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Competition among exchange interactions is able to induce novel spin correlations on a bipartite lattice
without geometrical frustration. A prototype example is the spiral spin liquid, which is a correlated
paramagnetic state characterized by subdimensional degenerate propagation vectors. Here, using spectral
graph theory, we show that spiral spin liquids on a bipartite lattice can be approximated by a further-
neighbor model on the corresponding line-graph lattice that is nonbipartite, thus broadening the space of
candidate materials that may support the spiral spin liquid phases. As illustrations, we examine neutron
scattering experiments performed on two spinel compounds, ZnCr2Se4 and CuInCr4Se8, to demonstrate
the feasibility of this new approach and expose its possible limitations in experimental realizations.
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Introduction.—A spiral spin liquid (SSL) is an exotic
correlated paramagnetic state of “subdimensional” degen-
eracy, meaning that the propagation vectors q of the ground
states form a continuous manifold, or spiral surface, in a
dimension that is reduced from the original system [1–14].
Similar to geometrically frustrated magnets [15,16], a SSL
may host topological spin textures [17–19] and quantum
spin liquid states [3–5,20–22]. What differentiates a SSL
from a conventional frustrated magnet is the subdimen-
sional degeneracy, which induces highly distinctive dynam-
ics since the spins are confined to fluctuate collectively as
nonlocal spirals [23]. Recent calculations on a square lattice
reveal that the low-energy fluctuations in a SSL may
behave as topological vortices in momentum space [23],
leading to an effective tensor gauge theory with unconven-
tional fracton quadrupole excitations that are deeply con-
nected to theories of quantum information, elasticity, and
gravity [24–29].
To date, bipartite lattices have been the primary avenue

through which SSLs are studied. This is because the ground
state degeneracy on a bipartite lattice can be exact, so that
all spin spirals with q over the spiral surface have exactly
the same energy [5]. Although this degeneracy stabilizes
the SSL down to very low temperatures [1,3], it also
imposes a strong constraint on real materials because most
of the known bipartite-lattice compounds are dominated by
the nearest-neighbor (NN) interactions J1 [30–44]. Even
for the established model compounds where the second-
neighbor interactions J2 are relatively strong [17,45,46],
the degeneracy over the spiral surface is only approximate
due to the existence of further perturbations [14]. This
degeneracy lifting results in an approximate SSL state at

elevated temperatures where thermal fluctuations overcome
the slight energy difference among the spirals.
Inspired by recent density-functional theory calculations

for the breathing pyrochlore lattice compounds [47], here
we seek the realization of an approximate SSL, i.e., a SSL
with an approximate degeneracy, beyond the bipartite
lattices. According to the Luttinger-Tisza theory [48,49],
the degeneracy of a SSL model is encoded in the minimum
manifold of the interaction matrix. Using graph theory
[50,51], we show that the J1-J2 model on a bipartite lattice
shares the same minimum manifold with a J1-J3 model on
the corresponding line-graph lattice, where J3 denotes the
third-neighbor interaction. Thus, an approximate SSL state
is achieved in the latter case when J3 is sufficiently strong,
which greatly expands the range of materials that may
support a SSL state. This line-graph approach to SSL is
vetted through neutron scattering experiments performed
on two Cr-based chalcogenide spinels: ZnCr2Se4 and
CuInCr4Se8.
Line-graph approach.—Our starting point is a

Heisenberg model on a l-regular lattice, where l counts
the number of the NN sites. In the presence of a uniform
NN exchange interaction J1, the coupled spins form a
undirected graph G ¼ ðV;DÞ, with V denoting the set of
vertices (i.e., the spin sites) andD denoting the set of edges
(i.e., the NN bonds). Two vertices i and j are called
“adjacent” if the graph contains an edge e ¼ fi; jg, and the
adjacency matrix is defined as AðGÞij ¼ 1 for fi; jg ∈ D
and 0 otherwise. Following this definition, the spin
Hamiltonian, H ¼ J1

P
hiji Si · Sj with hiji denoting the

NN bonds, can be expressed through the adjacency matrix
as H ¼ 1

2
J1AðGÞijSi · Sj. Therefore, according to the
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Luttinger-Tisza theory [1,5], the classical ground state ofH
can be determined from the eigensolution of AðGÞ, of
which the eigenvalues are defined as the “spectrum” of the
graph, denoted as σðGÞ.
Algebraic graph theory indicates that related graphs

should have related spectra [50,51]. Of interest here is the
line graph LG [52,53], whose vertices correspond to the
edges of the root graph G and are adjacent if the original
edges share a vertex: LG ¼ ðD;ffe;e0gje ∪ e0 ≠∅; e≠ e0gÞ.
For a regular bipartite graph G, a convenient way to define
its line graph is to select the vertices at the midpoints of the
original edges. As illustrated in Fig. 1, for the honeycomb
(l ¼ 3) and diamond (l ¼ 4) lattices that are the prototype
hosts of the SSL, their line graphs form the kagome and
pyrochlore lattices, respectively. According to graph theory
[50,51], the spectra of G and LG are related by

σðLGÞ ¼ ð−2Þm−n ∪ σðGÞ þ l − 2; ð1Þ

wherem (n) is the total number of edges (vertices) of the root
graph G. In reciprocal space, Eq. (1) indicates the existence
of flat eigenbands on LG with a degeneracy of l − 2, which
has been the focus of many recent studies [51,54–56]. More
importantly, it reveals that the nonflat eigenbands of σðLGÞ
and σðGÞ share the same dispersion up to a constant of l − 2,
and their eigenvectors are related by the incident matrix as
discussed in Ref. [57].
Such a spectrum correspondence can be immediately

verified for Heisenberg models. On a regular lattice of g
sublattices and N primitive cells, the interaction matrix of a
J1-only model

J αβ
1 ðqÞ ¼ J1

N

X
i∈α;j∈β
ij∈hiji

exp ½−iq · ðri − rjÞ� ð2Þ

is a g × g hollow matrix with zero diagonal elements. The
eigenbands νðqÞ for J1 < 0 are shown as solid lines in
Fig. 1(b) for the honeycomb and kagome lattices, and in
Fig. 1(d) for the diamond and pyrochlore lattices. The
minimum of the eigenbands νmin has been subtracted for
comparison. Analytical expressions for the eigenbands are
presented in the Supplemental Material [58]. Aside from
the top flat bands in blue color, the two dispersive bands
ν�ðqÞ − νmin on the kagome (pyrochlore) lattice overlap
exactly with those on the honeycomb (diamond) lattice,
which is a direct consequence of spectral graph theory.
This eigenband correspondence is maintained under the

addition of certain further-neighbor interactions. For the
J1-J2 model on a bipartite lattice, J2 couples the spins of
the same sublattices. Therefore, its contribution to J ðqÞ is a
diagonal matrix J 2ðqÞ that commutes with J 1ðqÞ, leading
to a q-dependent shift γGðqÞ of the eigenbands with
γGðqÞ ¼ ðJ2=NgÞPij∈⟪ij⟫ exp ½−iq · ðri− rjÞ�, where ⟪ij⟫
are the second-neighbor bonds [58]. Similar conclusions
can be drawn for the J1-J3 model on the line-graph lattices,
as J3 (including both J3a and J3b) also couples spins of the
same sublattices [58]. Since J2ðGÞ on the root-graph lattice
and J3ðLGÞ on the line-graph lattice share the same
exchange paths as compared in Figs. 1(a) and 1(c), we
expect, in the case of J2ðGÞ ¼ J3ðLGÞ, the same dispersive
eigenbands up to a constant on the root- and line-graph
lattices. This correspondence is illustrated by the dashed
lines in Figs. 1(b) and 1(d).
Approximate SSL.—An approximate SSL can be realized

on the line-graph lattices through the eigenband correspon-
dence. Following the results of the J1-J2 model on the
bipartite lattices [1,5], it is clear that for the J1-J3 model on
a line-graph lattice the eigenband minima of J ðqÞ will
form a degenerate manifold in reciprocal space at
jJ3=J1j > 1=ð2lÞ, where l is the number of the NN sites
on the root-graph lattice. Here, J1 and J3 should be
ferromagnetic and antiferromagnetic, respectively, as the
additional flat bands on line graphs remove the ferromag-
netic-antiferromagnetic duality of a bipartite lattice. Since the
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FIG. 1. (a) The line graph of a bipartite honeycomb lattice
(large spheres linked by orange bonds) is a kagome lattice (small
spheres linked by gray bonds). J1 is the nearest-neighbor
exchange coupling. Black dashed (red solid) arrows indicate
the second-neighbor coupling J2 (third-neighbor couplings J3a
and J3b) over the honeycomb (kagome) lattice. (b) Eigenbands of
the interaction matrix of Heisenberg models on the honeycomb
and kagome lattices. Orange solid (dashed) lines are the two
eigenbands for the J1 model (J1-J2 model with J2=J1 ¼ −0.25)
on the honeycomb lattice, which overlap with the two lower
eigenbands of the J1 model (J1-J3 model with J3=J1 ¼ −0.25)
on the kagome lattice shown in blue solid (dashed) lines. (c),(d)
Similar correspondence exists between the diamond and pyro-
chlore lattices. The interaction matrices for the J1 model (J1-J2
model with J2=J1 ¼ −0.3) on the diamond lattice and the J1
model (J1-J3 model with J3=J1 ¼ −0.3) on the pyrochlore lattice
share two same eigenbands shown by the overlapping orange and
blue solid (dashed) lines.
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equalmoment constraint over the eigenvectors ofJ ðqÞ is not
always satisfied for q over the minimum manifold [58], the
SSL realized through the line-graph approach is approximate
and needs to be stabilized by thermal fluctuations. As
discussed in the Supplemental Material [58], the degeneracy
breaking over the spiral surface is relatively weak, which
contrasts with the strong modulation in the previously
studied half-moon patterns [57,71–73]. This weak degen-
eracy breaking on the line-graph lattices leads to a stable SSL
state in a wide temperature regime that is comparable to that
on the bipartite lattices.
Before making comparisons to the experimental data, we

further generalize the SSL model by incorporating a breath-
ing distortion on the line-graph lattice so that the NN inter-
actions are modulated alternately as J1 and J01 [47,74,75].
For the breathing pyrochlore lattice shown in Fig. 2(a), the
eigenbands of J ðqÞ can be solved as follows [58]:

ν1;2 ¼ J3κðqÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðJ1 − J01Þ2 þ J1J01jηðqÞj2

q
þ ðJ1 þ J01Þ;

ν3;4 ¼ J3κðqÞ − ðJ1 þ J01Þ;

where ηðqÞ ¼ P
4
n¼1 expð−iq · dnÞ with dn denoting the

four bonding vectors around each spin site [58]
and κðqÞ ¼ jηðqÞj2 − 4. Assuming J1 < J01 < 0 and
J3 > 0, an approximate SSL state is realized for
J1J01=jJ1 þ J01j < 4J3 < J1J01=jJ1 − J01j. The correspond-
ing phase diagram is presented in Fig. 2(b).
Representative spiral surfaces in the approximate SSL
phase at jJ3=J1j ¼ 0.2 are shown in Figs. 2(c)–2(e) for
J01=J1 ¼ 0.8, 0.6, and 0.5, respectively. The surfaces are
identical to those on the diamond lattice [1]. Similar
conclusions on the breathing kagome lattice are presented
in the Supplemental Material [58].
ZnCr2Se4 with a regular pyrochlore lattice.—The Cr-

based chalcogenide spinels present nearly ideal model
compounds to demonstrate the proposed line-graph
approach to SSLs. In these systems, J1 is ferromagnetic
due to the 90° superexchange path, while J2 ∼ 0 due to
negligible orbital overlap [76,77]. As the first example, we
study the short-range spin correlations in ZnCr2Se4, where
the Cr3þ (S ¼ 3=2) ions form a regular pyrochlore lattice.
Single crystals of ZnCr2Se4 were grown using the

chemical vapor transport method [58]. Figure 3 summa-
rizes the diffuse neutron scattering results measured on
CORELLI at the Spallation Neutron Source (SNS), Oak
Ridge National Laboratory (ORNL) [58]. With the stat-
istical chopper, the elastic channel of our CORELLI data
has an average energy resolution of about 0.8 meV for an
incident neutron energy range of 13 to 33 meV. At 20 K,
below the Néel transition temperature TN ∼ 22 K, mag-
netic Bragg peaks indexed by q ¼ ð0; 0; 0.47Þ are observed
[see Fig. 3(a)]. This is consistent with the helical ground
state reported previously [78–80], with the weak ringlike
scattering mainly arising from the low-energy magnon
excitations [77,81]. At 30 K, above TN , magnetic Bragg
peaks are replaced by broad diffuse scattering with a
spherical shape [see Figs. 3(b)–3(d)], evidencing the
emergence of an approximate SSL state where gapped
excitations are replaced by quasielastic fluctuations [58].
Assuming a Heisenberg model with exchange inter-

actions up to the fourth neighbors (J4), we fit the diffuse
scattering data using the self-consistent Gaussian approxi-
mation method [58]. The calculated slices in Figs. 3(b)–3(d)
reproduce the experimental data. The coupling strengths
are fitted as J1 ¼ −2.86ð8Þ, J2 ¼ 0.00ð1Þ, J3 ¼ 0.48ð1Þ,
and J4 ¼ −0.057ð1Þ meV, which is very close to the values
determined by inelastic neutron scattering (INS) [77,81]
and indicates marginal changes in the coupling strengths
across the phase transition. The weak strengths of the J2
and J4 interactions allow a direct verification of the line-
graph approach that is based on a J1-J3 model. The solid
circles on top of the calculated patterns in Figs. 3(b)–3(d) are
the contours of the spiral surface predicted by the J1-J3
model with J3=J1 ¼ −0.15. The contours capture the
shapes of the diffuse scattering patterns. As compared
in the Supplemental Material [58], the existence of the
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FIG. 2. (a) The breathing pyrochlore lattice is composed of
corner-sharing tetrahedra of two different sizes, which results in
alternating J1 and J01 couplings over the gray and orange
tetrahedra, respectively. The exchange paths of the J2, J3a,
J3b, and J4 interactions are also indicated. (b) Phase diagram
on the breathing pyrochlore lattice with ferromagnetic J1 and J01
interactions together with antiferromagnetic J3 interactions as-
suming J3a ¼ J3b. The shaded area indicates the region where an
approximate SSL phase can be stabilized by thermal fluctuations.
Contour lines for constant jηðqÞj are shown in the approximate
SSL phase. Along these lines, the spiral surface stays the same.
Location of ZnCr2Se4 (ZCS) with J1 ¼ J01 and jJ3=J1j ¼ 0.15 is
indicated by the yellow dot. Inset shows the degenerate manifold
(blue lines) for 4J3 > J1J01=jJ1 − J01j out of the SSL regime.
(c)–(e) Characteristic spiral surfaces with quasidegenerate
energies in the first Brillouin zone at jJ3=J1j ¼ 0.2 and J01=J1 ¼
0.8 (c), 0.6 (d), and 0.5 (e). These points are indicated on the
phase diagram in (b) using the panel labels.
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ferromagnetic J4 interaction slightly reduces the radius of
the spiral surface while strongly modulating the scattering
intensities.
CuInCr4Se8 with a breathing pyrochlore lattice.—Until

now, we have assumed a uniform J3 interaction. In real
materials, the J3 exchange paths on a line-graph lattice can
be different as indicated in Fig. 1. This may lead to different
coupling strengths and destabilize the SSL state. As the
second example, we study the spin correlations in the
breathing pyrochlore lattice compound CuInCr4Se8 [82],
which has been proposed as a SSL candidate from density-
functional theory calculations [47].
A polycrystalline sample of CuInCr4Se8 was synthesized

through the solid state reaction method [58]. INS experi-
ments were performed on SEQUOIA at the SNS, ORNL.
Neutron diffraction experiments were performed on HB-2A
at the High Flux Isotope Reactor (HFIR), ORNL. As is
consistent with the previous report [82], magnetic suscep-
tibility shown in Fig. 4(a) suggests a spin glasslike
transition at Tf ∼ 15 K with a clear frequency dependence.
This is confirmed in the neutron diffraction results pre-
sented in Fig. 4(b), where only broad magnetic features are
observed down to 0.25 K. The weak features at Q ∼ 0.41
and 0.72 Å−1 can be indexed by q ¼ ð0.48; 0.48; 0Þ, while
their intensities exhibit a history dependence as expected
for a spin glass state.
Figures 4(c)–4(e) present the equal-time spin correlations

obtained by integrating the INS spectra from ½−20; 20� meV
[58]. Assuming a J1-J01-J3a-J3b Heisenberg spin model, we
fit the diffuse scattering data by the self-consistent Gaussian

approximation method [58,83]. The fitted results are shown
in Figs. 4(c)–4(e) as solid lines. The fitted coupling strengths
are J1 ¼ −1.6ð2Þ, J01 ¼ −5.4ð3Þ, J3a ¼ 0.1ð1Þ, and J3b ¼
0.6ð1Þ meV, where the different strengths for J3a and J3b are
necessary for a satisfactory fit. As shown in the inset of Figs. 4
(b)–4(e), the spin correlations in the (hk0) plane do not follow
a circular shape, implying the absenceof aSSLstate due to the
unequal J3a and J3b interactions.
The fitted parameter set provides an explanation for the

glassy ground state in CuInCr4Se8. J3a, being the weakest
interaction in the J1-J01-J3a-J3b model, is however the
most crucial parameter in determining the exact length of
the long-range order q ¼ ðq; q; 0Þ. Within the standard
deviation of J3a, q varies from 0 at J3a ¼ 0 up to ∼0.4 at
J3a ¼ 0.2 meV. Therefore, the broad diffuse scattering at
Q ∼ 0.25 Å−1, which is tentatively indexed as (0.3,0.3,0) in
Fig. 4(b), may arise from a finite distribution in J3a due to a
tiny amount of structural defects. Weaker features indexed
by q ¼ ð0.48; 0.48; 0Þ may be stabilized by local structural
distortions considering its proximity to the commensurate
ð1
2
; 1
2
; 0Þ position [84,85]. Studies of a single crystal sample

will help verify the proposed mechanism.
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Conclusion.—We have presented a line-graph approach
to achieve approximate SSLs on nonbipartite lattices,
which allows the experimental exploration of SSLs in a
broader family of compounds. Besides ZnCr2Se4 studied
in this Letter, chalcogenide spinels like ZnCr2S4 [79]
and HgCr2S4 [86] are worth further investigations as an
incommensurate helical ground state has been observed.
The approximate SSLs on the line-graph lattices also
provide a new platform to explore field-induced topological
spin textures since the helicity of the single-q component is
maintained [18]. Such a mechanism may account for the
magnetic skyrmions in the breathing kagome-lattice com-
pound Gd3Ru4Al12 [74]. On the theoretical side, it remains
an open question whether the approximate SSLs may
evolve into quantum spin liquids under sufficient quantum
fluctuations. It is also interesting to explore whether the
fracton physics predicted for the exact SSLs [23] may
survive to some extent in the approximate SSLs.
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