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We investigate the long-range behavior of the induced Casimir interaction between two spinless heavy
impurities, or polarons, in superfluid cold atomic gases. With the help of effective field theory (EFT) of a
Galilean invariant superfluid, we show that the induced impurity-impurity potential at long distance
universally shows a relativistic van der Waals-like attraction (∼1=r7) resulting from the exchange of two
superfluid phonons. We also clarify finite temperature effects from the same two-phonon exchange process.
The temperature T introduces the additional length scale cs=T with the speed of sound cs. Leading
corrections at finite temperature scale as T6=r for distances r ≪ cs=T smaller than the thermal length. For
larger distances the potential shows a nonrelativistic van der Waals behavior (∼T=r6) instead of the
relativistic one. Our EFT formulation applies not only to weakly coupled Bose or Fermi superfluids but also
to those composed of strongly correlated unitary fermions with a weakly coupled impurity. The sound
velocity controls the magnitude of the van der Waals potential, which we evaluate for the fermionic
superfluid in the BCS-BEC crossover.
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Introduction.—The force between physical objects is
one of the most elementary concepts in physics. The
development of quantum field theory demonstrates that
the force is mediated by exchanging bosonic quanta such as
pions in nuclear physics [1] and gauge bosons in particle
physics [2–4]. Since the long-range behavior is dominated
by the lightest excitation of the system, the Nambu-
Goldstone boson [5–7] plays a central role in determining
the long-range force in symmetry broken phases. In fact,
the pions—the pseudo-Nambu-Goldstone bosons govern-
ing the long-range behavior of the nuclear force—have
established their place in the modern effective theory of
nuclear forces (see, e.g., Refs. [8–10]).
Recently impurities in Bosonic media, called Bose polar-

ons, have been attracting much attention in cold atomic
physics [11–32]. In particular, the two-impurity problem in a
superfluid is an interesting playground, where the force
mediated by collective excitations in the medium controls
the impurity dynamics. Similarly to the nuclear force, the
induced interaction is often described by the Yukawa
potential: In fact, the single-Bogoliubov mode exchange
has been shown to induce an attractive Yukawa potential
(∼e−

ffiffi
2

p
r=ξ=r) that falls off exponentially beyond the healing

length ξ [33–37]; in one dimension it leads to an attractive
exponential potential (∼e−2r=ξ) [38–40]. An exception are
charged ionic impurities, where the bare atom-ion potential
(∼1=r4) dominates at large distances [41]. Note that induced
interactions in a superfluidmediumare attractive, and thereby
easier to observe than the oscillatory Ruderman–Kittel–
Kasuya–Yosida interaction in an ideal Fermi gas [42–45].

In this Letter, we show that even for neutral impuritieswith
a short-range potential, the exchange of two superfluid
phonons generally leads to a universal power-law induced
interaction at a long distance that dominates over theYukawa
potential and becomes leading in the experimentally relevant
regime r≳ ξ. The induced potential VðrÞ is shown to be the
relativistic van der Waals (Casimir) potential (∼1=r7) [46]
with a Coulomb correction (∼T6=r) at ξ ≪ r ≪ cs=T and
the nonrelativistic van der Waals potential (∼T=r6) at
ðξ ≪Þcs=T ≪ r, where T and cs denote the temperature
and the speed of sound (see Fig. 1). This extends previous
results for the Casimir force in one dimension [47–50] to a
higher dimension, and we present explicit results for the
three-dimensional case.
Our formulation is based on a Galilean invariant super-

fluid EFT [51,52] with the assumption that the impurity is
weakly coupled to the medium through s-wave contact
interactions. While we assume weak impurity-medium
coupling, the medium itself can be weakly or strongly

FIG. 1. Schematic picture of the scaling regimes of the induced
attractive Casimir interaction VðrÞ.
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coupled, including fermionic superfluids in the BCS-BEC
crossover and, in particular, at unitarity [53]. The magni-
tude of the potential is controlled by the sound velocity,
which we can estimate from experimental data [54] for a
fermionic superfluid in the BCS-BEC crossover. While the
power-law behavior arises at higher order in the gas
parameter than the Yukawa potential, it becomes dominant
in strongly correlated superfluids and toward the BCS
regime.
Superfluid EFT with impurities.—We consider an attrac-

tive Fermi gas or a Bose gas weakly interacting with heavy
impurities in the contact s-wave channel. In the ground
state these quantum gases form a superfluid with phonon
excitations. With the superfluid phonon field φ̄ and
impurity field Φ, the low-energy superfluid EFT is
described by the Lagrangian density

Leff ¼ pðθÞ þΦ†
�
i∂t þ

1

2M
∇2

�
Φ − gnðθÞΦ†Φ; ð1Þ

where pðμÞ and nðμÞ ¼ p0ðμÞ denote the medium pressure
and number density as functions of the chemical potential
μ. The first term describes the dynamics of the superfluid
medium, the second is the impurity kinetic term, and the
last term denotes the contact (zero-range) density-density
interaction between impurity and medium. The impurity-
medium coupling constant can be expressed as g ¼
2πaIM½ð1=MÞ þ ð1=mÞ� with the s-wave scattering length
aIM between the impurity (mass M) and medium particles
(mass m). By Galilean invariance of the superfluid medium
the Lagrangian density depends on the phonon field only
via the combination θ≡ μ − ∂tφ̄ − ð1=2mÞð∇φ̄Þ2 [51,52].
We expand pðθÞ and nðθÞ in gradients of the phonon

field φ≡ ffiffiffi
χ

p
φ̄, rescaled by the compressibility χ ¼ n0ðμÞ,

to obtain

Leff ¼
1

2
ð∂tφÞ2 −

1

2
c2sð∇φÞ2 þΦ†

�
i∂t þ

∇2

2M
− gn̄

�
Φ

þ g

� ffiffiffi
χ

p
∂tφþ 1

2m
ð∇φÞ2

�
Φ†Φþ � � � ; ð2Þ

with speed of sound cs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄=ðmχÞp

and average density
n̄ ¼ nðμÞ. In the Supplemental Material [55] we derive this
EFT explicitly from the microscopic theory of a weakly
interacting Bose gas, but its form is a consequence of
symmetry and holds also for strongly interacting super-
fluids [51,56–59]. The first line of Eq. (2) leads to the
phonon propagator

iGðpÞ ¼ i
ðp0Þ2 − E2

p þ iϵ
with Ep ≡ csjpj; ð3Þ

while the second line describes the interaction with the
impurities. We emphasize that Galilean invariance is crucial
to identify the two-body coupling between the impurity
and the phonons (see Ref. [47] for the same result in

one-dimensional systems from a slightly different perspec-
tive). In the following, we drop the ellipsis part in Eq. (2) as
a Galilean invariant truncation. As elaborated in Ref. [51],
the higher-order phonon terms are highly suppressed at low
energy due to the derivative interaction, and we can safely
neglect them [60].
Potential from the exchange of two superfluid

phonons.—In this Letter, we focus on the long-range
behavior of the induced interaction between two heavy
impurities, which allows us to treat them as test particles
fixed at a certain distance r. Assuming that the impurity-
medium coupling g is small, we will evaluate the leading-
order induced potential from Feynman diagrams of phonon
exchange [47]. The impurity kinetic term involving Φ in
the first line of Eq. (2) does not affect the potential at
leading order and can be neglected for heavy impurities.
The exchange of a single Bogoliubov mode produces the

Yukawa potential e−
ffiffi
2

p
r=ξ=r [33–37] that arises from the

nonlinearity of the Bogoliubov dispersion. In the low-
energy regime r ≫ ξ, however, only the linear phonon
branch remains, and the Yukawa potential vanishes in the
limit ξ=r → 0. This behavior is directly obtained within our
low-energy EFT: combining two interaction vertices
g

ffiffiffi
χ

p Φ†Φ∂tφ from Eq. (2) yields a contribution to the
induced potential at leading order g2. The static potential
induced by this exchange of a single static phonon carrying
k ¼ ð0; kÞ vanishes because the interaction vertex is pro-
portional to the frequency k0 ¼ 0.
On the other hand, the second interaction vertex

g½ð∇φÞ2=2m�Φ†Φ leads to a two-phonon exchange process
at the same order g2 as illustrated in Fig. 2. Although it
appears at higher order in the inverse compressibility χ−1 or
of the BEC gas parameter, we find that it gives the leading
result at long distance: a power law that dominates over
the exponentially suppressed Yukawa potential. The two-
phonon exchange leads to the induced potential in Fourier
space as

−iṼðkÞ ¼ −
g2

2m2

Z
d4q
ð2πÞ4

�
k2

4
− q2

�
2

× iG

�
k
2
þ q

�
iG

�
k
2
− q

�
; ð4Þ

with k ¼ ð0; kÞ and q ¼ ðq0; qÞ. Using the phonon propa-
gator [Eq. (3)] and the dimensional regularization, we
evaluate the q integral in Eq. (4) as [55]

FIG. 2. The exchange of two superfluid phonons (dashed lines)
gives rise to the induced potential between two impurities
(amputated solid lines).
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ṼðkÞ ¼ g2k4

32π2m2c3s

�
43

240
log

k2

λ2
−
8261

1440

�
; ð5Þ

where we employed the modified minimal subtraction
(MS) scheme with the renormalization scale λ (see, e.g.,
Ref. [61]) [62].
To obtain the induced potential Vðr1 − r2Þ between two

impurities at positions r1 and r2, one needs to perform the
Fourier transform of ṼðkÞ, which is clearly UV divergent.
One can correctly read off the finite potential by introduc-
ing an appropriate convergence factor as

Vðr1 − r2Þ ¼ lim
ϵ→0þ

Z
d3k
ð2πÞ3 e

ik·ðr1−r2Þ−ϵjkjṼðkÞ: ð6Þ

With the help of the formula [63]

lim
ϵ→0þ

Z
d3k
ð2πÞ3 jkj

νeik·r−ϵjkj ¼ −
Γðνþ 2Þ sinðνπ=2Þ

2π2jrjνþ3
ð7Þ

and its derivative with respect to ν, we perform the Fourier
transform in Eq. (6) to obtain

Vðr1 − r2Þ ¼ −
43g2

128π3m2c3s

1

jr1 − r2j7
: ð8Þ

We thus find that the long-range behavior of the impurity
potential in the superfluid is not given by the Yukawa
potential but by the relativistic version of the van der Waals
potential [63].
Finite-temperature effect.—One can investigate the

effect of finite temperature on the induced potential with
the help of the Matsubara formalism [64,65]. For that
purpose, we need to replace the phonon propagator
[Eq. (3)] with

Δðiωn; pÞ ¼
1

ω2
n þ E2

p
with ωn ≡ 2πnT; ð9Þ

where we introduced the temperature T and the bosonic
Matsubara frequency ωn with n ∈ Z. Then, the impurity
potential at T > 0 is given by

ṼTðkÞ ¼ −
g2

2m2
T

X∞
n¼−∞

Z
d3q
ð2πÞ3

�
k2

4
− q2

�
2

× Δ
�
iωn;

k
2
þ q

�
Δ
�
−iωn;

k
2
− q

�
: ð10Þ

Since the temperature introduces the additional length scale
cs=T in our problem, there emerge two subregimes for the
potential VTðrÞ at finite temperature, for interparticle
distances shorter or longer compared with cs=T.
First, at intermediate distances ξ ≪ r ≪ cs=T, which

covers the whole long-distance regime at zero temperature,

the potential acquires an additional finite-temperature
correction as ṼTðkÞ ¼ ṼðkÞ þ ΔṼTðkÞ. Computing the
Matsubara sum in Eq. (10) we find the finite-temperature
correction ΔṼTðkÞ as

ΔṼTðkÞ ¼ −
g2

2m2

Z
d3q
ð2πÞ3

�
k2

4
− q2

�
2 1

2EþE−

×

�
fðEþÞ þ fðE−Þ

Eþ þ E−
−
fðEþÞ − fðE−Þ

Eþ − E−

�
; ð11Þ

where we introduced the Bose distribution fðEÞ ¼
1=ðeβE − 1Þ and E� ≡ Ek=2�q. The low-temperature expan-
sion allows us to obtain the analytic expression [55]

ΔṼTðkÞ ≃ −
g2

32π2m2c3s

128π6

135c6s

T6

k2
at T ≪ csjkj; ð12Þ

where we omit the constant term. Therefore, we find a
Coulomb potential as the low-temperature correction

ΔṼTðr1 − r2Þ ≃ −
g2

128π3m2c3s

128π6

135c6s

T6

jr1 − r2j
; ð13Þ

which is suppressed by a factor ðTjr1 − r2j=csÞ6 ≪ 1
compared to the relativistic van der Waals potential
[Eq. (8)].
At longer distances r ≫ cs=T, the Matsubara zero mode

ωn ¼ 0 gives the dominant contribution in Eq. (10), and the
full ṼTðkÞ is approximated as

ṼTðkÞ ≃ −
g2

2m2
T
Z

d3q
ð2πÞ3

�
k2

4
− q2

�
2

× Δ
�
0;
k
2
þ q

�
Δ
�
0;
k
2
− q

�
: ð14Þ

With the use of the dimensional regularization it is again
straightforward to perform this integral as [55]

ṼTðkÞ ≃ −
g2

64m2c4s
Tjkj3 at csjkj ≪ T: ð15Þ

Using Eq. (7) as before, we find the induced potential as

VTðr1 − r2Þ ¼ −
3g2

16π2m2c4s

T
jr1 − r2j6

; ð16Þ

which is the familiar nonrelativistic van der Waals potential
proportional to 1=r6.
In short, we find the induced potential for two sub-

regimes separated by the temperature length cs=T; it
acquires the finite Coulomb-type correction at intermediate
distances ξ ≪ r ≪ cs=T, while it approaches asymptoti-
cally the nonrelativistic van der Waals potential at longer
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distances cs=T ≪ r (see Fig. 1). Note that the induced
potential still exhibits a power-law decay rather than the
Yukawa potential in both regimes. This is because the
superfluid phonon remains exactly gapless even at finite
temperature when U(1) symmetry is spontaneously broken
in three dimensions.
It is worth emphasizing that the long-range van der

Waals behavior (with the Coulomb correction at T > 0) is
universal, i.e., independent of the detailed microscopic
parameters of the model. The result follows once we
assume that the Galilean invariant medium is in the
superfluid phase supporting the gapless phonon, and the
impurity is weakly coupled via an s-wave contact inter-
action. Thus, our results [Eqs. (8), (13), and (16)] are valid
in the entire BCS-BEC crossover, including the strongly
correlated unitary Fermi gas regime.
Magnitude of the potential in the BCS-BEC crossover.—

While the power-law exponent of the van der Waals
potential is universal, the magnitude of the potential
depends on the medium properties through the speed of
sound cs. This input parameter for our EFT is determined,
e.g., from experimental data for fermionic superfluids [54]
or from microscopic theoretical calculations [56–58].
Focusing on a fermionic superfluid in the BCS-BEC
crossover, we shall evaluate the magnitude of the van
der Waals potential in comparison to the Yukawa potential.
Using the experimental reference data [54], we demon-

strate the ratio of our result [Eq. (8)] to the Yukawa
potential in Fig. 3. The Yukawa potential from the
exchange of a single Bogoliubov mode was obtained in
Ref. [35] as VYukawaðrÞ ¼ −g2mn̄e−

ffiffi
2

p
r=ξ=ð2πrÞ with the

healing length ξ≡ 1=ð ffiffiffi
2

p
mcsÞ [66]. The result is shown as

a function of the dimensionless medium interaction param-
eter −ðkFaÞ−1 with Fermi momentum kF and s-wave
scattering length a of the medium fermions [67]. One sees
that the contribution from the van der Waals potential
becomes relatively larger when −ðkFaÞ−1 increases, and it
dominates toward the BCS side.
Discussion and outlook.—In this Letter, we have clari-

fied the universal long-range behavior of the potential
between impurities based on Galilean invariant superfluid
EFT. We find that the exchange of two superfluid phonons
leads to the relativistic van der Waals potential VðrÞ ∼ 1=r7

at zero temperature. We also find that at finite temperature
T > 0 it leads to the nonrelativistic van der Waals potential
VðrÞ ∼ T=r6 at larger distances r ≫ cs=T, while the poten-
tial acquires a Coulomb-type correction ΔVTðrÞ ∼ T6=r at
intermediate distances ξ ≪ r ≪ cs=T. The result is uni-
versal since the EFT only relies on two assumptions: (i) the
medium is a Galilean invariant superfluid, and (ii) the
impurity is weakly coupled to the medium through s-wave
contact interactions.
This power-law potential always dominates over the

Yukawa potential at large distance r ≫ ξ. In addition, we
have shown in Fig. 3 that even at a fixed distance r=ξ, the
relative importance of the van der Waals potential increases
monotonically with the interaction strength −ðkFaÞ−1,
indicating that it dominates already at shorter distances
in the strongly coupled and BCS regimes of atomic gases.
Our EFT cannot capture the behavior at distances shorter
than the healing length ξ, where nonlinear terms in the
phonon dispersion appear. Since ξ decreases from large
distances on the weakly coupled BEC side toward values as
short as the particle spacing in the strongly coupled unitary
gas [68], both superfluidity and the van der Waals potential
are more robust at strong coupling. It is therefore highly
desirable to further investigate the properties of impurities
in fermionic superfluids [69–75].
The experimental observation of this Casimir interaction

should be feasible with present technology using ultracold
quantum gases. Each impurity experiences a mean-field
energy shift Epol ¼ OðgÞ and in addition the smaller
Casimir shift VðrÞ ¼ Oðg2Þ due to the presence of a second
impurity. The effect of the power-law van der Waals
scaling, as opposed to exponential Yukawa scaling, is most
pronounced at distances r ∼ 5…10 μm a few times larger
than the healing length ξ≲ 1 μm. Even a small Casimir
shift can be detected by Ramsey interferometry: first, two
fermionic impurities in identical spin states experience the
mean-field shift but no s-wave channel contribution in
the scattering under the induced interaction. Second, two
fermionic impurities in distinct spin states experience both
the mean-field shifts and the full induced interaction. When
both time-evolved states are superimposed, even a small
energy shift from the induced interaction will result in
observable interference fringes. Alternatively, the induced
interaction can lead to an observable shift in the oscillation

FIG. 3. Strength of the van der Waals interaction VðrÞ
in Eq. (8) compared to the Yukawa potential VYukawaðrÞ ¼
−g2mn̄e−

ffiffi
2

p
r=ξ=ð2πrÞ at fixed r ¼ 8ξ. Our EFT result is evaluated

using the experimental data [54] for the speed of sound cs=vF as a
function of the interaction parameter −ðkFaÞ−1 with s-wave
scattering length a and Fermi momentum kF. The importance of
the van der Waals potential grows from the weakly coupled
molecular BEC (left) to dominate in the unitary and BCS regimes
(right).
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frequency of two impurities confined to separate microtraps
in a recently proposed experimental setup [41].
While we focused on weak interaction between the

impurity and the medium perturbatively, possible nonper-
turbative effects are worth further investigation [41,50]. For
example, the strong attractive interaction between an impu-
rity and medium particles may lead to the formation of
bound states [28,76]. Furthermore, even for a weakly
interacting BEC, as the impurity-medium coupling g
approaches the bound-state threshold, the induced potential
could lead to an Efimov attraction that can bind two
impurities [35]. It is interesting to investigate the universality
of such bound states at long distances governed by super-
fluid phonons. Besides, it is worth extending our formu-
lation to more general cases, e.g., systems with a dipolar
interaction between the medium and impurity, or distinct
symmetry broken phases of a spinor BEC. These extensions
may lead to different universal behavior for the impurity
problem; we leave these for future work.
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