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We establish a generic, fully relativistic formalism to study gravitational-wave emission by extreme-
mass-ratio systems in spherically symmetric, nonvacuum black hole spacetimes. The potential applications
to astrophysical setups range from black holes accreting baryonic matter to those within axionic clouds
and dark matter environments, allowing one to assess the impact of the galactic potential, of accretion,
gravitational drag, and halo feedback on the generation and propagation of gravitational waves. We apply
our methods to a black hole within a halo of matter. We find fluid modes imparted to the gravitational-wave
signal (a clear evidence of the black hole fundamental mode instability) and the tantalizing possibility to
infer galactic properties from gravitational-wave measurements by sensitive, low-frequency detectors.
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Introduction.—The birth of gravitational-wave (GW)
astronomy ushered in a new era in gravitational physics
and high-energy astrophysical phenomena [1,2]. GWs
carry unique information about compact objects, most
notably black hole (BH) systems, and grant us access to
exquisite tests of the gravitational interaction in the strong
field, highly dynamical regime [3–9].
They also bear precious information about the environ-

ment where compact binaries live [10–14]. This knowledge
is important per se, and may inform us on how compact
binaries are formed [15] or how BHs grow and evolve
over cosmic times [16]. In addition, GWs are sensitive to
accretion disk properties [17] and even on fundamental
aspects, such as the existence of dark matter spikes in
galactic centers [18–21]; on possibly new fundamental
degrees of freedom that can condense around spinning BHs
[22,23]; and finally on the nature and existence of BHs, as
well as whether they are well described by the Kerr family,
a quest which demands environmental effects to be disen-
tangled from purely gravitational ones.
The above questions require a precise modeling of com-

pact binaries in a fully relativistic setting. Unfortunately,
the state of the art adopts at least one of the following
approximations: a slow-motion quadrupole formula to esti-
mate GW emission and the dynamics [24–27], Newtonian
dynamical friction, or vacuum backgrounds. Recent
attempts to refine the analysis by including some relativistic
effects indicate that these can have a significant impact on

the conclusions one makes regarding detectability and
parameter estimation [21,28,29].
Here—based on classical works on perturbation theory

[30–37]—we develop a generic, fully relativistic formalism
to handle environmental effects in extreme-mass-ratio
inspirals (EMRIs) in spherically symmetric, but otherwise
generic, backgrounds. These are inherently relativistic
systems, expected to populate galactic centers and be
observable with the upcoming space-based LISA mission
[38–41], and for which Newtonian approximations are ill
suited. Our framework is able to treat GW generation and
propagation, but also includes matter perturbations and
therefore is able to capture other environmental effects,
such as dynamical friction [28,29], accretion, and halo
feedback, and will be important to understand mode exci-
tation or depletion of accretion disks, and even viscous
heating in these systems. We use geometric units G¼c¼1

everywhere.
Setup.—We wish to study a static, spherically symmetric

spacetime describing a BH immersed in some environment,
like an accretion disk or a dark matter halo, with line
element

ds2 ¼ gð0Þμν dxμdxν ¼ −aðrÞdt2 þ dr2

bðrÞ þ r2dΩ2; ð1Þ

where dΩ2 is the line element of the two-sphere, and
characterized by a (anisotropic) stress tensor [42]
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Tenvð0Þ
μν ¼ ρuμuν þ prkμkν þ ptΠμν; ð2Þ

where ρ is the total energy density of the fluid, pr and pt are
its radial and tangential pressure respectively, uμ the four
velocity of the fluid, kμ a unit spacelike vector orthogonal
to uμ, such that kμkμ ¼ 1 and uμkμ ¼ 0, and Πμν ¼ gμν þ
uμuν − kμkν is a projection operator orthogonal to uμ and kμ

(environmental quantities are hereafter denoted with a
superscript “env”). The functions aðrÞ and bðrÞ are to
be determined by the physics; to prevent clustering
throughout the text we drop the ðt; rÞ dependence from
all functions, unless necessary. We leave them general for
most of the main body, but specialize to the physics of a
supermassive BH surrounded by a halo of matter when
necessary. The corresponding solution, which we will term
galactic BHs (GBHs), was recently derived [43] and is
characterized by the BH mass MBH, halo mass M, and its
spatial scale a0 (see also Refs. [44,45] for generalizations
and applications).
We now envision a secondary object of mass mp (a star,

asteroid, or stellar-mass BH for example) orbiting the
above primary BH and causing perturbations to the geo-
metry and matter stress tensor,

gμν ¼ gð0Þμν þ gð1Þμν ; Tenv
μν ¼ Tenvð0Þ

μν þ Tenvð1Þ
μν ; ð3Þ

where a superscript “(1)” denotes perturbations.
The spherical symmetry of the background allows for a

separation of variables in the first-order quantities, expand-
ing into tensor spherical harmonics, classified as axial and
polar, according to their properties under parity [46–48]. In
the Regge-Wheeler gauge [35,36,46–48], these are defined
by radial functions hlm0 , hlm1 (axial) and Klm, Hlm

0 , Hlm
1 ,

Hlm
2 (polar), and a set of angular basis functions [35,36,49].
The perturbations induced by the orbiting object on the

environment are known once its pressure, density, and
velocity fluctuations are computed. These can also be
expanded in harmonics. For example, a scalar quantity
X ¼ pt; pr; ρ will have a perturbation Xð1Þ expanded as

Xð1Þ ¼
X∞

l¼2

Xl

m¼−l
δXlmðt; rÞYlmðθ;ϕÞ; ð4Þ

with Ylmðθ;ϕÞ being the standard spherical harmonics on
the two-sphere. A similar procedure is applied to any vector
quantity.
Finally, a barotropic equation of state provides a further

relation between pressure, density variations, and the
medium’s speed of sound via

δplm
t;r ðt; rÞ ¼ c2st;rðrÞδρlmðt; rÞ: ð5Þ

Here, csrðrÞ and cstðrÞ are, respectively, the radial and
transverse sound speeds. The explicit perturbed equations

are shown in the Supplemental Material [50] (see also
Ref. [33] if a ¼ b).
With the above procedure, perturbations to the environ-

mental stress tensor are completely characterized. The
source of these perturbations is modeled as a pointlike
object with stress tensor

Tμν
p ¼ mp

Z
uμpuνp

δð4Þðxμ − xμpðτÞÞffiffiffiffiffiffi−gp dτ; ð6Þ

where mp is the mass of the secondary, τ its proper time,
xμpðτÞ its world line, and uμp ¼ dxμp=dτ its four velocity.
This stress-energy tensor can also be decomposed in terms
of the angular basis [48,49], thereby separating the equa-
tions of motion. We will always assume that the pointlike
secondary is on a geodesic of the background spacetime
[Eq. (1)], and use this to simplify the equations of motion.
Evolution equations.—The perturbations are described

by wave equations with a principal part expressed in terms
of the operator Lv ¼ v2∂2=∂r2� − ∂

2=∂t2, with v the field’s
characteristic speed of propagation. Specifically, axial
perturbations propagate with the speed of light v ¼ 1
and are simply described in terms of a master variable
χ ¼ hlm1

ffiffiffiffiffiffi
ab

p
=r, governed by the equation

L1χ − Vaxχ ¼ Sax; ð7Þ

Vax ¼ a
r2

�
lðlþ 1Þ − 6mðrÞ

r
þm0ðrÞ

�
; ð8Þ

with mðrÞ ¼ r½1 − bðrÞ�=2, the tortoise coordinate is
defined by dr�=dr ¼

ffiffiffiffiffiffi
ab

p
, and the source term depends

on the motion of the point particle (explicit expressions for
circular motion are shown in the Supplemental Material
[50]). The polar sector can be re-expressed as a system of
three “wavelike” equations for ϕ⃗ ¼ ðS; K; δρÞ,

L̂ ϕ⃗ ¼ B̂ϕ⃗;r� þ Â ϕ⃗þS⃗1; ð9Þ

with S ¼ a=rðH0 − KÞ and L̂ ϕ⃗ ¼ ðL1ϕ1;L1ϕ2;Lcsr
ϕ3Þ,

i.e., ϕ1, ϕ2 have characteristic velocity v ¼ 1, and ϕ3

has v ¼ csr .
We also study perturbations in the frequency domain

by Fourier transforming the evolution equations. Instead
of a second-order system for the polar sector, we worked
instead with the first-order system

dψ⃗
dr

¼ α̂ ψ⃗ þS⃗2; ð10Þ

with ψ⃗ ¼ ðH1; H0; K;W; δρÞ, and W a fluid velocity
quantity. The matrices Â, B̂, α̂, as well as source vectors
S⃗i are shown in the Supplemental Material [50]. Particle
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contributions enter as a source term S⃗1, S⃗2 for the metric
variables.
We solve the above problem with two independent

codes, based on different approaches, one in the time
and the other in the frequency domain. Both use a
smoothed distribution to approximate the point particle,ffiffiffiffiffiffi
2π

p
σδðr − rpÞ ¼ expð−ðr − rpÞ2=ð2σ2ÞÞ where the width

σ is varied to assess numerical convergence. In the axial
sector, the time domain code follows Refs. [51,52] which
places the outer boundary condition at future null infinity
by using the same hyperboloidal layers employed there. In
the polar sector, the equations are solved in the usual radial
tortoise cooordinate with physical boundaries placed suffi-
ciently far, so that the physical quantities are extracted
within the wave equation’s causality domain and in a near
vacuum region. For example, if we evolve the system for
t ¼ 103MBH and extract at rext� ¼ 500MBH, then the outer
boundary should be placed further than rout� ¼ 103MBH to
prevent any signal from being reflected back and affect the
field values at the extraction radius. Unless stated other-
wise, we use rext� ¼ maxf102a0; 103MBHg as the extraction
radius in the time domain code for the polar sector. The
frequency domain code follows the framework from
Ref. [53] in both sectors, with outer physical boundaries
placed at rext ¼ max f103=Ωp; 2a0g, with Ωp the orbital
angular frequency. For the gravitational perturbations, we
impose usual outgoing boundary conditions there and
vanishing Dirichlet boundary conditions for the matter
variables. The results from all codes agree within the
numerical error when varying these parameters. Once the
metric variables are computed, fluxes in GWs can be
calculated. Our two codes are made freely available to
the community [54,55].
Boundary conditions and sound speed.—Environments

cause the presence of density waves that couple to gravity.
To understand their asymptotic behavior, it is sufficient to
examine a vacuum BH background of massMBH, to which
the field equations reduce very far or very close to the
horizon. For constant sound speeds, with the ansatz
δρ ¼ rαðr − 2MBHÞβΨ, we find that Ψ is governed by
the wave equation Lcsr

Ψ − VΨ ¼ 0 for

α ¼ 1

4

�
−5þ 1þ 4c2st

c2sr

�
; β ¼ −

3

4
−

1

4c2sr
; ð11Þ

with V ¼ Oðr−2Þ at infinity and V ¼ ½ð1 − c2srÞ=
ð8c2srMBHÞ�2 at the horizon. The explicit form of V and
wave equation for Ψ are identical to that obtained in
Ref. [34] for isotropic fluids, with a suitable change of
wave function H, once we identify csr ¼ cst. Thus, close to
the horizon density fluctuations propagate as an effectively
massive scalar of mass μeff ¼ ½ð1 − c2srÞ=ð8c2srMBHÞ�. A
rigorous analysis of the wave equation above is required to
understand all the details of the density waves around BHs;

however, based on knowledge of massive fields around
BHs [56–58], we expect an intermediate-time power-law
tail of the form Ψ ∼ t−5=6 sin ðμeffcsrÞ, caused by back
scattering in the near-horizon region and probably giving
way to another power-law behavior dictated by the asymp-
totic region far from the BH [58]. Our numerical results in
Fig. 1—for initial conditions δρ ¼ 0, ∂tδρ ¼ exp½−ðr�−
100MBHÞ2=2�, extracted at r� ¼ 1000MBH—support this
claim. We find excellent agreement with an oscillatory term
sin ðμeffcsrÞ and decay t−5=6. We find a similar behavior for
other values of csr .
Configurations with a matter profile that vanishes at the

horizon and spatial infinity have sound speeds expected to
vanish asymptotically. For sound speed profiles that vanish
as a power law at the boundaries, we find that regular
density fluctuations δρ must satisfy Dirichlet conditions.
We implement this restriction keeping csr constant every-
where, but imposing Dirichlet conditions on fluid variables
at some cutoff radius rcut close to the BH. It is now possible
to prove that the late time asymptotics is governed not by
the near-horizon but by the large-r asymptotic behavior and
that the field should decrease as t−3, independently of the
multipole l [56]. This is seen clearly in our simulations in
Fig. 1. The direct signal is followed by a universal power-
law tail δρ ∼ t−3, independently of cutoff radius rcut and
sound speed csr .
Environment and spectral stability.—From now on, we

always work with vanishing sound speeds at the bounda-
ries. It is clear from the above that there are two character-
istic speeds in the problem, the radial sound speed csr and
the light speed. Accordingly, and because the polar sector is
coupled, we expect to have two families of perturbations,
one led by gravity, traveling at the speed of light, and the
other led by matter fluctuations, traveling at csr . A clear

FIG. 1. Evolution of δρ in a Schwarzschild background with
csr ¼ 0.9, cst ¼ 0 with different boundary conditions imposed.
tarrival corresponds to the time of arrival of the first direct signal.
When δρ is left free at the horizon, an oscillatory tail sets in at late
times, consistent with that of a scalar field of mass μeffcsr .
Instead, when Dirichlet conditions are imposed at some cutoff
radius rcut (here rcut ¼ 3MBH), we find a universal power-law
decay independent of rcut and csr .
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example of the importance of this coupling is seen through
scattering a Gaussian wave packet of gravitational waves
(initial conditions identical to those of Fig. 1, but for the
metric function K). The metric perturbation K and δρ are
shown in Fig. 2. We see conversion from GWs to density
waves and vice versa, BH ringdown at early times, and a
long-lived mode at late times. This is in essence a fluid
mode, imprinted on the GW signal due to the coupling, and
a clear example of spectral instability in BH quasinormal
modes, which has attracted considerable interest recently
[11,59–63], here seen in a realistic astrophysical setting.
Fluxes from orbiting particles.—We have tested our

procedure and routines in the vacuum limit, i.e., using a
GBH geometry [43] with low value of the halo mass
M ¼ 10−6MBH, comparing the GW fluxes with those
obtained by the Black Hole Perturbation Toolkit (BHPT)
[64]. The results are summarized in Table I, and compare
favorably both between different implementations with the
BHPT tools in vacuum. It is clear from Table I that, for
fixed BH mass, the fluxes are smaller in the presence of a
halo. However, given that the binary sits at a nontrivial
gravitational potential set by the halo, decreasing fluxes
may amount to a redshift effect. We focus on realistic
environments, where MBH ≪ M ≪ a0. To linear order in
M=a0, dr=dr� ≈ ð1 −M=a0Þdr=drvac� where rvac� is the tor-
toise coordinate in a Schwarzschild geometry. Additionally,
for compact EMRIs (rp∼10MBH), Sax ≈ ð1 − 3M=a0ÞSaxvac.
Combining these, expanding Eq. (7) to linear order in
M=a0 one finds

d2ψ ax

dðrvac� Þ2 þ
�
ω2

γ2
− Vax

Schw

�
ψ ax ¼ γSaxSchw; ð12Þ

where γ ¼ 1 −M=a0 is a redshift factor. Thus, to linear
order in γ the axial signal from a GBH is identical to that

from a Schwarzschild BH, with redshifted frequency and
mass; in other words, the two setups are equivalent with the
identification

ðΩvac
p ;ωvac; mvac

p Þ →
�
Ωp

γ
;
ω

γ
; γmp

�
: ð13Þ

Axial perturbations do not couple to matter perturbations,
and a simple propagation redshift seems adequate. The
polar sector is more involved, and requires numerical study.
In Fig. 3, we present numerical results that confirm this

picture, showing fluxes as a function of the frequency of
the GWs being measured by a distant stationary observer.
For axial modes (l ¼ 2, m ¼ 1), the differences between a
vacuum and nonvacuum environment are seemingly large,
but as can be seen in Fig. 3, fluxes from a GBH are indeed
well described by redshifted fluxes in vacuum. The agree-
ment is all the better for larger halo mass M, smaller
compactness M=a0. For galactic configurations, it leads to
relative differences that are extremely small.
Note that for small scales, a0ω≲ 1, the radiation

wavelength is larger than the halo itself, and redshift is
suppressed. At large frequencies redshifted vacuum fluxes
are an excellent description of our results, for axial
perturbations. Indeed, we also find that quasinormal modes
conform to such a description since they are high-frequency
phenomena in this setup [65].
Polar fluctuations are coupled to the fluid, as we saw, and

a naive redshift is not sufficient to describe GW generation
and propagation. Figure 3 shows one of our exciting

FIG. 2. Evolution of the metric and density perturbation K, δρ,
withM ¼ 10MBH, a0 ¼ 10M. We impose Dirichlet conditions at
rcut ¼ 3MBH and csr ¼ ½ð2MBH þ a0Þ=ðrþ a0Þ�4, so that it
asymptotes to zero at large distances. At early times, BH
ringdown is excited (inset for K); at late times, we observe a
slowly decaying, fluid-driven mode with period ∝ a0. Notice a
mutual conversion between GWs and density waves.

TABLE I. Energy flux (in units of m2
p=M2

BH) emitted to infinity
in different modes by a particle in circular orbit around a GBH at
radius rp ¼ 7.9456MBH. We show results for vacuum (first line
of each mode) and for GBH with csr;t ¼ ð0.9; 0Þ, M ¼ 10MBH,

and a0 ¼ 10M. _Et
∞ is computed with a time domain integrator,

_Ef
∞ in the frequency domain, and _EBHPT

∞ corresponds to results
from the BHPT, available only in vacuum. l ¼ m modes
correspond to polar excitations whereas l ¼ mþ 1 correspond
to axial ones.

l m _Et
∞ _Ef

∞ _EBHPT
∞

2 1
8.1629 × 10−7 8.1631 × 10−7 8.1631 × 10−7
6.9156 × 10−7 6.9158 × 10−7

2 2
1.7068 × 10−4 1.7062 × 10−4 1.7062 × 10−4
1.6077 × 10−4 1.6208 × 10−4

3 2
2.5198 × 10−7 2.5199 × 10−7 2.5198 × 10−7
2.1611 × 10−7 2.1612 × 10−7

3 3
2.5490 × 10−5 2.5473 × 10−5 2.5471 × 10−5
2.3163 × 10−5 2.3140 × 10−5

4 3
5.7750 × 10−8 5.7749 × 10−8 5.7749 × 10−8
5.0252 × 10−8 5.0252 × 10−8

4 4
4.7352 × 10−6 4.7260 × 10−6 4.7253 × 10−6
4.0458 × 10−6 4.0823 × 10−6
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findings: polar perturbations are less prone to redshift
effects, even in regions of parameter space corresponding
to large, near-galactic scales. Thus, together with the axial
sector they are able to break possible degeneracies, with
sensitive, low-frequency detectors.
Independently of that, our results clearly indicate the

ability of GWastronomy to strongly constrain smaller scale
matter distributions around BHs. At ωMBH ¼ 0.02, the
relative flux difference between a vacuum and a GBH with
M ¼ 0.1MBH and a0 ¼ 102M; 103M is ∼10%; 1% respec-
tively. These numbers are within reach of next generation
detectors [66]. Compare with GRAVITY’s constraints on
the environment of the Sgr A� star [67], but note that GW
astronomy allows similar constraints for a large number of
sources.
Discussion.—Our Letter serves as a proof-of-concept for

the ability to study environmental effects in GW physics
at a full relativistic level. A natural next step is to apply it
to other environments, for example by taking input from
recent GRMHD simulations of accretion [12,68], or to add
rotation to the BH.
The application of our relativistic framework to galactic

EMRIs immersed in a halo shows that environments can
easily destabilize the BH spectra, as had recently been
suggested with toy models [11,60–63]; it is unknown at this

point if environmental resonances can be excited by
supermassive BHs, long before merger; however, our
results show how the coupling to the environment changes
GW generation and propagation.
Nonetheless, there are important issues that remain to

be answered. The energy flux emitted in GWs contains
contributions directly from the binding energy of the binary
but also from the environment. It is unclear if energy
balance arguments alone are sufficient to evolve such
systems, even in an adiabatic approach, or if self-force
methods [69] are necessary, and whether they too need to
be modified to take environments fully into account. This
aspect is of particular relevance if the binary is able to
resonantly excite the proper modes of the environment. In
addition to energy carried by GWs, there will also be
viscous heating, which can be included in the formalism.
We plan to address some of these problems in future work.
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