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Considering the example of superconducting circuits, we show how Floquet engineering can be
combined with reservoir engineering for the controlled preparation of target states. Floquet engineering
refers to the control of a quantum system by means of time-periodic forcing, typically in the high-frequency
regime, so that the system is governed effectively by a time-independent Floquet Hamiltonian with novel
interesting properties. Reservoir engineering, on the other hand, can be achieved in superconducting
circuits by coupling a system of artificial atoms (or qubits) dispersively to pumped leaky cavities, so that the
induced dissipation guides the system into a desired target state. It is not obvious that the two approaches
can be combined, since reaching the dispersive regime, in which system and cavities exchange excitations
only virtually, can be spoiled by driving-induced resonant transitions. However, working in the extended
Floquet space and treating both system-cavity coupling as well as driving-induced excitation processes on
the same footing perturbatively, we identify regimes, where reservoir engineering of targeted Floquet states
is possible and accurately described by an effective time-independent master equation. We successfully
benchmark our approach for the preparation of the ground state in a system of interacting bosons subjected
to Floquet-engineered magnetic fields in different lattice geometries.
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Floquet engineering is a powerful tool for quantum
simulation, where time-periodic driving is applied to
manipulate the properties of a quantum system [1–6]. It
has been applied successfully to engineered quantum sys-
tems, such as ultracold atoms in optical lattices [7–15],
photons in opticalwaveguides [16–18], and superconducting
circuits [19]. Recently, the question has been addressed,
whether it is possible to prepare ground (or low-temperature)
states of effective Floquet-engineered Hamiltonians by
coupling them to a thermal environment [20–26]. Here we
propose an alternative strategy for dissipative state prepara-
tion in Floquet systems based on cavity-assisted reservoir
engineering, as it can be realized in superconducting circuits
by coupling artificial atoms to pumped leaky resonators.
Such an approach is not straightforward, since cavity-based
reservoir engineering relies on the so-called dispersive
regime, in which the system exchanges excitations with
the cavities only virtually. Thus, one has to identify a regime,
in which such a virtual change is not spoiled by driving-
induced resonant processes. Understanding and avoiding the
breakdown of dispersive regimes in circuit QED systems
under periodic modulation is a central challenge, as inves-
tigated, e.g., in the realization of fast gates and controlled
nonlinearities for high-Q cavity modes coupled via driven
transmons [27,28]. To solve this problem, we describe both
atoms and cavities in the extended Floquet space. In this
framework, we treat both the system-bath coupling aswell as
driving-induced excitation processes on equal footing using
degenerate perturbation theory. This combined approach
contains both the standard perturbative treatment of the

dispersive coupling in nondriven systems as well as the high-
frequency expansion of isolated periodically driven systems
as limiting cases. But it also includes the interplay of both
processes, which has a crucial (potentially detrimental)
impact on the open driven dynamics and the preparation
of target states. Based on this theory, we formulate driven-
dissipative schemes for the preparation of nontrivial states in
finite Floquet-engineered flux ladders (exhibiting chiral
ground state currents and frustration-induced localization
effects). The approach is confirmedvia simulations of the full
driven-dissipative evolution of atoms and cavities.
We consider a two-dimensional array of M artificial

atoms (Fig. 1) in a superconducting circuit [19,29–32]
described by the Bose-Hubbard Hamiltonian

ĤSðtÞ ¼
U
2

XM

j¼1

n̂jðn̂j − 1Þ − J
X

hj;j0i
eiθj0jðtÞâ†j0 âj: ð1Þ

Here âj and n̂j ¼ â†j âj denote the bosonic annihilation and
number operators for an excitation on site j. The excitations
experience an attractive on site potentialU < 0, correspond-
ing to a level anharmonicity. Moreover, they can tunnel
between neighboring sites with matrix elements of ampli-
tude J > 0. The time-periodic Peierls phases θijðtÞ ¼
θiðtÞ − θjðtÞ describe a time-dependent force, which, in a
nonrotating reference frame, is described by on site poten-
tials vj ¼ ℏ_θj ¼ Δþ νjℏωþ λ sinðωt − φjÞ with integer
νj. The transition to the rotating frame adopted in Eq. (1)
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and considered in the following, is accomplished by
replacing âj → e−iθjðtÞâj with θjðtÞ ¼ Δt=ℏþ νjωt−
λ cosðωt − φjÞ=ℏω.
For isolated systems, the motivation for applying such

periodic forcing is that in the high-frequency regime,
ℏω ≫ jUj, J the dynamics is approximately described by
an effective time-independent Hamiltonian Ĥeff

S , with new
properties. In leading order, it is obtained as time average
Ĥeff

S ¼ ð1=TÞ R T
0 dtĤSðtÞ over one driving period T ¼

2π=ω (rotating-wave approximation). This gives rise to

effective tunneling matrix elements −Jeffjj0 e
iθeff

jj0 , with ampli-

tude Jeffjj0 ¼ JJ νj−νj0 ð2λ sin½ðφj0 − φjÞ=2�=ℏωÞ, where

J nð·Þ denotes a Bessel function, and with Peierls phases
θeffjj0 ¼ ðνj0 − νjÞðφj þ φj0 Þ=2, which can describe artificial
magnetic fields [3]. Such (and similar) Floquet engineer-
ing has been employed successfully to experimentally
engineer and study interaction-driven phase transitions
[8], kinetic frustration [9], topological band structures
[11,12,15], their chiral edge modes [16,17,19], Aharonov-
Bohm cages [33], and 2-qubit gates [32,34] in systems of
ultracold atoms in optical lattices, optical waveguides, and
superconducting circuits.
We will investigate, whether it is possible to employ

reservoir engineering for cooling the system into the ground
state of Ĥeff

S . To this end, some of the atoms shall be coupled
individually to driven-damped cavities. The open dynamics
of the whole system is described by the master equation
dρ̂=dt¼−i½ĤðtÞ; ρ̂�=ℏþP

L
l¼1κlD½ĉl�ρ̂, where D½ĉl�ρ̂ ¼

ĉlρ̂ĉ
†
l −

1
2
ĉ†lĉlρ̂ −

1
2
ρ̂ĉ†lĉl is a Lindblad dissipator and

where the Hamiltonian ĤðtÞ ¼ ĤSðtÞ þ ĤSCðtÞ þ ĤCðtÞ
comprises the terms ĤCðtÞ¼

P
L
j¼1½δjĉ†j ĉjþEjĉ

†
je

−iωjtþ
E�
j ĉje

iωjt� and ĤSCðtÞ ¼
P

L
j¼1 gj½e−iθjðtÞâjĉ†j þ H:c:� that

describe the cavities in a frame rotating at frequency Δ=ℏ
and their coupling to the system [32,35]. The L ≤ M cavities

are described by bosonic annihilation operators ĉj, are
detuned by the atoms by δj, pumped with strength Ej at
a frequency ωj, and leak photons at a rate κj. The atoms are
enumerated so that the jth cavity couples to the jth atom
with strength gj. The cavity leakage is assumed to be much
larger than other decay and dephasing rates in the array,
which we thus neglect in the following. The Floquet drive
also dresses the array-cavity tunnelling, which hence
acquires the phase θjðtÞ.
The atom-cavity Hamiltonian ĤðtÞ≡P

m Ĥmeimωt gives
rise to Floquet states jψnðtÞi ¼ junðtÞie−iεnt=ℏ ¼
junμðtÞie−iεnμt=ℏ with quasienergies εnμ ¼ εn þ μℏω that
are defined up to integer multiples μ of ℏω and
time-periodic Floquet modes junμðtÞi ¼ junðtÞieiμωt
¼ junμðtþ TÞi≡P

n;p;m uðnpmÞ
nμ jnpieimωt. Here jnpi denote

Fock states with respect to the occupation numbers n ¼
ðn1;…; nMÞ of system excitations and p ¼ ðp1;…; pLÞ of
cavity photons, andm is an integer Fourier index. In Floquet
space [3,36], spanned by the Floquet-Fock states jnpm⟫
(representing jnpieimωt in the original space), the Floquet

modes junμ⟫¼
P

n;p;mu
ðnpmÞ
nμ jnpm⟫ are eigenstates with

eigenvalue εnμ of the generalized Hamiltonian Ĥ [repre-
senting ĤðtÞ − iℏ∂t] with matrix elements

⟪n0p0m0jĤjnpm⟫ ¼ hn0p0jðĤm0−m þ δm0mmℏωÞjnpi: ð2Þ

The change ofm byΔm ¼ m0 −m ≠ 0, as it is described by
the Fourier components ĤΔm, corresponds to a resonant
transition, where the energy changes by Δm driving quanta
ℏω. In turn, processes without such driving-induced energy
change are captured by the time-averaged Hamiltonian
ĤΔm¼0, which contains Ĥeff

S .
For Floquet engineering, we aim at a regime, where m

remains a good quantum number, such that the array
coherent dynamics is indeed ruled by Ĥeff

S . For reservoir
engineering, we aim at a regime, where the total excitation
number N remains a good quantum number, since we strive
for quantum simulation at a conserved particle number. We,
thus, aim at a situation, where energy and excitation-
number-changing processes can be treated using degener-
ate perturbation theory, allowing us to block diagonalize Ĥ
both with respect to m and N. This is challenging. While
resonances, wherem orN change individually are routinely
suppressed by making the associated energy costs, the
frequency ℏω or the atom-cavity detuning δj, respectively,
large, it is now also required to avoid resonances where
both m and N change. Similar processes are sketched in
Figs. 2(a) and 2(b), where an excitation can escape [(a)] or
be injected [(b)] in the array by exchanging energy mℏω
with the Floquet drive. Although for a weak transverse
single-qubit drive as in Ref. [37] these are very high-order
processes, they strongly challenge usual dispersive-regime

FIG. 1. M artificial atoms are coupled to L pumped and leaky
cavities. The atoms are periodically driven to Floquet engineer
effective Hamiltonians with desired properties, while the cavities
induce dissipation in a controlled way.
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treatments here and cannot be neglected. Nonetheless, as
we will see, the desired regime can be found.
A suitable description is achieved by performing a two-

step block-diagonalization of Ĥ using van Vleck-type
degenerate perturbation theory in Floquet space [38,39].
This approach captures corrections arising from processes
changing both m and N in second order (except for second-
order processes with respect to m alone, which would yield
the first correction of Ĥeff

S in a high-frequency expansion
and are not relevant here). Such mixed processes would be
discarded when time averaging the total Hamiltonian before
or after having performed a dispersive-regime transforma-
tion, as it is done in Ref. [37]. This makes our approach
decisive for obtaining correct effective parameters both for
the coherent and incoherent dynamics, as confirmed by
numerical simulations. We arrive at the effective atom-
cavity Hamiltonian [39]

Ĥeff ¼ Ĥeff
S þ ĤC þ

XL

j¼1

½ξjðn̂j − 1Þn̂j þ χjðn̂jÞĉ†j ĉj�; ð3Þ

with functions χjðn̂jÞ ¼ χ̃jðn̂jÞ − ξjðn̂jÞ and

χ̃jðn̂jÞ ¼
Xþ∞

m¼−∞

g2jUJ 2
mðλ=ℏωÞn̂j

½δj þUðn̂j − 1Þ−mℏω�½δj þUn̂j −mℏω� ;

ξjðn̂jÞ ¼
Xþ∞

m¼−∞

g2jJ
2
mðλ=ℏωÞ

δj þUn̂j −mℏω
: ð4Þ

The coupling to the cavities in Eq. (3) involves only
operators preserving the total number of atomic excitations.
The prominent role played by the Floquet drive is reflected
in the effective tunnelling rate and atom-cavity coupling,

which explicitly depend on the driving frequency ω and
amplitude λ. Equation (3) can only be valid as long as
resonances are avoided that make the denominators of
Eq. (4) small. A sketch of the relation between different
energy scales in the system, that permit the approximations
adopted while being experimentally realistic, is shown in
Fig. 2(c). The starting point is the dispersive regime, where
jδjj ≫ gj, with a strong nonlinearity jUj ≫ gj that enhan-
ces the virtual coupling; see Eq. (4). Next ℏω; λ ≫ J; gj is
chosen to enable Floquet engineering of the tunnelling
dynamics, while avoiding resonances.
Applying the perturbative treatment to the full master

equation [39,45], an effective dissipatorDeffðρ̂Þ is obtained,
Deffðρ̂Þ ¼

P
L
j¼1 κj

Pþ∞
m¼−∞ D½ĉj;m�ðρ̂Þ, with

ĉj;m ¼ ĉjδm;0 þ
gjJ mðλ=ℏωÞ

δj þ Un̂j −mℏω
âj: ð5Þ

Since the block diagonalization of Ĥmixes atom and cavity
degrees of freedom, Deffðρ̂Þ does not involve cavity decay
only, but also a small perturbative term ∝ âj, describing
excitation loss from the system. This is analogous to the
undriven case in the dispersive regime [32], except for
additional driving-induced decay channels withm ≠ 0. The
excitation loss is weak in the perturbative regime assumed
here, and can be counteracted by postselection [39]. In a
proof-of-principle implementation, where state tomogra-
phy in the relevant subspace is accessible, this can be done
directly from the estimated density matrix. In large systems,
we consider observables that, while being key signatures of
the desired effects, also carry information about the total
excitation number allowing for postselection. These are site
occupations and excitation currents. The former are
extracted directly by dispersive readout of the atomic
excitations; the latter can be detected as done in cold atom
experiments [11,46], by biasing the on site potentials vjðtÞ
of pairs of neighboring sites (which is an excitation-
conserving process) and measuring the time evolution of
site occupations.
The form of the array-cavity coupling in Ĥeff puts us in a

position, where reservoir engineering for the atoms can be
realized. The underlying mechanism is that incoming pump
photons that are detuned from the cavity resonance, need to
take (or give) energy from (to) the system, before being
emitted at the cavity frequency [35,37,47]. If the detuning
matches an energy gap in the atomic system, this induces a
corresponding “dissipative” transition. This type of quan-
tum bath engineering has been implemented experimentally
with superconducting circuits, e.g., for a resonantly driven
two-level system and for a three-site undriven Bose-
Hubbard chain [35,37]. In our setup, since the relevant
atomic Hamiltonian is the Floquet-engineered Hamiltonian
Ĥeff

S , we exploit this mechanism to address transitions

FIG. 2. (a) and (b) Examples of unwanted excitation-photon
conversion assisted by the Floquet drive. In (a), an excitation
tunnels from the array to a cavity releasing an energy mℏω to the
drive, and leaks to the environment being lost. In (b), a photon
tunnels from the cavity to the array. (c) Fundamental energy
scales in the system.
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among effective eigenstates of the system with artificial
magnetic flux.
To design a dissipative path, driving the atoms toward a

target eigenstate of Ĥeff
S ¼ P

η εηjηihηj, the cavity-pump
detunings dj are set to match different effective energy gaps
εη − εη0 in the array. Addressing single gaps is possible
provided such gaps are larger than the effective atom-cavity

coupling χðηη
0Þ

j

ffiffiffiffiffiffiffiffiffi
n̄ph;j

p
, where n̄ph;j is the mean photon

number in the jth cavity and χðηη
0Þ

j ¼ hηjχjðn̂jÞÞjη0i is the
matrix element of the atomic coupling operator. The
resonant transition rate produced by the jth cavity is
derived from the effective master equation [39] as

ΓðjÞ
η→η0 ¼ 4n̄ph;jjχðηη

0Þ
j j2=ℏ2κj; ð6Þ

under the “bad-cavity” condition that the photon leakage
is strong compared with the effective coupling, ℏκj ≫
χðηη

0Þ
j

ffiffiffiffiffiffiffiffiffi
n̄ph;j

p
. This condition guarantees a clean monotonic

exponential decay from jηi to jη0i, but is not strictly
essential: a smaller κj can still achieve the desired
transition, though producing more complex decay dynam-
ics due to the atom-cavity system reaching an effective
strong-coupling regime [37].
We test the proposed scheme for different systems with

Floquet-engineered artificial fluxes. We will compare our
effective theory to a full simulation of the time-dependent
master equation for both system and cavities, using typical
circuit-QED parameters. Given the latter, the determination
of the parameters ensuring a successful protocol can be
done systematically: while ℏω and the shift Δ are chosen to
be much larger than J and fine-tuned to avoid unwanted
resonances, the pump frequencies on the cavities realize the
detuning conditions for reservoir engineering. The pump
amplitudes are adjusted accordingly to have an average
number of one-to-two photons in the cavities, which gave
best results in simulations. Further details on parameter
choices are given in Ref. [39].
We start by considering one excitation in a ladder-type

array [Fig. 3(a)]. The ground state for nonzero magnetic flux
Φ can exhibit chiral currents, flowing unidirectionally along
the edges of the ladder [11,48–51]. Although only one
excitation is considered, including subspaces with several
excitations and their mutual interactions U is essential,
since it influences virtual excitation-number fluctuations
exploited for reservoir engineering; see Eqs. (3) and (4). In
the two-plaquette system of Fig. 3(a), the ground state is
prepared using two cavities which realize a “cascaded”
cooling configuration along the effective spectrum as
depicted in Fig. 3(b) (left). The driving amplitude λ is
chosen to give the same effective tunnelling rate Jeff along
every lattice bond, while the choice of driving phases and
potential offsets yields Peierls phases rΦ at the rth rung
[39]. The simulated buildup of population in the ground

state in time is shown in Fig. 3(c), leading to the final current
and density pattern depicted in the inset. The cooling is
independent from the initial state. While in Fig. 3(c) the
initial state features the excitation sitting in one atom, an
equivalent population buildup is also observed for mixed
initial states, such as an infinite-temperature state in the
single-excitation manifold. This confirms that the cooling
mechanism can reduce the system entropy, in addition to
lowering the energy. A cooling scheme in the case of a
three-plaquette ladder is reported in Ref. [39].
The protocol is also effective for multiple excitations.

When a second excitation is injected, due to the large on
site interaction U, singly and doubly excited atoms define
two essentially uncoupled subspaces [Fig. 3(b), right],
corresponding to hard-core bosons and a tightly bound
pair, respectively. The former subspace is most interesting
[as, for instance, hard-core bosons in finite two-dimen-
sional lattices with homogeneous flux are predicted to give
rise to fractional-quantum-Hall (FQH)-type ground states
[52–54] ], and we can use three cavities to cool the system
into the hard-core-boson ground state. Starting with two
excitations localized in different sites, achievable by
exciting two atoms to state a†j0a

†
j j0i with quick resonant

FIG. 3. (a) Ladder geometry and coupling to the cavities.
(b) Single-excitation (left) and two-excitation (right) level structure
and transition energies addressed by the cavities (arrows). (c) Stro-
boscopic evolution of the populations pηðtÞ ¼ hηjρ̂ðtÞjηi of the
eigenstates jηi of Ĥeff

S , for the full driven master equation (solid)
and the effective master equation (dashed). The gray shaded area
indicates the fraction of discarded states in postselection (black
dashed line for the effective model). The parameters are Φ ¼ π=2,
ℏω ¼ 20J, δ=ℏω ¼ ð1.76; 1.7Þ, U ¼ 8J, κ1 ¼ κ2 ¼ 0.1J,
E=J ¼ ð1.2; 0.5Þ, g1 ¼ g2 ¼ J. Inset: The size of the arrows
and circles reproduces the current pattern and excitation density
in the final state. (d) As (c) but for two excitations in the hard-core
bosons subspace. The parameters are Φ ¼ π=2, ℏω ¼ 20J,
δ=ℏω ¼ ð1.69; 1.68; 1.7Þ, U ¼ 8J, κ=J ¼ ð0.05; 0.05; 0.05Þ,
E=J ¼ ð0.6; 1.6; 0.4Þ, g=J ¼ ð1; 1; 1Þ.
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pulses before launching the Floquet drives, the population
buildup in time is shown in Fig. 3(d).
From Figs. 3(c) and 3(d), one can see that the effective

master equation reproduces the results of the full model very
accurately, that the fraction of discarded data in postselec-
tion remains small and does not render the experiment
inefficient, and that the target states can be prepared with
rather high fidelities. In the Supplemental Material [39], we
discuss the geometry of a diamond-chain of corner-sharing
rhombic plaquettes with flux Φ ¼ π and the preparation of
so-called Aharonov Bohm cages—single-excitation states
that are localized in a subsystem via destructive interference
[33,55,56].
Until now we have addressed the preparation of (zero-

temperature) ground states in systems of moderate size. The
essential ingredients demonstrated in these examples also
provide a perspective for potential applications in larger
systems. Namely, the preparation of a gapped ground state,
like a Floquet-engineered (topological) band insulator or a
correlated fractional Chern insulator, appear possible.
Although for a large system, the number of cavities cannot
scale as quickly as the number of transitions, multiple
transitions can be controlled with a single cavity when they
lie in an energy window comparable with the cavity
linewidth ℏκ [39]. This effect can already be appreciated
from the two-excitation example of Figs. 3(b)–3(d), where
three cavities only are enough to work effectively in the
two-excitation subspace (21 states). Another issue with
large systems is resonant excitations. Namely the gapped
state will most likely be embedded into a continuum of
excited states to which it couples resonantly. Although this
might limit the capability to resolve the exact ground state,
playing a role similar to an effective nonzero temperature,
the preparation of low-energy and low-entropy states can
still be addressed.
We further exemplify the control of multiple transitions

in a larger system, by considering a 100-site square ladder
with flux Φ ¼ 0.8π and tunnelling along the rungs five
times faster than along the legs, whose effective spectrum
features two well separated narrow bands [Fig. 4(a)]. One
excitation initialized at a site overlaps with all states in both
bands, but can be dissipatively pushed into the lower band

using two cavities only, coupled to the two ends of the
upper leg. We demonstrate this successfully by performing
simulations with the effective master equation [Fig. 4(b)].
This example further highlights that Floquet-dissipative
schemes can also be used to project a system into a (quasi)
energetically well separated subspace, opening potential
applications for autonomous quantum error correction
[57,58] and the preparation of gapped ground states (such
as FQH states [52–54,59]). In view of the latter, particularly
exciting is the combination of artificial gauge fields [1,4] or
geometric frustration [9,60], as it can be achieved using
Floquet engineering, with an interaction-induced hard-core
constraint. Such hard-core interactions can not only be used
to mimic fermionic behavior in 1D, but are also predicted to
stabilize fractional-Chern-insulator states in topologically
nontrivial lattice systems as well as spin-liquid-like states.
Finally, the theory developed here can also find straightfor-
ward application in different platforms where Floquet
engineering has been employed, such as quantum gas
microscopes, whenever coupling to driven cavitylike modes
is possible.
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