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The Onsager reciprocity relations were formulated in the context of irreversible thermodynamics, but they
are based on assumptions that have a wider applicability. Here, we present simulations testing the Onsager
relations between surface-coupled diffusive and bulk fluxes in a system prepared in a nonequilibrium steady
state. The system consists of a mixture of two identical species maintained at different temperatures inside a
channel. In order to tune the friction of the two species with the walls independently, while keeping the
particle-wall interaction potentials the same, we allow the kinematics of particle-wall collisions to be
different: “bounce-back” (B) or “specular” (S). In the BB case, diffusio-capillary transport can only take
place if the two species have different temperatures. We find that the Onsager reciprocity relations are
obeyed in the linear regime, even in the BB case where all fluxes are the result of perturbing the system from
a nonequilibrium steady state in a way that does not satisfy time-reversal symmetry. Our Letter provides a
direct, numerical illustration of the validity of the Onsager relations outside their original range of
application, and suggests their relevance for transport in driven or active systems.
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Introduction.—The theory of irreversible thermodynam-
ics deals with the situation where there is a linear relation
between thermodynamic fluxes jα and the thermodynamic
driving forcesXβ: here, α denotes the type of flux (heat flux,
diffusion flux, volume flow, etc.) and β denotes the different
forces: ∇1=T, ∇μ=T, ∇P=T, etc. In general, forces are not
just driving their “conjugate” flux, such as when ∇1=T is
driving the heat flux, but also other fluxes, as long as the
coupling is symmetry allowed. The constitutive equations
are then of the form

jα ¼ LαβXβ: ð1Þ

Onsager [1] showed that, for nonrotating systems, and in
the absence of magnetic fields, the transport matrix L is
symmetric. There exist many derivations of the Onsager
reciprocity theorem, but the simplest, and most general
one (see, e.g., [2]) shows that only a few properties of
the state variables of the system are important: (1) the
probability distribution of fluctuations must be locally
Gaussian, (2) the driving forces are the spatial derivatives
of the log of the probability distribution of the state
variables, (3) the relation between fluxes and small driving
forces is linear, and (4) the underlying equations of motion

satisfy microscopic reversibility. The above conditions do
not restrict the reciprocal relations to systems weakly
perturbed from the thermodynamic equilibrium. However,
their validity is not self-evident for systems [3] that are
driven to a strongly nonequilibrium steady state.
In this Letter, we test the validity of the Onsager

reciprocal relations for a simple model of a driven non-
equilibrium system where fluxes and driving forces are well
defined. Our model is chosen such that it is in a non-
equilibrium steady state, even in the absence of driving
forces. Importantly, the underlying equations of motion of
the driven system do not satisfy microscopic reversibility.
We first verify that the Onsager relations hold in the limit
where we apply forces to the system that fluctuates around
equilibrium, and subsequently test if they remain valid when
the system is initially in a steady state far from the
thermodynamic equilibrium. We note that the Onsager
relations have been extensively verified in experiments
on systems perturbed from equilibrium (for an early review,
see Ref. [4]), but to a lesser extent in simulations (see e.g.,
Ref. [5]). In particular, there are, to our knowledge, no
systematic numerical tests of the Onsager relations for
systems that are perturbed from a nonequilibrium steady
state. One reason may be that is not easy to achieve
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sufficient numerical accuracy, because surface-induced
coupling of fluxes is usually weak, and long runs are
needed to performmeaningful tests of the Onsager relations.
In our simulations, we consider an equimolar fluid

mixture of two components [labeled hot (H) and cold
(C)] in a channel bounded by two flat hard walls at a
distance Δz ¼ W. Periodic boundary conditions are applied
in x and y directions. Figure 1 shows the schematic setup of
the simulations.
The proper description of the relation between forces and

fluxes requires some care, as we cannot assume that the
local-equilibrium relations of irreversible thermodynam-
ics hold.
For systems perturbed from equilibrium at a fixed

temperature T, the fluxes of the particles are driven by
the gradients of the chemical potentials of the two species,
or equivalently, by a pressure gradient and a chemical
potential gradient at constant pressure: in the absence of
cross couplings, the pressure gradient causes a bulk flow,
but no diffusive flux and the chemical potential gradient
causes a diffusive flux, but no bulk flow.
In simulations of systems with periodic boundaries, it is

often convenient to replace −∇μi, the gradient of the
chemical potential of species i by an equivalent “color”
force Fi, which acts only on that species [6–8]. In what
follows, we will study the response to imposed color forces

of a driven system. The reason why we consider the effect of
color forces, rather than that of −∇μi, is that mechanical
forces keep their meaning even for systems far from
thermodynamic equilibrium [see Supplemental Material
(SM) [9] ].
All particles interact through the same, purely repulsive

Weeks-Chandler-Andersen potential [10]: uðrÞ ¼
4ϵ½ðσ=rÞ12 − ðσ=rÞ6 þ 1=4� for r < 21=6σ, and uðrÞ ¼ 0
elsewhere. In what follows, we will use reduced units, such
that the units of length, energy, and mass are, respectively,
σ, ϵ, and m (the mass of a particle). The unit of time is
then

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
.

In our Letter, we maintain two classes of particles at
different temperatures: hot and cold. The H and C particles
are subject to “color forces” FH and FC acting along the x
direction. We consider an equimolar mixture of H and C
particles. The total number of particles, N ≡ NC þ NH,
was either 1000 or 2000 (see below). We carried out
simulations at a number density ρ ¼ N=ðL2WÞ ¼ 0.405. In
general, in the simulations of driven systems, the bounda-
ries have an effect on the behavior. In order to be able to
separate bulk from boundary-induced properties, we
worked with sufficiently wide channels, i.e., the width
W is chosen such that a slab in the middle of the channel
(the “bulk”) is not affected by the boundaries: W ≈ 13.52
for N ¼ 1000 and W ≈ 27.04 for N ¼ 2000. The length of
channel L is equal to 13.52 in both cases.
We maintain the nonequilibrium steady state by thermo-

statting the two species at different temperatures. To ensure
that we can observe hydrodynamic behavior, we use a
variant of the Lowe-Andersen (LA) thermostat [11],
because it is local and momentum conserving. We modified
the LA thermostat such that it regularly updates the relative
kinetic energy ofHH orCC pairs, sampling fromMaxwell-
Boltzmann distributions at temperatures TH and TC,
respectively. In the simulations, we determine the temper-
ature from the kinetic energy of the particles. T denotes the
measured average temperature of the entire system, and
ΔT=T is the relative temperature difference between the
two species. We performed simulations at two different
strengths of the thermal driving: in the weakly driven state,
we applied the Lowe-Andersen thermostat to one particle
pair per time step (N ¼ 1000), in the strongly driven state
the thermostat is applied to twenty particle pairs per time
step (N ¼ 2000). In order to be able to compare simulations
on different system sizes, we define Γt, the rate of thermo-
statting, as the number of thermalizing collisions per time
step divided by N. Thus, the weak and strong thermal
driving in our simulation correspond to Γt ¼ 10−3 and
Γt ¼ 10−2, respectively. All data for ΔT=T > 0.15 were
obtained with Γt ¼ 10−2. We find that the strength of the
thermostat does influence the viscosity of the system (see
Fig. S6 in SM [9]), but not our findings about the validity of
the Onsager relations.

FIG. 1. Schematic illustration of the system: the fluid of hot and
cold particles is confined between two parallel flat square walls
with size L × L fixed at a separation W in the z direction. The
system is periodically extended in the x and y directions and all
the forces are applied in the x direction. The drawing represents
an xz cross section of the system. It illustrates the specular and
bounce-back collision rules. Dashed lines represent infinitely thin
specular walls implemented to determine the fluxes in the “bulk”
of the channel (see text). Particles on either side of such a wall can
interact with each other. However, they cannot cross these walls:
rather they undergo specular reflection.

PHYSICAL REVIEW LETTERS 129, 238002 (2022)

238002-2



The sustained application of the double thermostat
maintains a steady energy flow from the H to the C
particles, ensuring that the two species have different
average temperatures. Note that a steady energy flow
imposes an “arrow of time” and therefore violates micro-
scopic reversibility.
When a particle of either species encounters one of the

flat hard walls of the channel, its velocity will either be
reversed (“bounce back”: B), or only its normal velocity
will change sign (“specular”: S). For a one-component
fluid, the S and B collision rules roughly mimic slip and no-
slip boundary condition (see, e.g., Ref. [12]). In real
systems, the friction with the walls is determined by
intermolecular interactions, but then the two species would
have different adsorption profiles, even in equilibrium. The
advantage of controlling the wall friction by kinematics,
rather than by varying the particle-wall potential is that the
different kinematic rules do not affect the density profiles at
the walls, at least in equilibrium.
In our simulations, we studied the BB, BS, and SB cases,

where the first and second letter refers to the cold and hot
particles. We define the average velocity of the H and C
particles as vH;C ≡ ð1=NH;CÞ

PNH;C
i¼1 vH;C

i . Then the fluxes
JH and JC of the hot and cold particles are defined as
JH;C ¼ ðNH;C=LÞ × vH;C, and the total flux JT ¼ JH þ JC.
We note that part of the flux of each species is due to
advection of the bulk mixture by the fluid flow. For a given
particle type, say for cold particles, the advection flux is

given by JadvC ¼ JTρ
ðBÞ
C =ðρðBÞC þ ρðBÞH Þ, where ρðBÞC;H are the

densities of the cold and hot particles in the bulk. The
diffusive flux is then the remaining part of the particle
flux: JD ¼ JC − JadvC .
In this model, we can study two kinds of cross-coupling

between fluxes. First of all, in the bulk of the fluid, a force
on one species will also induce a bulk flux in the other
species. This cross-coupling is large, and hence testing the
Onsager relations is easy. More interestingly, we can
consider the whole system, including the boundary layers,
and test how the presence of the walls creates a coupling
between the total particle flux and the diffusive flux. This is
particularly interesting in the BB case, for which there is no
coupling unless the two species are at different temper-
atures. In the absence of surface effects, the eigenvectors of
transport matrix [Eq. (1)] correspond to pure flow and pure
diffusion. However, in the presence of walls, the transport
matrix could develop off-diagonal elements mixing diffu-
sion and flow.
We first determine the transport matrix for the bulk of the

system and check whether this matrix satisfies the Onsager
symmetry. Next, we determine the transformation that
diagonalizes the bulk transport matrix. This transformation
will only diagonalize the transport matrix of the whole
system if there is no surface-induced coupling between
diffusion and flow. Finally, we test if the transport matrix of

the whole system satisfies the Onsager symmetry, even for
a thermally driven system.
We carry out all simulations in the linear regime (see

Fig. 2); therefore, we can use any linearly independent pair
of forces to determine the transport matrix. Once the matrix
has been computed for a given set of forces, it can be
transformed to any other set. Denoting the color forces on
the hot and the cold particles by FH and FC, we performed
one simulation with fFH; 0g and one with f0; FCg. The
color forces act along the x direction (see Fig. 1). To

compute the transport matrix for the bulk of the fluid (LðBÞ
αβ ),

we study the relation between forces and fluxes along the
length of the channel, in a slab of fluid of width 6σ for
Γt ¼ 10−3 (8σ for Γt ¼ 10−2) that is sufficiently far
removed from both walls to eliminate direct surface induced
effects (the density profiles of the H and C particles are
shown in Fig. S1 of Supplemental Material [9]).
Note that to compute the transport matrix of the bulk

material, we only impose forces within the “bulk” slab, and
only measure the fluxes in this slab. We impose infinitely
thin specular walls between the fluid inside and outside the
slab, to ensure that the color forces always act on the same
set of particles. To correct for the fact that the specular walls
suppress compositional fluctuations in the slab, we aver-
aged the results over 800 simulations with independent
initial conditions. In contrast, when computing the trans-
port matrix of the whole system, we impose uniform forces
along the channel throughout the system and measure the
total resulting fluxes.

FIG. 2. Relation between the fluxes and the force FC acting on
cold particles only (FH ¼ 0) for the system with BB boundary
conditions and ΔT=T ¼ 0. We plot the ratio J=FC in order to
visualize the range of validity of the linear response. The symbols
represent the “cold” particles JC=FC (blue squares) and “hot”
particles JH=FC (red triangles). In the inset, J=FC is plotted
against F2

C to quantify the lowest-order nonlinear term. All
simulations in the main text were carried out with forces of
magnitude 0.01, which is clearly deep within the validity of the
linear response. A systematic overview of this relation for all
parameters, can be found in SM (Figs. S2–S5) [9].
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We carried out some 800 independent simulations for
every data point. The length of a typical simulation was
6 × 106 time steps, where the length of each time step was
dt ¼ 0.001 in reduced units. Every run was preceded by an
equilibration run of 106 time steps. Fluxes were measured
every 6000 time steps. We verified that successive samples
were not significantly correlated.
We first verified that the relation between forces and

fluxes was linear for the conditions where we compute the
transport matrices (see Fig. 2 and Figs. S2–S5 in SM [9]).
In the linear regime, the relation between forces and fluxes
can be described by Eq. (1). Note that in the bulk, the flux
of the species on which the force acts is only slightly larger
than the resulting flux of the other species. Such behavior is

to be expected as the force on one species causes a net flow
of the mixture containing both species. In systems driven
from the equilibrium state, the two species in the system (H
and C) are at the same temperature, and we expect the
Onsager relation to hold: LHC ¼ LCH. However, in our
thermally driven simulations of systems perturbed from a
nonequilibrium steady state, we considerΔT values that are
up to 80% of the average temperature. Therefore, while we
work in the regime where the driving forces are small, our
simulations are very far out of equilibrium.
In what follows, we report both the transport matrix LðBÞ

for bulk of the system, and the transport matrix L for the
whole system. As can be seen from Fig. 3(a) the transport
matrices describing the relation between the color forces

FðBÞ
H and FðBÞ

C , and the particle fluxes JðBÞH and JðBÞC do
satisfy the Onsager relations as expected for ΔT ¼ 0, but
also for ΔT ≠ 0.
It is instructive to consider the eigenvectors of the

matrix LðBÞ. In the absence of surface effects, the two
(orthogonal) eigenvectors of this matrix correspond to
forces that induce either bulk flow or diffusion. In the SM
[9], we show the components of the matrix P that
diagonalize LðBÞ. At equilibrium, P can be directly
calculated from the composition of the bulk fluid. In
the case where all particles move with the same average
speed vðBÞ, i.e., in the absence of diffusive fluxes, we

would expect that vðBÞ ¼ JðBÞC =ρðBÞC ¼ JðBÞH =ρðBÞH , where
ρðBÞ denotes the bulk density of either species. In other
words, we expect diffusionless flow corresponding to

ρðBÞC JðBÞH ¼ ρðBÞH JðBÞC . As we know the bulk densities of our
system (see SM [9]), we can predict the matrix that
diagonalizes LðBÞ and compare it with numerical result.
The data in the SM [9] confirm that the situation
corresponding to pure diffusion and pure flow are indeed
eigenvectors of LðBÞ.
Figure 3(b) shows the ratio of off-diagonal elements of L

obtained from simulations in the entire channel. To quantify
the coupling between diffusion and flow due to the
boundaries of the channel, we apply the transformation
that diagonalizes LðBÞ, to L of the entire system. The
transformed matrix L0 would be diagonal in the absence of
the diffusion-flow coupling. The results for the (normalized)
off-diagonal elements of L0 are shown in Fig. 4.
We note that for the BB boundary condition, the off-

diagonal element coupling diffusive flux (D) and total flow
(T) vanishes atΔT ¼ 0, as it should, because the boundaries
have the same effect on both species. In contrast, for the BS
and SB cases, there is diffusio-capillary coupling even at
ΔT ¼ 0. More importantly: the numerical data are all
compatible with the assumption that the Onsager relations
still hold, even for diffusio-capillary coupling in a driven
system. We stress that the thermal driving can be very
strong: up to ΔT=T ¼ 0.8. The Onsager symmetries are
also satisfied in the BB case, where there is no coupling at

FIG. 3. Ratio of the off-diagonal elements of the transport
matrix relating the flux of cold (C) and hot (H) particles subject to
color forces FC and FH . The figure shows the results for weak
(Γt ¼ 10−3) and strong thermal driving (Γt ¼ 10−2). (a) Results
for the case where the applied forces and measured fluxes are
confined to the bulk of the system. (b) Results for simulations in
the entire channel (without the additional specular walls) with
surfaces-induced coupling between diffusion and flow. Note that
the SB and BS cases are distinct: one is obtained from the other
by permuting S and B, and replacing ΔT with −ΔT. In contrast,
the BB case is even inΔT. In spite of the linear dependence of the
SB and BS transport coefficients on ΔT, the Onsager relations
still seem to be satisfied. The error bars (about the size of the
symbols) correspond to one standard deviation.
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ΔT ¼ 0 and the cross coupling is completely due to the
thermal driving.
Our results strongly suggest that the Onsager relations are

robust outside the range of conditions for which they were
derived. Of course, absence of evidence is not evidence for
absence, and hence there certainly could be driven or active
systems, e.g., field-aligned polar or chiral active “swimmers,”
which violate time-reversal symmetry, for which the Onsager
relations are more likely to fail. It would be important to
understand if and when the Onsager relations fail.
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TD ≡ L0
TD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0
TTL

0
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L0
TTL

0
DD

p
(red). Note that the values of the elements of the transport matrix depend on the strength of the

thermal driving. However, the coincidence of red and blue lines shows that Onsager symmetry seems to be conserved. The unnormalized
matrix L0 is given in SM [9].
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