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Via a combination of analytical and numerical methods, we study electron-positron pair creation by the
electromagnetic field Aðt; rÞ ¼ ½fðct − xÞ þ fðctþ xÞ�ey of two colliding laser pulses. Employing a
generalized Wentzel-Kramers-Brillouin approach, we find that the pair creation rate along the symmetry
plane x ¼ 0 (where one would expect the maximum contribution) displays the same exponential
dependence as for a purely time-dependent electric field AðtÞ ¼ 2fðctÞey. The prefactor in front of this
exponential does also contain corrections due to focusing or defocusing effects induced by the spatially
inhomogeneous magnetic field. We compare our analytical results to numerical simulations using the
Dirac-Heisenberg-Wigner method and find good agreement.
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Introduction.—As one of the most striking and funda-
mental predictions of quantum electrodynamics (QED), the
vacuum should become unstable in the presence of strong
electric fields, leading to the spontaneous creation of
electron-positron pairs (“matter from light”) [1,2]. For a
constant electric field E, the pair-creation probability P
displays an exponential dependence (ℏ ¼ c ¼ 1)

P ∼ exp

�
−π

m2

qE

�
¼ exp

�
−π

ES

E

�
; ð1Þ

with the electron mass m and elementary charge q, which
can be combined to yield the Schwinger critical field
ES ¼ m2=q ≈ 1.3 × 1018 V=m. The above functional
dependence does not admit a Taylor expansion in q which
indicates that this Sauter-Schwinger effect (1) is a non-
perturbative phenomenon [3,4]. As a result, the correspond-
ing calculations can be quite nontrivial and our knowledge
beyond the case of constant fields is very limited [5,6]. For
slowly varying fields, we may apply the locally constant
field approximation by evaluating Eq. (1), together with its
generalization to additional magnetic fields, at each space-
time point [7,8]. However, this approximation has a limited
range of applicability and does not capture many important
effects, such as the dynamically assisted Sauter-Schwinger
effect [9–12].

From a fundamental point of view as well as in
anticipation of experimental initiatives aiming at ultrahigh
field strengths [13], it is important to better understand the
Sauter-Schwinger effect for nonconstant fields [14,15].
While there has been progress regarding fields which
depend on one coordinate (e.g., space x or time t [16,17],
or a light-cone variable t − x [18,19]), our understanding
of more complex field dependences, e.g., the interplay
between spatial and temporal variations, is still in its
infancy [20,21]. Furthermore, going from simple models
toward realistic field configurations requires the consid-
eration of transversal fields which are vacuum solutions of
the Maxwell equations. In the following, we venture a step
into this direction by employing a combination of analyti-
cal and numerical methods.
The model.—In order to treat a potentially realistic yet

simple field configuration, we consider the head-on
collision of two equal plane-wave laser pulses, see also
Ref. [22]

Aðt; rÞ ¼ ½fðt − xÞ þ fðtþ xÞ�ey: ð2Þ

For asymmetric collision scenarios, see, e.g., [23–27]. This
vector potential (2) is an even function of x, i.e., Ayðt; xÞ ¼
Ayðt;−xÞ such that ∂xAyðt; x ¼ 0Þ ¼ 0. Thus, along the
symmetry plane x ¼ 0, the electric field components Ey

add up while the magnetic fieldsBz of the two pulses cancel
each other. As a result, one would expect the maximum
contribution to pair creation there.
In the following, we assume that the typical frequency

scale ω describing the rate of change of the function fðtÞ is
subcritical, i.e., much smaller than the electron mass
ω ≪ m. The characteristic electric field strength E should
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also be subcritical E ≪ ES and the Keldysh parameter
(or inverse laser parameter 1=a0) [28–31]

γ ¼ mω

qE
¼ 1

a0
; ð3Þ

should be roughly of order unity such that qE ¼ OðωmÞ.
WKB approach.—In this limit, where the electron mass

m is the largest scale, we may employ semiclassical
methods such as world-line instantons [20,32–34] dis-
cussed in Sec. A of Supplemental Material [35] or the
Wentzel-Kramers-Brillouin (WKB) approach [51,52] used
here. For simplicity and because spin effects are not
expected to play a major role here, we start from the
Klein-Fock-Gordon equation

½ð∂μ þ iqAμÞð∂μ þ iqAμÞ −m2�ϕ ¼ 0: ð4Þ

Via the standard WKB ansatz [53]

ϕðt; x; y; zÞ ¼ αðt; xÞeiSðt;x;y;zÞ; ð5Þ

we split ϕ into a slowly varying amplitude α and a rapidly
oscillating phase eiS. More precisely, ∂μS and qAμ are large
quantities of the order of the electron mass OðmÞ while
∂μα ¼ OðωÞ is much smaller. Inserting this ansatz (5)
into Eq. (4), the leading order Oðm2Þ yields the eikonal
equation ð∂μSþ qAμÞð∂μSþ qAμÞ ¼ m2. In view of the
translational invariance in y and z, we make the separation
ansatz Sðt; x; y; zÞ ¼ kyyþ kzz� sðt; xÞ, where sðt; xÞ is
determined by the first-order equation

∂ts ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð∂xsÞ2 þ ðky þ qAyÞ2 þ k2z

q
: ð6Þ

We expect the maximum contribution to pair creation along
the symmetry plane x ¼ 0 where the electric field assumes
its maximum, i.e., from those wave packets staying close
to x ¼ 0 throughout the evolution, which implies zero
momentum in the x direction ∂xsjx¼0 ¼ 0 [54]. Thus (and
since Ay is an even function of x), we take sðt; xÞ to be an
even function of x for simplicity. After a Taylor expansion
around x ¼ 0

sðt; xÞ ¼ s0ðtÞ þ
x2

2
s2ðtÞ þOðx4Þ; ð7Þ

we find that the zeroth order s0ðtÞ, i.e., the eikonal along
x ¼ 0 is given by

∂ts0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ½ky þ qAyðt; x ¼ 0Þ�2 þ k2z

q
; ð8Þ

in complete analogy to a purely time-dependent field.
Focusing and defocusing effects.—As the next step,

let us study the impact of the curvature s2ðtÞ in Eq. (7).

Having determined the phase function S by the leading-
order Oðm2Þ contribution to Eq. (4), the subleading order
OðmωÞ determines the evolution of α via

ð∂μsÞ∂μα ¼ −
α

2
□s; ð9Þ

where the higher-order term □α ¼ Oðω2Þ has been
neglected. Along the symmetry plane x ¼ 0where ∂xs ¼ 0,
the spatial derivative ∂xα drops out and thus the left-hand
side of Eq. (9) is again the same as in a purely time-
dependent field.
The right-hand side of Eq. (9), on the other hand,

contains the additional term ∂
2
xsjx¼0 ¼ s2. This curvature

contribution can be obtained by inserting Eq. (7) into
Eq. (6) followed by a Taylor expansion

∂ts2 ¼
s22 þ ½ky þ qAy�q∂2xAyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ½ky þ qAy�2 þ k2z

q
������
x¼0

: ð10Þ

In analogy to Eq. (8), we obtain a closed ordinary differ-
ential equation for s2ðtÞ. In contrast to Eq. (8), however,
this is a nonlinear equation which can display (blowup)
singularities. Similar to caustics, they do not imply singu-
larities of the solutions ϕ to the original (linear) Klein-
Fock-Gordon equation (4), but indicate a breakdown of the
WKB ansatz (5), as also discussed in [55]. Fortunately, for
a large class of parameters including the cases of interest
here, such singularities do not occur—see also Sec. F in
Supplemental Material [35].
In order to provide an intuitive interpretation of the

above equation (10), we note that ky þ qAy is the mechani-
cal momentum in the y direction, proportional to the
velocity vy. As ∂xAy is the magnetic field Bz, the numerator
in Eq. (10) yields, apart from the nonlinearity s22, the
divergence ∂xFx of the Lorentz force. Thus, the curvature
s2 is associated with the focusing or defocusing effect of the
inhomogeneous magnetic field Bz.
Particle creation.—The simple WKB ansatz (5) is not

well suited for studying pair creation because this phe-
nomenon is associated with a mixing of positive and
negative frequency solutions, which is not captured by
the ansatz (5) for slowly varying α. Thus, we adapt a
generalized WKB ansatz, see also Refs. [55–57].
To this end, we define the phase-space pseudovector

φ ¼ ðϕ; _ϕÞT which allows us to cast the original second-
order equation (4) into a first-order form

∂tφ ¼
�

0 1

∂
2
x − μ2 0

�
· φ ¼ ½σþ þ σ−ð∂2x − μ2Þ� · φ; ð11Þ

where σ� are the Pauli ladder matrices and μðt; xÞ denotes
the effective mass μ2 ¼ m2 þ ðky þ qAyÞ2 þ k2z .
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In order to include pair creation, we generalize the
original WKB ansatz (5) via

φ ¼ αuþeþis þ βu−e−is; ð12Þ

where αðt; xÞ and βðt; xÞ are the Bogoliubov coefficients,
which are assumed to be slowly varying. The basis vectors
u�ðt; xÞ are eigenvectors of the matrix

½σþ − σ−ð½∂xs�2 þ μ2Þ� · u� ¼ �iχu�; ð13Þ

with eigenvalues �iχ where χðt; xÞ ¼ ∂tsðt; xÞ is given by
Eq. (6). Thus, after inserting the generalized ansatz (12)
into Eq. (11), the leading order again corresponds to the
eikonal equation (6).
For simplicity, we use the (non-normalized) eigenvectors

u� ¼ ð1;�iχÞT in the following. Since Ay and s are even
functions of x, the first x derivatives of s, μ, χ, and u�,
vanish along the symmetry plane x ¼ 0. Furthermore,
although the second x derivatives of μ, χ, u�, α, and β
do not vanish along the symmetry plane x ¼ 0, they scale
with Oðω2Þ. Thus, they are neglected within the next-to-
leading order OðmωÞ of the WKB approach, which yields
(along the symmetry plane x ¼ 0)

ð _αuþ þ α _uþ − iασ− · uþ∂2xsÞeþis

þ ð _βu− þ β _u− þ βσ− · u−∂2xsÞe−is ¼ 0: ð14Þ

Note that ∂2xs ¼ OðmωÞ is kept, in complete analogy to
Eq. (9). Projection with u⊥� ¼ ð�iχ; 1ÞT gives

2χ _αþ α□s ¼ βð□sÞe−2is;
2χ _β þ β□s ¼ αð□sÞeþ2is: ð15Þ

For the spatially homogeneous limit where ∂
2
xs ¼ 0, we

recover the well-known evolution equations for a purely
time-dependent field as □s → ̈s. For our colliding-
pulse scenario (2), these two evolution equations (15)
for α and β along the x ¼ 0 plane contain the same
exponents e�is as in the case of a purely time-dependent
field, the only difference are the prefactors □s which now
contain the additional ∂2xs term. The ̈s contribution ∂

2
t s ¼

∂tχ ¼ q _Ayðky þ qAyÞ=χ already present in a purely time-
dependent scenario contains the electric field Ey while the
additional ∂2xs contribution stems from the inhomogeneities
of the magnetic field Bz and describes the focusing or
defocusing effects discussed below.
As in the purely time-dependent scenario, we may

combine the two linear evolution equations (15) for
the Bogoliubov coefficients into a single Riccati equation
_R ¼ □sðeþ2is − R2e−2isÞ=ð2χÞ for their ratio R ¼ β=α.
Numerical simulations.—Let us compare our analytical

findings with numerical simulations. Numerical approaches

to the Sauter-Schwinger effect include direct integrations
of the Klein-Fock-Gordon or Dirac equations (see, e.g.,
[58–63]), a reformulation in terms of the Heisenberg-Wigner
formalism (see, e.g., [64–67]), quantum Monte Carlo meth-
ods (see, e.g., [68]), or numerical world-line instanton solvers
(see, e.g., [69,70]). Each of thesemethods has advantages and
drawbacks, but calculating an exponentially small pair-
creation probability P in a complex higher-dimensional field
configuration Aðt; rÞ is always challenging.
In order to reduce the computational complexity as much

as possible, we consider the Dirac equation in 2þ 1
dimensions, where we can use two-component spinors,
but still incorporate a transversal field (2). Employing
the Dirac-Heisenberg-Wigner formalism, the problem is
mapped onto a set of first-order transport equations
involving bilinear expectation values, see Sec. B in
Supplemental Material [35].
We consider the following field profile in Eq. (2)

fðtÞ ¼ Et
2
exp f−ω2t2g; ð16Þ

which displays the maximum electric field E at t ¼ 0 and
x ¼ 0. Since the vector potential vanishes asymptotically
fðt → �∞Þ ¼ 0 the wave number ky coincides with the
mechanical momentum at those times. This simplifies the
numerical analysis and will be relevant for the pair-creation
spectra discussed in Sec. D in Supplemental Material [35].
Numerical results.—In the following, we set the field

parameter E in Eq. (16) to E ¼ ES=3, i.e., the peak field
strength is one third of the Schwinger critical field. In this
case, we are already in the subcritical regime where the
pair-creation probability P is exponentially suppressed as
in Eq. (1), but the numbers are not too small for a reliable
numerical computation.
The computed mean particle numbers are plotted in

Fig. 1. The locally constant field approximation just
reflects the trivial space-time volume scaling with 1=ω2.

FIG. 1. Plot of the mean number of created particles as a
function of ω for the profile (16) with E ¼ ES=3. The yellow
circles denote the results of the Dirac-Heisenberg-Wigner for-
malism, the green diamonds correspond to the spatially homo-
geneous field approximation and the blue line displays the locally
constant field approximation.
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As expected, the results of the Dirac-Heisenberg-Wigner
formalism converge to that approximation for small ω, i.e.,
small Keldysh parameters (3), but start to show significant
deviations for Keldysh parameters of order unity, which is
the regime we are interested in.
Motivated by the above findings based on the WKB

approach, we also compared those results with the spatially
homogeneous field approximation: to this end, we calculated
the pair-creation probability P for a purely time-dependent
scenario AðtÞ ¼ 2fðctÞey corresponding to the field at the
symmetry plane x ¼ 0 [71–73]. While this is expected to
yield the correct pair-creation exponent, this scenario grossly
overestimates the prefactor because particles are now created
in the whole spatial volume. For the colliding pulses (2),
however, pair creation predominantly occurs in the vicinity
of the symmetry plane x ¼ 0where the electric field assumes
its maximum. In order to correct this overestimation, we
introduce a prefactor accounting for the finite extent (in the x
direction) of the effective pair-creation volume [74]. As a
natural and minimal assumption, we take this prefactor to
be proportional to 1=ω, i.e., the pulse width, where the
proportionality constant is fixed by demanding convergence
to the locally constant field approximation at small ω, see
also Refs. [76–80].
As we may observe in Fig. 1, this spatially homogeneous

field approximation still overestimates the pair-creation
probability a bit, but provides a much better description
than the locally constant field approximation. Even for
frequencies of the order of the electron mass, it reproduces
the qualitative behavior of the full Dirac-Heisenberg-
Wigner results, such as the peak of the particle number
at ω ¼ OðmÞ. The quantitative disagreement regarding the
height and location of the peaks can presumably be
explained by a threshold effect marking the transition from
the nonperturbative (Sauter-Schwinger) to the perturbative
(Breit-Wheeler [81]) regime at large ω (where the WKB
approach is expected to break down), see Sec. E in
Supplemental Material [35].
Focusing and defocusing corrections.—The spatially

homogeneous field approximation explained above does
only take into account the ̈s term in Eqs. (15), i.e., the electric
field Ey. In order to include the effects of the magnetic field
Bz, one should replace ̈s → □s, cf. Eqs. (15), which also
contains ∂2xs, i.e., the curvature s2 in Eq. (10). The effect of
this replacement can be studied by numerically solving the
set of ordinary differential equations (8), (10), and (15)
for the profile (16). As example parameters, we choose
E ¼ ES=3 as before and ω ¼ m=3, i.e., γ ¼ 1.
As shown in Sec. C of Supplemental Material [35],

the behavior of ̈s0ðtÞ and s2ðtÞ strongly depends on the
momentum ky. For ky ¼ �m, for example, the curvature
s2ðtÞ is quite close to ̈s0ðtÞ thus almost canceling each
other in the prefactor □s. For ky ¼ 0, this is not the case
as the curvature s2ðtÞ varies more slowly with time
than ̈s0ðtÞ.

We find that including the curvature term s2 reduces the
pair-creation probability, e.g., roughly by a factor of 2 for
the case ky ¼ 0 (which yields the dominant contribution),
see Sec. C in Supplemental Material [35]. Thus, including
the focusing and defocusing effects corrects the overesti-
mate of the spatially homogeneous field approximation and
brings the estimated pair-creation probability almost on top
of the value obtained by the Dirac-Heisenberg-Wigner
approach, see Sec. I in Supplemental Material [35].
However, more systematic investigations are needed to
assess the overall accuracy of this approach.
Conclusions.—As a prototypical example for a space-

time dependent and transversal field configuration (as a
vacuum solution to the Maxwell equations), we consider
the head-on collision of two plane-wave laser pulses. Via
the WKB approach, we study electron-positron pair cre-
ation in this background for subcritical fields E ≪ ES and
Keldysh parameters of order unity. Along the symmetry
(i.e., collision) plane, where we expect that dominant
contribution, we find that the pair-creation exponent is
the same as for a purely time-dependent electric field, only
the prefactor ̈s → □s does also include the impact of the
magnetic field, leading to focusing and defocusing effects.
This approximate mapping to a purely time-dependent

electric field allows us to employ the spatially homo-
geneous field approximation, which we compare to
numerical simulations using the Dirac-Heisenberg-
Wigner approach. We find that the spatially homogeneous
field approximation overestimates the pair-creation prob-
ability slightly, but provides a much better description than
the locally constant field approximation, see Fig. 1. It even
reproduces qualitative features of the pair-creation spectra,
see Sec. D in Supplemental Material [35].
Going beyond the spatially homogeneous field approxi-

mation, we may also study the impact of the magnetic field,
leading to focusing and defocusing effects. Along the
symmetry plane, this amounts to replacing ̈s by □s in
the evolution equations for the Bogoliubov coefficients,
which also contains the curvature term ∂

2
xs. For the cases

we studied, we found that this replacement tends to lower
the pair-creation probability, which brings it closer to the
results of the Dirac-Heisenberg-Wigner approach, see
Secs. C and I in Supplemental Material [35].
However, one might also imagine other scenarios. Note

that ̈s is a local function of Ay and _Ay, while the curvature
∂
2
xs is nonlocal, i.e., depends on whole history of the
evolution. This could be exploited in pulse-shape optimi-
zation schemes aimed at increasing the pair-creation
probability. As an intuitive picture, if the initial wave
packet of the fermionic quantum vacuum fluctuations is
focused onto the symmetry plane, where the electric field
assumes its maximum, it can react to this strong field (i.e.,
produce particles) much better than a wave packet which is
more delocalized. In summary, our findings motivate
further studies of this phenomenon.
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Experimental scenarios.—Finally, let us discuss poten-
tial experimental tests of our results [83,84]. Ultrastrong
optical laser foci have very small Keldysh parameters
γ ≪ 1 and should thus be treatable via the locally constant
field approximation. X-ray free electron lasers, on the other
hand, have much larger γ and could require going beyond
that approximation. Unfortunately, however, present-day
facilities do not reach the necessary field strengths E
yet [82]. An interesting idea to achieve this goal is high-
harmonic focusing (see, e.g., [85–87]) which typically also
corresponds to non-negligible γ.
As a completely different scenario for generating

ultrastrong fields, collisions of heavy nuclei have been
studied theoretically and experimentally, see, e.g., [88–93].
Considering ultraperipheral “collisions” at relativistic
velocities v along the trajectories rðtÞ ¼ �ðvt; b=2; 0ÞT
with impact parameters b, the superpositions of the boosted
Coulomb fields of the two nuclei can be approximated by
Eq. (2) at sufficiently large distances jrj ≫ b, say, of the
order of the Compton length [94,96]. The associated field
strengths may reach or even exceed the Schwinger critical
field ES [99,100] and the Keldysh parameters γ will also be
non-negligible (especially for ultrarelativistic v). Of course,
the field strengths and their spatial and temporal gradients
will be even larger at smaller distances jrj ∼ b, such that
the total electron-positron yield will also contain contribu-
tions from this region. Nevertheless, this again shows the
importance of understanding the impact of space-time
dependence on pair creation, i.e., to go beyond the locally
constant field approximation.
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