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We propose a new, chiral description for massive higher-spin particles in four spacetime dimensions,
which facilitates the introduction of consistent interactions. As proof of concept, we formulate three
theories, in which higher-spin matter is coupled to electrodynamics, non-Abelian gauge theory, or gravity.
The theories are chiral and have simple Lagrangians, resulting in Feynman rules analogous to those of
massive scalars. Starting from these Feynman rules, we derive tree-level scattering amplitudes with two
higher-spin matter particles and any number of positive-helicity photons, gluons, or gravitons. The
amplitudes reproduce the arbitrary-multiplicity results that were obtained via on-shell recursion in a parity-
conserving setting, and which chiral and nonchiral theories thus have in common. The presented theories
are currently the only examples of consistent interacting field theories with massive higher-spin fields.
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Introduction.—The study of higher-spin fields is a
formidable subject. In the massless case, such fields
possess rich gauge symmetry, starting from the familiar
case of electromagnetism, see, e.g., [1,2] for recent reviews.
The standard approach is to introduce fields of spin s as
symmetric traceless tensors Φμ1;…;μs or spinors Ψμ1;…;μs−1=2 .
Massive higher-spin fields [3–6] are more subtle and
require a host of auxiliary fields that prevent propagation
of unphysical degrees of freedom in interacting theories
[7,8].
Massive higher-spin particles do exist in nature as

composite states of elementary particles (see, e.g., [9]).
One should therefore be able to describe their physics by
suitable effective field theories involving an infinite hier-
archy of higher-dimensional operators. Although only a
finite subset of such operators contribute at any given order
in the energy-scale cutoff, it is a laborious task to even list
them in a manner consistent with no ghost propagation.
For these reasons, the space of massive higher-spin

theories seems vast and ridden with obstacles. It seems
plausible, however, that there are hidden gems among such
theories, as indicated by recent on-shell studies. For
instance, at the level of three-point scattering amplitudes,
various possible on-shell spinor structures for an electro-
magnetically interacting higher-spin particle of mass m
have been classified by Arkani-Hamed, Huang, and Huang

(AHH), and one out of them was singled out [10] due to its
relatively tame behavior in the massless limit, namely,

Að1fag; 2fbg; 3þÞ ¼
h1ða12ðb1i � � � h1a2sÞ2b2sÞi

m2s Að1; 2; 3þÞ:
ð1Þ

Here Að1; 2; 3þÞ is the positive-helicity photon emission
amplitude in scalar quantum electrodynamics (QED),
whereas all higher-spin information is encoded into two
sets of SU(2) little-group indices, fa1;…; a2sg and
fb1;…; b2sg, via 2s copies of the same chiral product
h1a2bi ≔ ϵαβh1ajαh2bjβ of massive-momentum spinors.
Interestingly, the AHH amplitude may be extended

[11,12] to include (n − 2) positive-helicity photons, gluons,
or gravitons instead of one, while still having the same
massive-spin structure as Eq. (1), see, e.g., Eq. (27) below
for gauge theory. These amplitudes can be derived from
mere knowledge of their factorization limits by naïve use of
on-shell (BCFW) recursion [13,14]—in exactly the same
way that is known to work for their spin-1=2 counterparts in
quantum chromodynamics (QCD) [15]. Unlike mixed-
helicity configurations, where the same approach produces
answers afflicted by unphysical poles [10,16], the like-
helicity amplitudes involving a pair of higher-spin particles
seem absolutely healthy. Another argument in favor of the
like-helicity results is that they can be derived [12] using
two distinct BCFW constructions: either complex-shifting
two massless momenta [14] or one massless and one
massive [17,18].
It is well-known that on-shell recursion fails when the

desired amplitudes have bad boundary behavior, i.e., they
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do not vanish as the complex BCFW-shift parameter z is
taken to infinity. This is something that should absolutely
be expected from generic effective theories, where the
action is built out of higher-dimensional vertex operators,
typically with a growing number of derivatives. However,
the existence of healthy n-point amplitudes that are
constructible from their factorization limits (albeit in a
restricted helicity sector) suggests that they should belong
to a well-defined massive higher-spin theory—one that is
intimately related to the minimally coupled scalar theory
and thereby satisfies the boundary-behavior condition
allowing for on-shell recursion.
This is precisely the kind of theories that we present in this

Letter. We start with the section Free higher-spin theory,
wherewe review the commondifficulties in higher-spin field
theory and show how they are avoided by a new chiral
Lagrangian description of a free massive higher-spin field in
four dimensions.Minimal gauge interactions are then added
to this theory in the section Gauge theory. After that, we
present the corresponding chiral theory of gravitationally
interacting higher-spin field in the section Gravity. Finally,
we conclude by discussing some implications of our theories
in the section Summary and discussion.
Free higher-spin theory.—In this section we discuss the

basics of describing a free higher-spin particle. For sim-
plicity, let us temporarily concentrate on integer-spin
particles. In the standard approach [4], integer-spin fields
constitute symmetric traceless rank-s tensors Φμ1;…;μs . For
instance, in electromagnetism, i.e., the theory of a free
massless spin-1 boson, the off-shell field is Aμ, and its
connection to the on-shell particle description relies on the
notion of polarization vector ε�p;μ, which converts the
Lorentz index into the helicity label. Helicity governs
the particle’s irreducible representation of the little group
U(1) for a given massless momentum pμ and is additive in
the sense that the polarization tensor of, e.g., the massless
spin-2 boson (graviton) is simply ε�p;μν ≔ ε�p;με�p;ν.
For p2 ¼ m2 ≠ 0, one can employ symmetric rank-2s

tensors as irreducible representations of the massive little
group SU(2) with exactly (2sþ 1) degrees of freedom. For
s ¼ 1, we therefore use polarization vector εa1a2p;μ ¼ εa2a1p;μ ,
where ai are fundamental SU(2) indices, whereas free
higher-spin fields are naturally expanded in terms of the
polarization tensors

εa1;…;a2s
p;μ1;…;μs ≔ εða1a2p;μ1 � � � εa2s−1a2sÞp;μs : ð2Þ

Symmetry in the Lorentz indices is then obvious, and
tracelessness ημiμjεp;μ1;…;μs ¼ 0 follows from the spin-1
orthonormality

εp;ab · εcdp ¼ −δðcðaδ
dÞ
bÞ; εp;μab ≔ ϵacϵbdε

cd
p;μ ¼ ðεabp;μÞ�;

ð3Þ

where we have used the fact that SU(2) indices are lowered
and raised with the two-dimensional Levi-Civita tensor.
The crucial element of this approach is transversality

p · εfagp ¼ 0, which is required, roughly speaking, to adjust
the number of degrees of freedom on the Lorentz-index side
to that on the little-group side (three in the spin-1 case). In
other words, the transversality is required to ensure the
irreducibility of the traceless symmetric tensor representa-
tion of the Lorentz group under Wigner’s little group
fL ∈ SOð1; 3Þ∶Lμ

νpν ¼ pμg.
Therefore, the free field equations that one needs to

impose on ðs; sÞ-representation tensors are

ð∂2 þm2ÞΦμ1;…;μs ¼ 0; ∂
μΦμμ2;…;μs ¼ 0: ð4Þ

We have referred to the symmetric traceless tensor repre-
sentation by the numbers of its chiral and antichiral
SLð2;CÞ indices upon the application of the spinor map

Φα1;…;αs _β1;…; _βs
≔ Φμ1;…;μsσ

μ1
α1 _β1

� � � σμs
αs _βs

; ð5Þ

where σμ ¼ ð1; σ1; σ2; σ3Þ are the Pauli matrices. In fact, it
is easy to see in this spinor language that, although ðs; sÞ is
irreducible under SLð2;CÞ ≅ SOð1; 3Þ, it is highly reduc-
ible under SUð2Þ ⊂ SLð2;CÞ and decomposes into sym-
metric SU(2) tensors of rank 0; 2;…; 2s.
The Klein-Fock-Gordon equation in Eq. (4) can be

obtained from a simple Lagrangian. However, there is
no action principle for s > 1 that also generates the second
equation in Eq. (4), which is required to ensure irreduc-
ibility under Wigner’s little group, unless a host of auxiliary
fields is introduced [3]. For instance, the Singh-Hagen
approach [4,5] relies on introducing (s − 1) symmetric
traceless tensor fields of rank 0; 1;…; s − 2. Alternatively,
Zinoviev’s approach [6] involves s such fields of rank
0; 1;…; s − 1, that are also subject to the double-trace
condition Φλμ

λμμ5;…;μs−k
¼ 0. All these fields vanish on shell

but serve to ensure the free-field expansion of Φμ1;…;μs in
terms of the physical polarization tensors (2).
Here, our radically simple proposal, as inspired by the

higher-spin amplitudes (1) and by chiral higher-spin gravity
[19–27], is to take basic fieldsΦα1;…;α2s in the chiral ð2s; 0Þ
representation of the Lorentz group instead of ðs; sÞ. As we
will shortly see, this essentially trivializes the transition
between the off-shell symmetry group SLð2;CÞ and the on-
shell little group SU(2).
To be more specific, we employ the massive spinor-

helicity formalism [10,28,29], which provides perfect
building blocks for this construction. Namely, we use
chiral and antichiral on-shell spinors jpi and ½pj, such that

m ¼ 0 ⇒ jpiα½pj _β ≔ pμσ
μ

α _β
; ð6aÞ

m ≠ 0 ⇒ jpaiα½paj _β ≔ pμσ
μ

α _β
: ð6bÞ
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All external wave functions of quantum fields can be built
out of these spinors. For instance, the massive polarization
vector can be constructed as [30,31]

εabp;μ ¼
ihpðajσμjpbÞ�ffiffiffi

2
p

m
ð7Þ

and all of the desired properties, such as Eq. (3) and
transversality, follow automatically.
For a higher-spin field in representation ð2s; 0Þ, the

free field equations reduce to the Klein-Fock-Gordon
equation

ð∂2 þm2ÞΦα1;…;α2s ¼ 0; ð8Þ

required to define the mass shell. Indeed, the number of
degrees of freedom no longer needs to be artificially
reduced, so the only thing that we need from the corre-
sponding external wave functions is converting the off-shell
Weyl-spinor indices into the on-shell little-group indices.
This is precisely what the massive spinors [Eq. (6b)] are
good for, so the external higher-spin wave functions are

ð9Þ

Here the mass prefactor is needed to absorb the mass
dimension, which is 1=2 for momentum spinors. The free-
field expansion is therefore

Φα1;…;α2sðxÞ ¼
Z

d̂3p
2p0

�jpða1iα1 � � � jpa2sÞiα2s
ms aa1;…;a2sðp⃗Þe−ip·x þ ð−1Þ2s jpða1iα1 � � � jpa2sÞiα2s

ms a†a1;…;a2sðp⃗Þeip·x
�����

p0¼
ffiffiffiffiffiffiffiffiffiffiffi
p⃗2þm2

p ;

ð10Þ

where d̂3p ¼ ð2πÞ−3d3p. We have fixed the signs above so
that the outgoing external wave functions

ð11Þ

are consistent by crossing with their incoming counterparts
(9), given the momentum-reversal convention

j − pi ¼ −jpi; j − p� ¼ jp�: ð12Þ

In particular, the expansion for the spin-1=2 field ΦαðxÞ
coincides with the chiral part of the Majorana field ΨMðxÞ
as written, e.g., in [16]. The standard properties

hpapbi ¼ −mϵab; jpaiαhpajβ ¼ −mδβα ð13Þ

of the massive spinors are then equivalent to the ortho-
normality and completeness relations for spin 1=2.
The Lagrangian implying the free field equation (8) is

L0 ¼
1

2
ð∂μΦα1;…;α2sÞð∂μΦα1;…;α2sÞ −

m2

2
Φα1;…;α2sΦα1;…;α2s :

ð14Þ

where we treat Φ as a real field. The reality has a literal
meaning in Euclidean or split signature and should be
understood in the sense of Eq. (10) in Minkowski space-
time. The corresponding propagator is

ð15Þ

Note that, when all indices are raised, the propagator is
automatically antisymmetric for half-integer spins and
symmetric for integer spins. Indeed, the spin-statistics
theorem is also automatically implemented at the level
of (classical) fields:

ΦfαgðxÞΦfαgðyÞ ¼ ð−1Þ2sΦfαgðxÞΦfαgðyÞ
¼ ΦfαgðyÞΦfαgðxÞ; ð16Þ

so they can be manipulated much like scalars.
Gauge theory.—In this section we include minimal

gauge interactions in the chiral higher-spin theory (14).
Since complex conjugation switches between the chiral and
antichiral representations of the Lorentz group, we choose
OðNÞ as the generic gauge group, which encompasses other
interesting cases, such as SUðNÞ ⊂ Oð2NÞ.
We take the Lagrangian to be simply

Lg ¼
1

2
ðDμΦfαgÞiðDμΦfαgÞi −

m2

2
Φfαg

i Φifαg; ð17Þ
where the covariant derivative

Dμ ≔ ∂μ þ gAμ; Aμ ¼ AA
μ tA; ½tA; tB� ¼ fABCtC:

ð18Þ
involves antisymmetric OðNÞ generators in the anti-
Hermitian convention tAij ¼ −tAji. The higher-spin field
interacts with the gauge field via the three-point vertex
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ð19aÞ

and the four-point vertex

ð19bÞ

The crucial feature of these vertices is that they equal those
of a scalar minimally coupled to a gauge field times the
ð2s; 0Þ-identity operator. This guarantees that all of the tree-
level scattering amplitudes in this theory will essentially
factorize onto those of massive scalar QCD. For a single
pair of higher-spin particles, we have

Að1fag; 2fbg; 3h3 ;…; nhnÞ ¼ h1a2bi⊙2s

m2s Að1; 2; 3h3 ;…; nhnÞ:
ð20Þ

Here Að1; 2; 3h3 ;…; nhnÞ is the (n − 2)-photon emission
amplitude in scalar QED, and ⊙ denotes the symmetrized
tensor product for massive spinors:

h1a2bi⊙2s ≔ h1ða12ðb1ih1a22b2i � � � h1a2sÞ2b2sÞi: ð21Þ

Since there are no vertices with more than two massive
fields, we can easily write similar relations for amplitudes
with multiple pairs of higher-spin particles. For instance,

Að1fag; 2fbg; 3fcg; 4fdg; 5h5 ;…; nhnÞ

¼ h1a2bi⊙2sh3c4di⊙2s

m4s Að1; 2; 3; 4; 5h5 ;…; nhnÞ

þ ð−1Þ2s h1a4
di⊙2sh3c2bi⊙2s

m4s Að1; 4; 3; 2; 5h5 ;…; nhnÞ;
ð22Þ

where the amplitudes on the right-hand side involve
distinctly flavored scalars with one flavor shown in green.
This is clearly a very chiral theory on the matter side.

Indeed, the three-point amplitudes that follow from the
vertex [Eq. (19)] are explicitly

Að1fagi ; 2fbgj ; 3�A Þ ¼ 2gtAij
h1a2bi⊙2s

m2s ðp1 · ε�3 Þ: ð23Þ

Comparing with the original parity-conserving AHH
amplitudes [10] for gauge theory,

AAHHð1fagi ; 2fbgj ; 3þA Þ ¼ 2gtAij
h1a2bi⊙2s

m2s ðp1 · ε
þ
3 Þ; ð24aÞ

AAHHð1fagi ; 2fbgj ; 3−AÞ ¼ 2gtAij
½1a2b�⊙2s

m2s ðp1 · ε−3 Þ; ð24bÞ

we observe agreement for positive helicity andmismatch for
negative helicity. This reflects the intrinsic chirality of the
higher-spin theory [Eq. (17)], see the Summary and dis-
cussion for the discussion of how parity could be restored.
Here we concentrate on the (incoming) positive-helicity
gluons. Such states correspond to the self-dual sector of
Yang-Mills theory in the sense that the part of the lineari-

zed field strength Fα _α;β _β ≔ Fμνσ
½μ
α _ασ

ν�
β _β

¼ F−
αβϵ _α _β þ F̃þ

_α _β
ϵαβ,

which gets Wick-contracted with them, is

F̃þ
_α _β
ðpÞ ¼ i2

ffiffiffi
2

p
π½pj _α½pj _β½δþðp2Þaþðp⃗Þ − δ−ðp2Þa†−ð−p⃗Þ�

ð25Þ

and satisfies 1
2
ϵμνρσFþρσ ¼ iFþ

μν. Much is known about the
self-dual sector [32–39]. Strictly speaking, self-dual Yang-
Mills theory (SDYM) includes both gluonic helicities, and in
the on-shell approach one may deal with it simply by
switching off one of the three-gluon amplitudes:

Að1þA ; 2þB ; 3−CÞ ¼ −
ffiffiffi
2

p
gfABC

½12�3
½23�½31� ; ð26aÞ

Að1−A; 2−B; 3þCÞ ¼
ffiffiffi
2

p
gfABC

h12i3
h23ih31i ⇒

SDYM
0: ð26bÞ

In full Yang-Mills theory, LYM ¼ − 1
4
FA
μνFAμν, both

amplitudes (26) appear in factorization limits. Even if
we couple it to our chiral higher-spin matter (17), the
existence of BCFW shifts with good boundary behavior is
guaranteed [17] by the scalar version of this theory, e.g., if
we choose to shift only gluonic momenta [40]. The ensuing
on-shell recursion relations [13,14] allow us to build up the
entire tree-level scattering matrix, which will by construc-
tion be related to that of scalar QCD via such identities as
Eqs. (20) and (22).
In this theory, there is a subset of amplitudes such that

only amplitudes [Eqs. (24a) and (26a)] appear in their
factorization limits. Such amplitudes coincide with those in
SDYM coupled to our massive higher-spin matter (17). In
this chiral theory, all purely gluonic amplitudes automati-
cally vanish at tree level except for Eq. (26a). Amplitudes
with matter do not vanish but are significantly simpler than
those in the full theory due to the integrability of the self-
dual gauge interaction. The nontrivial overlap of the full
and the self-dual theories consists of the amplitudes
involving a single pair of massive higher-spin particles,
to which we have referred in the introduction. Their color-
ordered versions are explicitly [12]
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Að1fag;2þ;3þ;…;ðn−1Þþ;nfbgÞ¼ ih1anbi⊙2s

m2s−2

½2jQn−3
j¼2f=P12;…;j=pjþ1þðs12;…;j−m2Þgjn−1�Q

n−2
j¼2hjjjþ1iðs12;…;j−m2Þ : ð27Þ

Here we have written P12;…;j ¼ p1 þ � � � þ pj for momen-
tum sums and s12;…;j for their Lorentz squares. The fac-
tors involving slashed matrices in the numerator are
fðPμ

12;…;jσ̄
_αγ
μ Þðpν

jþ1σν;γ _βÞ þ ðs12;…;j −m2Þδ _α_βg, and their or-

der of multiplication is such that j increases from left to
right. The amplitudes (27) are consistent with those for
massive scalars first derived in [41], as well as with those
for massive quarks [15,42] and gauged spin-1 matter
obtained from Yang-Mills theory via the Higgs mecha-
nism [43]. We have also performed additional numerical
checks through eight points that the Feynman rules
[Eqs. (19a) and (19b)], in combination with the standard
three- and four-gluon vertices, give the same answers as
the formula (27).
In the important special case of SO(2), for which fABC ¼

0 and tA¼1
ij ¼ ϵij, we combine the fields into

Φfαg ≔
1ffiffiffi
2

p
�
Φfαg

j¼1 þ iΦfαg
j¼2

�
; Φ̃fαg ≔

1ffiffiffi
2

p
�
Φfαg

j¼1 − iΦfαg
j¼2

�
ð28Þ

where the charge conjugation avoids the chirality switch.
The resulting chiral higher-spin QED Lagrangian is

LQ ¼ gðDμΦfαgÞðDμΦfαgÞ −m2Φ̃fαgΦfαg; ð29Þ

where the covariant derivative Dμ ≔ ∂μ − iQAμ involves
the coupling constant renamed to Q. A straightforward
application of the resulting Feynman rules

ð30Þ

leads to the explicit amplitudes (see, e.g., [44])

Að1fag; 2þ; 3þ;…; ðn − 1Þþ; nfbgÞ ¼ −ið2QÞn−2 h1
anbi⊙2s

m2s

X
σ∈Sn−2ðf2;3;…;n−1gÞ

Q
n−1
j¼2ðP1σð2Þ;…;σðjÞ · εþσðjÞÞQ
n−2
j¼2ðs1σð2Þ;…;σðjÞ −m2Þ : ð31Þ

We have checked numerically through eight points that
they are consistent with the color-dressed analogue of
Eq. (27) under the usual QCD-to-QED projection

Að1fag; 2; 3;…; n − 1; nfbgÞ

¼
� ffiffiffi

2
p

QÞn−2
X

σ∈Sn−2ðf2;3;…;n−1gÞ
Að1fag; σ; nfbg

�
: ð32Þ

Note that all gluonic factorization channels nontrivially
cancel here, leaving only the massive ones as in Eq. (31).
Gravity.—In this section we minimally couple our chiral

higher-spin theory to gravity. The Lagrangian is

LG ¼ ffiffiffiffiffiffi
−g

p �
1

2
ð∇μΦfαgÞð∇μΦfαgÞ −

m2

2
ΦfαgΦfαg

	
; ð33Þ

where we have included the metric dependency of the
integration measure. The covariant derivatives may in
general act on the Lorentz indices via the spin connection:

∇μΦα1;…;α2s ¼ ∂μΦα1;…;α2s þ 2sωμ;ðα1
βΦα2;…;α2sÞβ: ð34Þ

This prevents the vertices from factorizing onto those of the
massive-scalar theory. So unlike in the gauge-theoretic
case, we cannot make helicity-independent statements of
the type Eq. (20).
However, much like in gauge theory, there is a clear

connection between positive-helicity gravitons and the self-
duality condition of the Riemann tensor. Moreover, it is
equally true for the spin connection: the chiral part of the
spin connection is known to vanish in self-dual gravity
(SDGR) [37,45–47]:

ωμ;α
β ≔

1

2
ωμ

ν̂ ρ̂σν̂;α_γσ̄
_γβ
ρ̂ ⇒

SDGR
0 ð35Þ

where the frame indices are displayed with hats. So
restricting to the self-dual gravitational sector, we can
easily write the three-point interaction vertex

ð36Þ
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e.g., in terms of the perturbation of the “gothic inverse
metric”

ffiffiffiffiffiffi−gp
gμν ¼ ημν − κhμν [48,49] and the coupling

constant κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGðNewtonÞ

p
. In this formulation of self-

dual gravitational perturbation theory, all vertices involving
two massive fields and multiple gravitons come exclusively
from the mass term due to

ffiffiffiffiffiffi
−g

p ¼ 1 −
κ

2
hþ κ2

8
ðh2 − 2hμνhμνÞ þOðκ3Þ; ð37Þ

where h ≔ hμνημν. In any case, in view of the vanishing
anti-self-dual spin connection, Eq. (35), all of the Feynman
rules clearly factorize onto those for a massive scalar.
Therefore, for positive-helicity gravitational amplitudes

involving two higher-spin matter particles, we do have the
factorization property

Mð1fag;2fbg;3þ;…; nþÞ ¼ h1a2bi⊙2s

m2s Mð1;2;3þ;…; nþÞ:
ð38Þ

Equivalently, these amplitudes are constructible [11] from
their factorization limits via on-shell recursion starting from
the two three-point amplitudes

Mð1fag; 2fbg; 3þÞ ¼ −iκ
h1a2bi⊙2s

m2s ðp1 · ε
þ
3 Þ2 ð39Þ

and

Mð1þ; 2þ; 3−Þ ¼ −
iκ
2

½12�6
½23�2½31�2 ; ð40aÞ

but with no reference to the second three-graviton
amplitude

Mð1−; 2−; 3þÞ ¼ −
iκ
2

h12i6
h23i2h31i2 ⇒

SDGR
0: ð40bÞ

However, perhaps the easiest way to express the ampli-
tudes, Eq. (38), is by using the Kawai-Lewellen-Tye-style
double copy [50,51], which is known [52–54] to hold for
minimally coupled massive scalars. The gravitational all-
plus amplitudes are thus given as a bilinear combination of
their gauge-theoretic color-ordered counterparts (27):

Mð1fag; 2fbg; 3þ;…; nþÞ ¼ −i
�
κ

2

�
n−2 h1a2bi⊙2s

m2s

X
σ;τ

Að1; 2; 3þ; σÞAð2; 1; 3þ; τÞ
Yn−3
i¼1

X
j∈Xi

σ;τ

sσðiÞj: ð41Þ

Here the outer summation is over σ; τ ∈ Sn−3ðf4;…; ngÞ, ti
is defined as the position of σðiÞ within permutation
τ, i.e., τðtiÞ ¼ σðiÞ, and Xi

σ;τ ≔ f3; σð1Þ;…; σði − 1Þg ∩
f3; τð1Þ;…; τðti − 1Þg. This expression is also consis-
tent with the double copy for massive matter with spin
[16,55–58].
Summary and discussion.—We have presented a chiral

approach to massive higher-spin fields and formulated three
theories, in which such fields interact strongly, electromag-
netically, or gravitationally. We have focused on the self-
dual sectors of these interactions, where scattering ampli-
tudes coincide with those derived previously assuming
parity conservation. On the one hand, all three theories
may be consistently truncated down to their respective self-
dual sectors. On the other hand, they may be extended by
introducing additional vertex operators to their Lagrangians.
The problem of healthy interactions for higher-spin fields

is important for various reasons. Higher-spin states might be
indispensable for building consistent quantum gravity mod-
els, as indicated by string theory, the AdS=CFT correspon-
dence, and higher-spin gravities. Moreover, massive higher-
spin particles can model many real physical systems within
the effective field theory approach. A suitable implementa-
tion of the classical limit [11,30,31,59–64] even allows us to
model gravitational dynamics of spinning black holes or
other compact objects.
For marginal spins, the problem of consistent inter-

actions has a solution for massive spin-1 fields, which

always result from a spontaneously broken Yang-Mills
theory, and consistent massive spin-2 theories are known as
massive gravity [65–68]. For higher spins, this problem can
be roughly subdivided into two: self-interactions of mas-
sive higher-spin fields and their gauge or gravitational
interactions. The latter is more important for such appli-
cations as black-hole scattering. No solution to either
problem has existed beyond spin-2, and the present
Letter aims to provide a new way forward.
Let us compare our chiral-field approach to other

descriptions of massive higher-spin fields. In the Singh-
Hagen formulation [4,5], the auxiliary fields are fine-tuned
to give enough differential consequences of the field
equations to guarantee the correct number of physical
degrees of freedom (PDOF), which is almost equivalent
to a tedious analysis of Hamiltonian constraints. Zinoviev’s
approach [6] has a more transparent pattern of auxiliary
fields intertwined by gauge symmetries à la Stückelberg,
and the remaining challenge is of a purely technical nature
[69–74]. If one is concerned only with field equations,
more economic approaches to control the number of PDOF
can be applied, see, e.g., [75–78]. Furthermore, the light-
front approach starts out with the correct PDOF, see, e.g.,
[79,80] and especially [81] for the four-dimensional case,
but the study beyond the cubic order can still be quite
laborious. For twistorial constructions involving mass see,
e.g., [82] and the references therein.
Our present proposal for massive higher-spin particles is

inspired by the recent attempts to bootstrap their on-shell
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amplitudes with as little off-shell input as possible
[10,16,83,84], which works surprisingly well for like-
helicity configurations of the force-carrier bosons
[11,12]. The chiral description of massive higher-spin
interactions is very close in spirit to the ideas originating
from twistor theory [85–89] and from the covariantization
of chiral higher-spin gravity [23,26,27,90], where a chiral
fieldΦα1;…;α2s is used to describe massless spin-s states. It is
also close to the light-cone gauge in not having redundant
degrees of freedom, the advantage being in maintaining
manifest Lorentz symmetry. For spin-1=2 fields, the chiral
description can be understood as integrating out half of the
fermion components out of QCD [91], and likewise for
spin-1 [92] after first integrating in an auxiliary field.
However, no such interpretation is available for higher spin
fields, while a parent action [93] may still exist.
Having presented the three chiral theories, we can

already comment on their extensions. Similarly to the
self-dual theories, our theories, while being consistent on
their own, generate a subset of the amplitudes of their
would-be nonchiral completions. In the case of SDYM
(with matter) and SDGR the completions to full Yang-Mills
theory (with matter) and gravity are known [35,92,94], and
it would be interesting to find such completions for our
proposals. Aiming at restoring parity can also be motivated
by the applications to spinning black holes. Indeed, the
gravitational AHH amplitude Eq. (39) was shown [30,31]
to contain the same spin-induced multipole moments as a
spinning black hole [95–97], but only in combination with
its antichiral version

MAHHð1fag; 2fbg; 3−Þ ¼ −iκ
½1a2b�⊙2s

m2s ðp1 · ε−3 Þ2: ð42Þ

On the classical-gravity side, the tower of multipole
moments can be extracted directly from the linearized
Kerr solution [31,98]. For a spin-s particle described by
Eqs. (39) and (42), it appears truncated down to the 2s pole
with correct black-hole multipole coefficients—even before
the classical limit is taken [11,60–64]. (Interestingly, this
“spin universality” property [99–101] is not obeyed by all
three-point amplitudes [64], as recently demonstrated [102]
for the leading Regge states of the open and closed
superstring.)
For simplicity, let us consider the gauge-theoretic case,

where the classical analogue of the spinning black hole is
known as the

ffiffiffiffiffiffiffiffiffi
Kerr

p
solution [62]. We can easily write the

general form of the interaction terms that could modify the
three-point amplitude Eq. (24b) without spoiling Eq. (24a):

ðDα1 _γ1 � � �Dαk _γkΦ
α1;…;α2sÞϵαkþ1βkþ1

� � � ϵα2s−1β2s−1Fα2sβ2s

× ðDβ1
_γ1 � � �Dβk

_γkΦβ1;…;β2sÞ: ð43Þ

A single such term ΦαFαβΦβ is in fact known to be
sufficient for restoring parity to the entire spin-1=2 theory,

which then constitutes a chiral formulation of QCD with
massive quarks due to Chalmers and Siegel [91]. As for
higher spins, we will explore their gauge and gravitational
interactions in more detail elsewhere.
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