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For quasiparticle systems, the control of the quasiparticle lifetime is an important goal, determining
whether the related fascinating physics can be revealed in fundamental research and utilized in practical
applications. Here, we use double-layer graphene with a boron nitride spacer as a model system to
demonstrate that the lifetime of coupled Dirac plasmons can be remotely tuned by electric field-controlled
damping pathways. Essentially, one of the graphene layers serves as an external damping amplifier whose
efficiency can be controlled by the corresponding doping level. Through this damping switch, the damping
rate of the plasmon can be actively tuned up to 1.7 fold. This Letter provides a prototype design to actively
control the lifetime of graphene plasmons and also broadens our horizon for the damping control of other
quasiparticle systems.
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Lifetime is a key quantity for quasiparticles such as
exciton, plasmon, and phonon polariton, in their surround-
ings. A proper lifetime is a precondition for the various
unique properties and potential applications related to those
excitations, such as plasmonic metamaterial [1,2], exciton
Bose-Einstein condensation [3,4], and nanoacoustic reso-
nator [5,6]. Once the research objective is established, the
lifetime is generally perceived as an intrinsic property. Thus
many previous studies had sought to understand the
damping mechanisms or search for systems with intrinsic
optimal lifetime [7–11]. However, another possible appro-
ach is to actively harness the lifetime by adding an exter-
nally steerable modulator, analogous to the Purcell effect.
This would provide a convenient handle that could be
easily attached to various quasiparticle switching devices.
Nevertheless, related experimental and theoretical attempts
are rare.
The plasmon of graphene, originating from its Dirac

electron gas, possesses many intriguing properties such as
strong localization and low consumption [12–14]. More
intriguingly, the properties of the Dirac plasmon, such as
resonance frequency and strength, are closely related to the
Fermi energy of the graphene, which can be effectively
controlled by a bias voltage [15–17]. However, the plasmon
lifetime is almost at a constant level when the carrier
density is varied in an established graphene device
[15,18,19]. Only in specific hybrid systems, in which
the graphene plasmon interacts with intrasystem phonon

excitations or hybrid moiré superlattice bands, can the
plasmon lifetime be tuned by locally adjusting the Fermi
level [20,21]. Thus, a universal approach for manipulating
the graphene plasmon lifetime is still lacking.
Here, we fabricated graphene/BN/graphene heterostruc-

tures to investigate the properties of coupled Dirac plas-
mons and explore ways to actively control plasmon
lifetime. Through separate control of the Fermi energies
of the two graphene layers, we achieved wide-range
adjustment of plasmon intensity and wavelength. More
importantly, we demonstrate that by using the tunability of
the additional damping pathways, the lifetime of the
coupled Dirac plasmons can be effectively controlled by
the bias voltage. Essentially, one of the graphene layers acts
as a damping amplifier. Compared with previous studies
[20,21], this damping amplifier is external and tolerant to
various excitation energies, which makes it more flexible in
device design and transferable for lifetime control in other
quasiparticle systems.
The graphene/BN/graphene heterostructure supports

coupled plasmon modes arising from long-range inter-
layer Coulomb interactions [22–24]. The dispersions of the
coupled plasmons developed from two single-layer gra-
phene plasmons have two branches, called the optical mode
and the acoustic mode, representing in-phase and out-
of-phase charge oscillations, respectively, as shown in
Fig. 1(a). Figure 1(b) shows the schematic layout of the
heterostructure, which was produced by the conventional
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van der Waals assembly technique (see Sec. I of the
Supplemental Material [25]). Scattering-type scanning
near-field optical microscopy with an excitation light at
λ ¼ 10.695 μm was utilized to image the plasmon fringes
[15,16]. Figure 1(c) shows a typical near-field image,
where four distinct regions including a single-layer plas-
mon region (upper left) and coupled plasmon region (left
lower) can be clearly seen. The absolute carrier densities
are 7.3 × 1012 cm−2 for the top-layer graphene and 1.5 ×
1013 cm−2 for the bottom-layer graphene in the coupled
region. The plasmon wavelength is obtained from the
corresponding line profiles shown in Fig. 1(d). The wave-
length of the single-layer plasmon is 126.3 nm, consistent
with a previous report [18], while the observed coupled
mode, exhibiting a much longer wavelength, can be
identified as the optical mode shown in Fig. 1(a).
The dual-gate arrangement shown in Fig. 2(a) allows us

to separately control the carrier densities of the top and
bottom graphene layers (see Fig. S1 in the Supplemental
Material [25]). This flexibility is also reflected by the wide-
range tunability of the intensity, wavelength, and even the
lifetime of coupled plasmons. In the near-field images in
Figs. 2(c)–2(f), the carrier density of the top-layer graphene
in the coupled region (nt) is fixed at −9.8 × 1012 cm−2

(V int ¼ 3 V), while that of the bottom-layer graphene (nb)

is gradually increased by varying VBG. A substantial rise of
wavelength and intensity of the coupled plasmons is
evident in both the near-field images and the corresponding
line profiles [Fig. 2(g)]. Meanwhile, the plasmons in single-
layer region also alter obviously as ns (the carrier density
of the single-layer region) is also modified by VBG. For
comparison, we record the plasmon wavelength and inten-
sity for both the coupled and single-layer regions in
the same gating voltage range, and show the results in
Fig. 2(h). Distinctly, the tuning ranges for both the intensity
and wavelength of the coupled plasmons are much larger
than those of the single-layer graphene plasmon: 4.0 times
larger in terms of wavelength and 2.1 times larger in terms
of intensity. Moreover, a more comprehensive mapping
between the wavelength and both nt and nb is shown in
Fig. 2(i) (see also in Fig. S2 of the Supplemental Material
[25]), which demonstrates an even wider tuning range of
plasmon wavelength. Turning to the lifetime, we note a
special case where nb ≈ 0 with the Fermi level of the
bottom-layer graphene near the Dirac point as shown in
Fig. 2(c). In this case, as ns is similar to nt, the obtained
plasmon wavelength and intensity of the coupled region are
almost the same as those in the single-layer region.
Nevertheless, the propagation length of the coupled plas-
mon is obviously much shorter than that of the single-layer
plasmon, which indicates strong damping for the coupled
plasmon when nb is nearly 0.
To better understand the coupled plasmons, we inves-

tigated the system theoretically by using linear response
theory within the mean-field random-phase approximation
[22,26,27,37]. Figure 3(a) shows the dispersion of the
coupled plasmon, which is divided into three distinct
regions by the h-BN phonon bands (orange shaded regions)
[18,20,38]. Since the excitation energy is 115.9 meV [red
dashed line in Fig. 3(a)], we mainly focus on the middle
part between the two phonon bands. For comparison, the
dispersion of the single-layer graphene plasmon is also
shown as the black curve, with the calculated optical and
acoustic modes located on the left and right sides, respec-
tively. Since the acoustic mode has a very weak intensity,
the observed plasmon fringes are mainly attributed to the
optical mode. This assumption is also supported by an
excellent agreement between the experimental and theo-
retical results of the carrier density dependence of the
plasmon wavelength, as shown in Fig. 3(b). In addition to
the wavelength, the experimentally obtained intensities of
the plasmon are also shown in Fig. 3(b) as the color depth
of the red dots, whose variation tendency also agrees well
with the theoretical results.
The experimental lifetime of the plasmon can also be

obtained by fitting the plasmon line profiles (see Fig. S3
in the Supplemental Material [25]). The extracted damp-
ing rate γc is shown in Fig. 3(c) as black dots. For the fixed
nt ¼ −9.8 × 1012 cm−2, we find that when nb > 5.0×
1012 cm−2, γc is nearly constant, which is similar to the
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FIG. 1. Coupled plasmon modes in the separated double-layer
graphene system. (a) Simplified dispersions of coupled and
single-layer plasmon modes. (b) Sketch of the layered hetero-
structure with top graphene (green), interlayer h-BN (blue), and
bottom graphene (red). (c) Plasmon fringes in the graphene/BN
(3 nm)/graphene heterostructure detected by scanning near-field
microscopy. The edge of the top-layer graphene is marked by a
white dashed line. Scale bar, 200 nm. (d) Plasmon line profiles
extracted from (c) along the dashed lines.
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behavior of the single-layer graphene plasmon [18] (see
Fig. S4 in the Supplemental Material [25]). However, when
nb < 5.0 × 1012 cm−2, γc increases sharply as nb decre-
ases. Until nb ≈ 0 as we emphasized earlier, γc rises to 0.15,
which is 1.7 times larger than the constant value at a large
carrier density.
The gradual increase of the damping rate as nb decreases

can be qualitatively captured by our theoretical analysis as
shown in Fig. 3(c). The effective damping pathways at low
nb are ascribed to two aspects: one is due to the interband
electron-hole (e-h) pair excitation when the Fermi energy of
the bottom-layer graphene is smaller than the plasmon
energy [22] [contained in the γn extracted from the
numerical dispersion, shown as the blue dashed line in
Fig. 3(c)], and the other is attributed to the impurity
scattering [28] (γi: magenta dashed line). The joint con-
tribution of these two factors [red line in Fig. 3(c)] leads to
an increase in the damping rate at low carrier density, in
agreement with the experimental data. In this lifetime
adjustment process, the bottom-layer graphene acts as an
external damping amplifier. When the Fermi level of the
bottom-layer graphene is near the Dirac point, extra damp-
ing pathways are activated to absorb plasmon energy
[Fig. 3(d)], which results in a broadened dispersion with
strong damping [Fig. 3(f)]. In contrast, for the high-doped
bottom-layer graphene, the extra damping pathways are
shut down [Fig. 3(e)], and a long-lifetime plasmon is
expected [Fig. 3(g)]. In conclusion, utilizing this external

damping amplifier, we successfully build a plasmon damp-
ing switch in a coupled Dirac plasmon system [Figs. 3(h)
and 3(i)]. By tuning the Fermi level of the bottom-layer
graphene, the damping switch would be turned on or off,
allowing further control over the propagation length of
plasmons.
Lastly, we investigated the influence of interlayer spac-

ing d on the coupled plasmon. The near-field images and
corresponding line profiles of the devices with different d
are exhibited in Fig. 4(a) (nb ¼ −nt ≈ 8.5 × 1012 cm−2 for
all devices). As d decreases, both the wavelength and
intensity of the plasmon increase obviously. We depict the
experimental and theoretical d dependence of the coupled
plasmon in Fig. 4(b) as red solid dots and blue color plots,
respectively. They demonstrate good agreement on the
increasing trend of wavelength and intensity with decreas-
ing d. It is easy to understand that a smaller d means a
stronger interlayer Coulomb interaction, which enhances
the restoring force of the optical plasmon mode and thus
increases the wavelength and intensity [22,23]. Conversely,
if d is large enough, the Coulomb interaction will be very
weak and have minimal influence on the coupled plasmon
mode. As Coulomb interaction is a long-range interaction,
it shows obvious influence even when d exceeds 10 nm in
our experiment. When d reaches 19.2 nm, the wave-
length of the coupled plasmon mode is close to that of the
single-layer plasmon [red circle in Fig. 4(b) when ns≈
−8.5 × 1012 cm−2]. Similarly, the theoretical dispersion in
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FIG. 2. Carrier density dependence of the coupled plasmons. (a) Side-view schematic of the dual-gate double-layer graphene device.
(b) Plane schematic of the double-layer graphene device, including four regions: coupled region, top-layer graphene, bottom-layer graphene,
andh-BN. (c)–(f)Near-field images of the double-layer system (with anh-BNspacer of 6.8nm)with different carrier densities of the bottom-
layer graphene (nb). The carrier density of the top-layer graphene (nt) is fixed at−9.8 × 1012 cm−2 (positiven corresponds to holes; negative
to electrons). All near-field intensities are normalized to the bare h-BN region (the lower right part). Scale bar, 200 nm. (g) Corresponding
line profiles along the black dashed lines (coupled region) and blue dashed line (single layer) in (c)–(f). (h) Solid points: the plasmon
wavelength and intensity of coupled region as a function of nb (top axis). Open points: the ones of single-layer region as a function of jnsj
(bottom axis). The plasmon intensity is defined by the normalized value at the first fringe maximum of the plasmons (S1=SBN). (i) The
variation of coupled plasmon wavelength when nb and nt simultaneously change for a device with an h-BN spacer of 3.0 nm.
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Fig. 4(b) also shows a saturated trend when d exceeds
20 nm. The d dependence of damping rate is also extracted
as shown in Fig. S5 (see Supplemental Material [25]),
which shows minimal change. Moreover, we carried out
systematic studies of simultaneously varied carrier density
and d as shown in Fig. 4(c). Benefitting from the additional
control parameter d, a much wider tuning range in the
double-layer system is achieved than that of single-layer
graphene.
In summary, we demonstrate systematical tunability of

coupled plasmon in different aspects, including wave-
length, intensity, and damping rate, by changing the carrier
density and interlayer spacing. In particular, we realize the
active control of the damping rate by introducing an
external damping amplifier, which results from the unique
linear gapless energy dispersion of graphene. Our study
provides in-depth understanding of the coupled plasmon
and highlights the rich regulatory advantages of the double-
layer graphene system. The proposed plasmon damping
switch gives rise to a new thought for the development of
nanophoto devices. And the concept of external damping
modulator could also be popularized in other quasiparticle
systems.
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