorporated only in the
unitary part of the master equation, as is currently standard
quantum optics.
In order to experimentally probe the impact of collective

effects it would be desirable to investigate strongly inter-
acting Rydberg lattice systems that allow us to observe
dissipative dynamics over many emission cycles. This
should be, for example, possible in trapped Rydberg ion
systems [62,63], which provide trapping of ground and
Rydberg states alike and also offer the opportunity to
continuously cool external degrees of freedom that may be
heated from spontaneous emission.
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