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We search for ultralight scalar dark matter candidates that induce oscillations of the fine structure
constant, the electron and quark masses, and the quantum chromodynamics energy scale with frequency
comparison data between a 171Yb optical lattice clock and a 133Cs fountain microwave clock that span
298 days with an uptime of 15.4%. New limits on the couplings of the scalar dark matter to electrons and
gluons in the mass range from 10−22 to 10−20 eV=c2 are set, assuming that each of these couplings is the
dominant source of the modulation in the frequency ratio. The absolute frequency of the 171Yb clock
transition is also determined as 518 295 836 590 863.69(28) Hz, which is one of the important
contributions toward a redefinition of the second in the International System of Units.
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While the existence of dark matter is indicated by various
astrophysical observations [1], its constituents have not
been conclusively detected in laboratory experiments. In
such experiments, dark matter candidates with particle
physics motivation are studied particularly well. Weakly
interacting massive particles in the mass range from 1 to
103 GeV=c2 (c, speed of light) have been searched for in
various experiments [2–7]. Quantum chromodynamics
(QCD) axions and axionlike pseudoscalar particles and
fields with masses of ≲10 eV=c2 have also attracted
considerable attention. Limits have been set on the inter-
actions between the axions and the standard model particles
such as electrons, photons, gluons, nucleons, and antipro-
tons [8–13]. The range of the search broadens as different
kinds of technologies are applied to dark matter searches.
Other possible candidates for dark matter are dilatonlike

ultralight scalar fields with their masses mφ far below
1 eV=c2, down to 10−22 eV=c2 required by de Broglie
wavelength of the scalar field being smaller than the sizes
of dwarf galaxies [14]. Such an ultralight bosonic field as
dark matter has large occupation numbers per mode and
behaves as a classical wave with a frequency proportional
to mφ [15]. There has been an astrophysical interest in the
ultralight dark matter in the mass range from 10−22 to
10−21 eV=c2, as its wave property might solve long-stand-
ing problems of cosmic small-scale structures [14,16,17]. If
the scalar field couples to the standard model fermions and
gauge bosons [18], it induces coherent oscillations of
fundamental constants such as the fine structure constant
α and the electron mass me [19]. The scalar field can also

form macroscopic clumps called topological defects [20],
leading to transient variations of fundamental constants by
the passages of such clumps [21–25].
The variation of fundamental constants [26–36] and thus

the existence of the ultralight scalar fields can be detected
with frequency ratios of atomic clocks based on different
atomic species and transitions. The periodic oscillations of
the frequency ratios have so far been searched for by clock
comparisons involving optical and microwave clocks with
different sensitivities to fundamental constants. Previous
comparisons between two optical clocks took advantage of
the state-of-the-art short-term frequency stabilities [37] and
accuracies [38–40] to search for α oscillations in the
frequency range of ≲0.1 Hz and set stringent bounds on
coupling constants of the scalar fields to photons in the mass
range of mφ ≲ 10−16 eV=c2 [41,42]. Frequency ratios of
two microwave clocks are sensitive to the couplings to
quarks and gluons as well as photons. Although microwave
clocks have relatively low short-term stabilities, they are
operated for long periods with high uptimes and contribute
to searches in low frequency (i.e., mass) regions. A com-
parison between Rb and Cs fountain microwave clocks for
six years yielded stringent limits on the couplings to quarks
and gluons in the mass range of mφ ≲ 10−21 eV=c2 [43].
The unique feature of comparisons between optical and

microwave clocks is the capability of the observation of the
oscillation of me induced by the scalar field couplings to
electrons [19]. The longest search for oscillations in the
optical to microwave ratio was performed in a comparison
between a Si optical cavity and a hydrogen maser (H maser)
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over 33 days [41]. Assuming that the scalar fields pre-
dominantly couple to electrons, this report put constraints
on the coupling between the scalar field andme in the mass
region from mφ ¼ 10−21 to 10−18 eV=c2. To extend the
search to the lowest mass limit of 10−22 eV=c2, longer
measurement periods are required. It is also desirable to
compare an optical lattice clock or a single ion optical clock
with a fountain microwave clock to improve the dark matter
detection sensitivity that is limited by the frequency
instability of the Si/H measurement induced by flicker
and random-walk frequency noises at long averaging
times [44].
In this Letter, we report on a search for the oscillating

scalar dark matter fields with frequency comparison data
between a 171Yb optical lattice clock and a 133Cs fountain
clock that span 298 days with an uptime of 15.4%. Themain
technical advantage in our search is the robustness of the Yb
optical lattice clock, which can be operated with high
uptimes for several months [45]. We establish improved
constraints on the couplings of the scalar field to elec-
trons and gluons in the mass range from mφ ¼ 10−22 to
10−20 eV=c2, assuming that each of these couplings is the
dominant source of the oscillation. In addition to the dark
matter search, we also provide the absolute frequency of the
Yb clock transition, which is one of the important contri-
butions toward a redefinition of the second in the
International System of Units [46,47].
We consider linear couplings between the scalar field

and the standard model particles described by the inter-
action Lagrangian [18,19,43]

LInt ¼ φ

�
dα
4μ0

FμνFμν −
dgβ3
2g3

FA
μνFAμν

− c2
X

i¼e;u;d

ðdmi
þ γmi

dgÞmiψ iψ i

�
; ð1Þ

where φ denotes a dimensionless scalar field relative to the
Planck scale [18,43], Fμν the electromagnetic tensor, μ0 the
magnetic permeability, FA

μν the gluon field strength tensor,
g3 the QCD coupling constant, β3 the β function for the
running of g3, γmi

the anomalous dimension describing the
running of the mass mi of the QCD-coupled fermion, and
ψ i the fermion spinor. Five dimensionless coefficients dα,
dme

, dmu
, dmd

, and dg are coupling coefficients of the scalar
field to photons, electrons, up and down quarks, and
gluons, respectively. It has been shown in Ref. [18] that
these couplings result in the following linear dependence of
the fundamental constants with respect to the scalar field:

αðφÞ ¼ αð1þ dαφÞ; meðφÞ ¼ með1þ dme
φÞ;

mqðφÞ ¼ mqð1þ dmq
φÞ; ΛQCDðφÞ ¼ ΛQCDð1þ dgφÞ;

ð2Þ

where ΛQCD denotes the QCD energy scale, mq ¼
ðmu þmdÞ=2, and dmq

¼ ðdmu
mu þ dmd

mdÞ=ðmu þmdÞ.
With the variations of the fundamental constants, the

fractional frequency ratio of two atomic clocks A and B
changes such that

δðfA=fBÞ
fA=fB

¼ kα
δα

α
þ kme

δðme=ΛQCDÞ
me=ΛQCD

þ kmq

δðmq=ΛQCDÞ
mq=ΛQCD

;

ð3Þ

where kα, kme
, and kmq

are sensitivity coefficients [48]. For
the Yb/Cs ratio, atomic and nuclear structure calculations
yield kα ¼ −2.52, kme

¼ −1, and kmq
¼ 0.046 [49–51].

Note that me=ΛQCD is used in Eq. (3) instead of the proton-
to-electron mass ratio [52] in conventional formula used in
previous atomic clock experiments [26–36]. From Eqs. (2)
and (3), the relationship between δðfYb=fCsÞ=ðfYb=fCsÞ
and φ is obtained. When the scalar field oscillates as φðtÞ ∼
φ0 cosð2πftÞ with a frequency given by the Compton
frequency f ¼ mφc2=h (h, Planck constant), and carries
an energy density of ρφ ¼ c2πf2φ2

0=ð2GÞ (G, Newtonian
constant of gravitation) [43], the frequency ratio oscillates
such that δðfYb=fCsÞ=ðfYb=fCsÞ ∼ A cosð2πftÞ. Assum-
ing that ρφ consists of the local dark matter density
ρDM ∼ 0.3 GeV=cm3, the relationship between the ampli-
tude A and the coupling coefficients is obtained as

A¼½−2.52dα−dme
þ0.046dmq

þ0.954dg�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GρDM
πf2c2

s
: ð4Þ

The goal of the analysis is to estimate the amount of A in
the experimental data.
The experimental setup is schematically described in

Fig. 1. At National Metrology Institute of Japan (NMIJ),
we developed two atomic clocks: an Yb optical lattice clock
(NMIJ-Yb1) and a Cs fountain clock (NMIJ-F2). The
details of the experimental apparatuses of NMIJ-Yb1
and NMIJ-F2 are described in Refs. [45,53–55], and thus
we here provide a brief description. NMIJ-Yb1 uses the
1S0-3P0 electronic transition of 171Yb at 518 THz, and
NMIJ-F2 the jF ¼ 3; mF ¼ 0i → jF ¼ 4; mF ¼ 0i hyper-
fine transition of the ground state of 133Cs at 9.2 GHz.
These two clocks are compared through a H maser that
generates the Coordinated Universal Time of NMIJ [UTC
(NMIJ)] with an auxiliary output generator (AOG). The
frequency of NMIJ-Yb1 is compared with that of UTC
(NMIJ) by counting a beat frequency between an ultra-
stable laser for probing the transition of Yb and an optical
frequency comb [56] that is phase locked to UTC(NMIJ).
NMIJ-Yb1 is then linked to the H maser with the AOG
frequency measured by a time-interval counter. The fre-
quency of NMIJ-F2 is compared with that of the H maser
via an ultrastable cryogenic sapphire oscillator (CSO) [57]
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used as a local oscillator of NMIJ-F2. Both NMIJ-Yb1 and
NMIJ-F2 are operated nearly continuously. The operation
of NMIJ-Yb1 is supported by a reliable laser system based
on a frequency comb [58], automatic laser relock schemes
[59], and remote controlling systems. The systematic frequ-
ency shifts of NMIJ-Yb1 and NMIJ-F2 are compensated

according to methods described in Refs. [45,53–55]. Some
of the systematic shifts of NMIJ-Yb1 are reevaluated as
described in the Supplemental Material [60].
During a search period of T total ¼ 298 days from

November 17, 2020, to September 11, 2021, the measure-
ment of the frequency ratio Yb=Cs was carried out in two
campaigns with periods of (i) 25 days from November 17,
2020, and (ii) 40 days from August 2, 2021, with uptimes
of 64.4% and 74.5%, respectively. Figure 2(a) shows the
data points of the fractional frequency ratio. The data were
averaged over an interval of 1 × 104 s, since this Letter
aims to search for oscillations at low frequencies. The total
number of the averaged data was Ndata ¼ 447. Figure 2(b)
shows the Allan deviation of the ratio measurement,
indicating the domination of the white frequency noise
in the Yb=Cs data.
To estimate the strength of harmonic oscillation signals

in the measured Yb=Cs ratio, we employed an analysis
method similar to those of Refs. [24,41,43,82]. For each
oscillation frequency f, we carried out the chi-square fit of
the ratio data in Fig. 2(a) by a function p1 cosð2πftÞ þ
p2 sinð2πftÞ þ p3 with free parameters p1, p2, and p3, and
then obtained the amplitude as A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2

p
. The ana-

lyzed frequencies were chosen from 1=Ttotal ∼ 3.9 × 10−8

to 4.9 × 10−5 Hz, corresponding to the mass range from
mφ ¼ 1.6 × 10−22 to 2.0 × 10−19 eV=c2. The frequency

Ultrastable laser

Optical frequency comb

H maserAOG

UTC(NMIJ)

NMIJ-F2NMIJ-Yb1

CSO

FIG. 1. Experimental setup. AOG, auxiliary output generator;
CSO, cryogenic sapphire oscillator.
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17, 2020). ðfYb=fCsÞ=ðfnYb=fnCsÞ − 1 in the vertical axis denotes
the fractional offset of the measured ratio from the ratio calculated
by nominal frequencies fnCs ¼ 9 192 631 770 Hz and fnYb ¼
518 295 836 590 863.6 Hz [47]. The error bar indicates the com-
bined statistical and systematic uncertainty of the frequency
measurement [60], dominated by the statistical uncertainty. The
red curve shows an example of the fit of a sinusoidal function. The
inset shows an enlarged view of the data points. (b)Allan deviation
of the frequency ratio calculated from concatenated data. The blue
line indicates a slope of 2.3 × 10−13=
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.

710 610 510
1810

1710

1610

1510

310

210

110

1

10

210

310

Frequency  (f / Hz)

N
or

m
al

iz
ed

 p
ow

er
 (

P
)

95 % C.L. upper limit

(a)

(b)

Detection threshold (Monte Carlo)
Detection threshold (theory)

A
m

pl
itu

de
 (

A
)

95 % C.L. for each frequency bin

FIG. 3. (a) Normalized power spectrum P ¼ A2Ndata=ð4σ2Þ
obtained from the fit (blue line). The black line shows the
95% confidence limit (C.L.) of the simulated noise spectrum for
each frequency bin. The green solid and dashed lines indicate the
detection thresholds (see text) calculated by a Monte Carlo
simulation and a theoretical calculation, respectively. (b) Ampli-
tude spectrum A (blue line) and upper limits of A at the
95% confidence level (red line).
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bin width was determined byΔf ¼ 1=T total, resulting in the
total bin number of Nf ¼ 1262. We also defined the
normalized power spectrum P ¼ A2Ndata=ð4σ2Þ [43,82],
where σ2 ¼ ð2.5 × 10−15Þ2 denotes the variance of the
Yb=Cs data. Figures 3(a) and 3(b) show the obtained
power P and amplitude A as a function of f, respectively
(blue lines).
To determine whether we observed a signal exceeding a

noise level, an expected noise power spectrum was calcu-
lated by a Monte Carlo simulation with a white frequency
noise model [60]. The black line in Fig. 3(a) shows the
95% confidence level of the noise spectrum for each
frequency bin. We found several events exceeding this
level, since many frequency bins (Nf ¼ 1262) were inves-
tigated. To take account of this so-called look-elsewhere
effect, we defined a detection threshold [24,43] such that
the probability of finding a noise above this threshold is 5%
for a search involvingNf bins [83]. The detection threshold
was calculated by a Monte Carlo simulation and a theo-
retical calculation [60], and is shown in Fig. 3(a) (green
line). We observed no signals exceeding the detection thres-
hold. Figure 3(b) shows upper limits of the amplitudes at

the 95% C.L. (red line) [60]. These limits are model-
independent results of this Letter.
Upper bounds on the coupling coefficients dα, dme

, dmq
,

and dg were transformed from the amplitude limits using
Eq. (4), assuming that these respective couplings dominate.
Interferences between the scalar field oscillations arise
from a velocity distribution of the scalar fields in our
Galaxy, resulting in a temporal variation of the field
amplitude φ0 [84]. Since search periods by atomic clocks
are typically shorter than expected coherence times of the
field oscillations (e.g., > 600 years in our target mass
regions) [85], the atomic clock experiments only sample
one of the possible values of φ0, indicating that φ0 should
not be treated as deterministic but stochastic. With an
assumed probability distribution of φ0 [84], the 95% C.L.
on dα, dme

, dmq
, and dg was therefore rescaled by a factor

of 3.0.
Figures 4(a)–4(d) show our 95% C.L. on the coupling

coefficients as a function ofmφ, together with those derived
from previous atomic clock measurements [41–43], an
optical clock network [24], Dy spectroscopy [82], and also
equivalence principle tests in which differential

FIG. 4. Exclusion plots for (a) dα, (b) dme
, (c) dmq

, and (d) dg at the 95% confidence level, assuming that these respective couplings
dominate. The shaded areas show excluded regions set by our Yb=Cs measurement, previous atomic clock measurements of Si=Sr [41],
Yb=Sr [42], Alþ=Hgþ [42], Alþ=Yb [42], Rb=Cs [43], Si/H [41] ratios, an optical clock network [24], Dy spectroscopy [82],
equivalence principle tests by University of Washington (UW) [86], and the MICROSCOPE satellite experiment [87]. To take account of
interferences between the scalar field oscillations [84], the limits derived from the atomic clocks and the Dy spectroscopy are rescaled by
a factor of 3.0, which reduces the exclusion areas.
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accelerations between two macroscopic objects have been
measured [86,87]. The equivalence principle tests search
for a Yukawa force mediated by the virtual exchange of the
scalar field. Thus, the limits set by these tests are not
affected by the interference effect of the oscillation. We set
new limits on dme

at the range from mφ ¼ 10−22 to
10−20 eV=c2. The most stringent limit was dme

≲ 1.6 ×
10−6 at mφ ∼ 5 × 10−22 eV=c2, which was improved by a
factor of ∼103. In spite of the relatively stringent con-
straints on dg by the equivalence principle tests, which is
because the mass of a macroscopic object mostly consists
of the nucleon mass [18,19], we improved the limits on dg
at the range from mφ ¼ 10−22 to 10−21 eV=c2. While the
constraints on the other coefficients dα and dmq

are not
improved in this Letter, our limits are complementary to
those of previous works.
Since the frequency of NMIJ-F2 realizes the de-

finition of the SI second, the measured Yb=Cs ratio yields
the absolute frequency of Yb. From the weighted mean
value of the ratio in Fig. 2(a), we obtained the absolute
frequency fYb ¼ 518 295 836 590 863.69ð28Þ Hz with a
fractional uncertainty of 5.3 × 10−16 [60]. Our measured
frequency was in good agreement with previous values
[34,45,88–91] at the 10−16 levels. We note that the previous
values were mostly obtained by remote comparisons with
some specific Cs fountains via satellite links, implying that
correlations exist among these values. Our local Yb=Cs
measurement provides an independent result with its
uncertainty better than those of previous local measure-
ments [88,92].
In conclusion, we have searched for harmonic oscillation

signals from long-term comparison data between NMIJ-
Yb1 and NMIJ-F2. We improved constraints on dme

in the
mass range from mφ ¼ 10−22 to 10−20 eV=c2 and dg in the
range of mφ ≲ 10−21 eV=c2, assuming that these coupling
strengths dominate. Especially, limits on dme

at mφ ∼ 5 ×
10−22 eV=c2 were improved by 3 orders of magnitude.
This Letter has demonstrated that long-term operation of an
optical clock extends the discovery reach of dark matter
searches, which can motivate other groups to extend
operation periods [93]. Robust optical clocks should also
contribute to the search for annual variations of funda-
mental constants [36] and topological defects [24,25].
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Note added.—While completing the manuscript, we found
recent results of the MICROSCOPE experiment that have
improved the limit on the violation of the equivalence
principle by a factor of 4.6 [94].
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