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In this Erratum, we point out that the oversimplified approach in the Letter authored by one of us (Y. V. S.) led to limits on
a long-range neutrino-mediated force which were overestimated by a factor of 6 in nonhadronic atoms and underestimated
by about 5 orders of magnitude in the case of hadronic atoms and the deuteron binding energy. The qualitative conclusion of
this Letter, namely that atomic- and sub-atomic-scale experiments provide much better sensitivity to a long-range neutrino-
mediated force than macroscopic-scale experiments, remains unchanged.
The form of the potential associated with the long-range neutrino-mediated force, presented in this Letter, reads
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where σ1 and σ2 are the Pauli spin matrix vectors of the two particles, and ai and bi represent species-dependent parameters.
It is worth noting that the last (tensor) term in Eq. (1) is zero for s orbitals which are the atomic orbitals most strongly
affected by a long-range neutrino-mediated force.
A potential scaling as ∝ 1=r5 gives divergent integrals (

R
rc
d3r=r5 ≈ 1=2r2c) in the matrix elements for s-wave atomic

states. Using the nuclear radius R as the cutoff length scale, rc ¼ R, would give qualitatively incorrect results in the case of
the usual hadronic atoms. A more accurate approach requires first building an effective potential for the electron-quark
interactions and then taking into account the nucleon distribution ρðrÞ inside the nucleus. To include small distances, we
present the neutrino-exchange potential for the finite size R of a nucleus and cutoff for large momenta (small distances r)
produced by the Z-boson propagator 1=ðq2 þM2

ZÞ, instead of the contact form 1=M2
Z. To start with, we replace 1=r

5 in the
potential (1) above with the following function that takes into account nonzero values of momentum transfer q:
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where, for z≡MZ=ð2mÞ:
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Here, 2m is the mass of the fermion-antifermion pair appearing in the loop. The function FðrÞ ∝ IðrÞ=r gives us the
dependence of the interaction between an electron and quark (or an electron and another pointlike fermion) on the distance r
between them. For ℏ=ðMZcÞ ≪ r ≪ ℏ=ðmcÞ, FðrÞ ≈ 1=r5; at these intermediate distances, the neutrino-mediated potential
has the form in Eq. (1). On the long length scales r ≫ ℏ=ðmcÞ, FðrÞ ∝ expð−2mcr=ℏÞ=r5=2. At the short distances
r ≪ rc ¼ ℏ=ðMZcÞ, FðrÞ ∝ lnðrÞ=r and there is no divergence when the function FðrÞ is integrated over d3r. Note that the
behavior of the neutrino-exchange potential at short distances has been investigated recently in Ref. [1]; however, in that
paper, the potential was not studied in the context of the standard model, but instead the authors considered a new scalar
particle instead of the Z boson.
Convergence of the integral in the matrix elements of the neutrino-mediated potential, which is proportional to FðrÞ, at

the distance r ∼ rc ¼ ℏ=ðMZcÞ indicates that this interaction may be treated as a contact interaction in atomic and
subatomic systems. In such systems, we can hence replace FðrÞ by its form in the contact limit, FðrÞ → CδðrÞ:
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where we have assumed that z ¼ MZ=ð2mÞ ≫ 1. Note that if we were to assume the potential form 1=r5 with the cutoff
rc ¼ ℏ=ðMZcÞ, the result would be 6 times larger:
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Using Eq. (4), the potential in Eq. (1) may be presented as follows in the contact limit:
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where we have implemented the natural units ℏ ¼ c ¼ 1.
Using the potential in Eq. (6), we find that the limits in our Letter on a long-range neutrino-mediated force were

overestimated by a factor of 6 in nonhadronic atoms and underestimated by 5 orders of magnitude in hadronic atoms. The
corrected limits based on the 1S − 2S transition in positronium, ground-state hyperfine splitting (HFS) in positronium,
ground-state hyperfine splitting in muonium, as well as the 1S − 2S isotope shift in hydrogen and deuterium are as follows:

G2
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G2
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F hydrogen-deuterium 1S − 2S: ð10Þ

In the case of the deuteron nucleus, the wave function may be found by noting the short-range character of the strong
interaction between nucleons and the relatively small binding energy of deuteron. In the region outside the interaction range
r0 ≈ 1.2 fm, we use the solution to the zero-potential Schrödinger equation, whereas within the interaction range, the wave
function has a constant value for the s state:

ψðrÞ ¼
�
B expð−κrÞ=r for r > r0;

BJð0Þ=r0 for r < r0;
ð11Þ

where the normalization constant B is given by 4πB2 ¼ 2κ, with κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjEBj

p
≈ 46 MeV, m ≈mp=2 being the reduced

system mass and jEBj ≈ 2.22 MeV the binding energy. The Jastrow factor, Jð0Þ ≈ 0.4 [2], is included to account for
internucleon repulsion at short distances. Using first-order perturbation theory for the contact potential gδðrÞ in Eq. (6), we
obtain the neutrino-exchange-induced shift to the deuteron binding energy:
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Following our Letter, and comparing the measured [3] and predicted [4,5] values of the deuteron binding energy, we find the
corrected limit:

G2
eff < 1.2 × 104G2

F; ð13Þ

which is about 5 orders of magnitude stronger than the limit previously calculated in our Letter. The difference is mainly due
to the distance cutoff scale being set by the Z-boson Compton wavelength, instead of the nuclear length scale used in our
Letter. Formally, this looks like the second strongest constraint among two-body systems, with the strongest constraint
coming from the ground-state hyperfine splitting in muonium. However, deuteron is a system whose structure is
predominantly governed by the strong interaction, and so the constraint in Eq. (13) is probably less reliable than the
constraints from nonhadronic atoms.
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