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Neutrinoless double beta decay (0νββ) processes sample a wide range of intermediate forbidden nuclear
transitions, which may be impacted by quenching of the axial vector coupling constant (gA=gV ), the
uncertainty of which plays a pivotal role in determining the sensitivity reach of 0νββ experiments. In
this Letter, we present measurements performed on a high-resolution LiInSe2 bolometer in a
“source ¼ detector” configuration to measure the spectral shape of the fourfold forbidden β decay of
115In. The value of gA=gV is determined by comparing the spectral shape of theoretical predictions to the
experimental β spectrum taking into account various simulated background components as well as a variety
of detector effects. We find evidence of quenching of gA=gV at > 5σ with a model-dependent quenching
factor of 0.655� 0.002 as compared to the free-nucleon value for the interacting shell model. We also
measured the 115In half-life to be ½5.18� 0.06ðstatÞþ0.005

−0.015 ðsysÞ� × 1014 yr within the interacting shell model
framework. This Letter demonstrates the power of the bolometeric technique to perform precision nuclear
physics single-β decay measurements, which along with improved nuclear modeling can help reduce the
uncertainties in the calculation of several decay nuclear matrix elements including those used in 0νββ
sensitivity calculations.
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Introduction.—From the first observation of single β
decay [1] through C. S. Wu’s ground-breaking work to
determine the vector and axial vector form of the weak
interaction [2], the study of β decay has been used to
elucidate the hidden world of nuclear and particle physics.
Modern efforts continue this legacy, using nuclear β decay
to investigate the properties of neutrino mass including its
absolute scale through endpoint measurements [3–5],
and possible Majorana origin through searches for 0νββ
[6–14].
In recent years, cryogenic bolometers have established

themselves as a powerful technology in rare event searches
for 0νββ [7,9–14], direct dark matter detection [15–17], and
more [18–22]. Bolometers benefit from excellent energy
resolution, high electron containment efficiencies, low
energy trigger thresholds, and strong particle identification
capabilities when equipped with a dual heat and light or
heat and ionization readout [13,21,23]. Additionally, the
wide variety of crystalline materials that can be practically

grown allows for the study of a multitude of rare-event
processes.
Theoretical calculations of the nuclear physics contri-

butions to the 0νββ half-life have often assumed [24] an
axial-to-vector coupling ratio equal to that of the free
neutron, gA=gV ¼ 1.276 [25,26], though quenched values
are used to obtain agreement with observed single-β
transition rates [27–30]. The exact impact on 0νββ will
depend on the underlying physics of axial quenching [31];
for example, [32] provided evidence that the inclusion of
two-nucleon currents and additional correlations within
light nuclei (A ≤ 14) may explain certain super-allowed
heavy nuclei β-decay transitions. Axial quenching creates a
significant potential systematic uncertainty in the inter-
pretation of any 0νββ search when converting isotope-
specific half-lives back to the underlying physics of
interest [33], in addition to the existing uncertainties for
calculated nuclear matrix elements (NMEs) for 0νββ
isotopes [34].
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As discussed in [35], the shape of highly forbidden
β-decay spectra can be very sensitive to gA=gV , and decays
of nuclei with A ∼ 100 could shed light on gA=gV quench-
ing in a similar nuclear environment as that found in 0νββ
decays. This analysis technique could also have applica-
tions in explaining reactor flux anomalies through exami-
nation of first-order forbidden β-decay transitions [36].
This technique was first used to measure the decay
spectrum of 113Cd in [37], later experimental data from a
CdWO4 scintillation detector [38] were compared to
theoretical spectra in order to extract a value for gA in
the range of 0.90–0.93. More recently, COBRA has applied
this method to analyze data of CdZnTe detectors in order to
obtain a range for gA between 0.92 and 0.96 depending on
the theoretical models used [39]. Bolometers have also
shown great promise to examine other highly forbidden
long-lived β-decay isotopes including 50V [40]. In this
Letter, we make a precision β-decay spectral shape meas-
urement of the fourfold forbidden β decay of 115In → 115Sn

(Qβ ¼ 497.489 keV [41] and T
115In
1
2

¼ ð4.41� 0.25Þ ×
1014 yr [42]) using a high-resolution bolometer. This decay
occurs in a mass range relevant to 0νββ isotopes and
provides a benchmark to test whether many-body nuclear
calculations are capable of simultaneously explaining the
β-decay spectral shape and rate. Recently, interest has been
growing to measure this particular 115In decay mode by
examining an In2O3 bolometer in order to provide a
measurement of gA=gV [43].
Methods.—The LiInSe2 crystal was grown by RMD Inc.

[44] using the vertical Bridgeman process [45,46] and
contains a natural abundance of 115In of 95.72% [47]. The
crystal was enriched in 6Li to 95% for potential use as a
neutron detector [48,49], which does not affect the β-decay
analysis presented here. The LiInSe2 crystal was instru-
mented with a neutron transmutation doped (NTD) thermi-
stor [50], and installed inside a cryostat at IJCLab (ex.
CSNSM) in Orsay, France [51], see Fig. 1. The LiInSe2
scintillation signal was monitored by a separate Neganov-
Trofimov-Luke Ge light detector (LD) [52], which allowed
us to perform particle identification and pile-up rejection.
For a full listing of experimental parameters see Table I.
The data was processed using the APOLLO and DIANA

software developed by the CUORE [53], CUPID-0 [54],
and CUORICINO [55] Collaborations. Events are triggered
with the optimum trigger (OT) [56] and processed follow-
ing a procedure similar to [10,53]. The trigger threshold
was determined by injecting a series of low energy pulses
through the attached Joule heater [57], achieving ∼100%
trigger efficiency above 20 keV. The LiInSe2 detector is
calibrated with a set of dedicated runs with a 133Ba source
using the four most prominent γ peaks in the energy range
250–400 keV.
The internal 115In decay results in an expected event rate

of ≈1.2 Hz in the LiInSe2 detector. The recovery time after

an event is ∼200 ms, and the event window around each
event includes 100 ms before the trigger and 500 ms after.
This leads to a significant paralyzable dead time and means
that internal pile-up events are expected to be a significant
background.
In order to filter out poorly reconstructed events from

115In β− events, a series of loose pulse shape cuts were
employed. To further improve data quality, a pulse rise time
cut (see Fig. 2) was defined by a 3σ band determined by
fitting the rise time profiles across each energy bin. The LD
also allows us to tag α events through light-yield cuts. We
also employ a coincidence cut, taking advantage of the
faster response time of the LD, that enforces a single-event
criterion to help with filtering out pile-up events. We
require that an event is only included in our spectrum if
it triggers both the LiInSe2 and the LD within 20 ms and no
other events are recorded on the LiInSe2 detector within a

FIG. 1. Left: LiInSe2 bolometer with an NTD thermistor
attached to the crystal. Right: the combined detector setup in a
tower configuration with two pairs of bolometers stacked in two
stages. The light detector is placed above each “stage” of the
tower for maximum photon absorption.

TABLE I. Experimental parameters of the LiInSe2 crystal
during the October–November 2017 data runs.

Detector parameter LiInSe2 crystal

Crystal dimensions 1.3 × 1.6 × 0.7 cm
Total crystal mass 10.3 grams
Effective 115In mass 4.1 grams
Noise level 1.1 keV (1σ)
Avg. energy resolution 2.4 keV (1σ)
100% Trigger threshold 20.0 keV
Analysis threshold 160 keV
Containment efficiency 96.6% @ 497 keV
Data selection cut efficiency 47.6(2)% (160–500 keV)
Livetime fraction 52.54(8)%
Total exposure 39.7 g days
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broader 600 ms window. Over the region of 160–500 keV,
we find a cut efficiency of ð47.6� 0.2Þ%, dominated by the
LD single-event criterion. The 160 keV threshold was
selected as the lowest energy where multiple event pileup
was well handled by the autoconvolution background
component. The resulting events that pass all the above
cuts are then compiled into the input LiInSe2 spectrum as
shown in Fig. 3.
To extract gA=gV from the measured LiInSe2 spectrum,

we follow a procedure similar to [58–61] and decompose
the spectrum into various components: a model-dependent
signal component from the β decay of 115In dependent on
gA=gV , an untagged pile-up component, and other radio-
active background contributions. The fit is implemented
using the Bayesian analysis toolkit package [62], which
implements a Markov chain Monte Carlo (MCMC) to
sample the full joint posterior. We perform this decom-
position on the spectrum in Fig. 3, which has a binning of
5 keV below 530 and 30 keV between 530 and 1520 keV,
the analysis cut-off. This binning scheme allows for the
fitting of most spectral features while still maintaining the
highest possible statistics per bin in the region beyond
530 keV. We also implement an analysis threshold of
160 keV to avoid low-energy pile-up events which are
difficult to separate in time and can distort the spectrum.
To implement the MCMC, we define our binned like-

lihood as

L ¼
Y

i

Pois

�
ki;

X

j

ajλij

�
; ð1Þ

enumerating bins by i and fitted components by j. Here, ki
is the number of observed counts within a given bin, λij is
the normalized density of the jth component within the ith

bin, and aj are the fitted normalizations for the different
components. The densities λ corresponding to 115In are
gA=gV dependent.
Numerical calculations for the structure of 115In are

performed using the interacting shell model (ISM) [63–65],
interacting boson model (IBM) [66], and microscopic
quasiparticle-phonon model (MQPM) [67]. We generate
a library of 200 discrete β-decay spectra for gA=gV
uniformly spaced across the range 0.6 < gA=gV < 1.3
and then perform an interpolation for the spectral shape
for gA=gV values not in our library. Each 115In spectrum is
then convolved with an energy-dependent detector
response function to account for energy losses as well as
shifts in the spectral shape from β particles that escape the
absorber. ThroughGEANT4 simulation [68] of the LiInSe2
crystal and its neighboring copper plate we determined that
96.6% of all internally generated βs have their energies
fully contained within the detector volume at the Q115In

value (497 keV), which represents the minimum contain-
ment efficiency over the entire 115In. Background contami-
nation spectra are obtained via GEANT4, simulating various
possible radiogenic decay chains on neighboring detector/
cryostat components to our detector. In total, we simulated

FIG. 2. LiInSe2 detector events with 3σ cut bands, analysis and
trigger thresholds superimposed. The corresponding rise time cut
band was calculated by interpolating between the 3σ Gaussian
bin profile in 10 keV energy bins running between 20–450 keV.
Outside of this energy range, the cut values were kept constant
due to large uncertainties in the profile fit as a result of non-
Gaussian parameter distributions (low) statistics at the low (high)
energy ranges, respectively.
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FIG. 3. Top: spectral fit to the collected LiInSe2 spectrum
over the region 160–1520 keV. Component normalizations and
the 115In spectral shape correspond to the best-fit values for the
interacting shell model (ISM) exhibiting a χ2 ≈ 160 with 101
degrees of freedom. Fits to the microscopic quasiparticle-
phonon model (MQPM) and interacting boson model (IBM)
result in similar reconstructions. Bottom: data/fit ratios for the
reconstruction, along with 1σ (purple), 2σ (red), and 3σ (yellow)
fit credibility regions. The spectrum is binned by 5 keV between
5–530 keV and by 30 keV above 530 keV in order to maintain
reasonable statistics per bin above the 115In endpoint.
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the resulting γ and β spectra stemming from 238U=232Th
decay chains from nearby cryostat components and overall
environmental contamination. We also simulated internal
60Co, and 40K decays present uniformly throughout the
LiInSe2 detector. In addition, we simulated a separate
background contribution coming solely from possible
surface contaminations of the LiInSe2 crystal. All these
simulated spectra were also convolved with the LiInSe2
detector’s measured energy resolution before its use as a
potential component of the MCMC fit. We also generated
an irreducible pile-up background component (the auto-
convolution of the 115In β spectrum) to account for the
inability to separate events which occur too closely in time
and could then be misreconstructed as a single higher
energy event.
The final MCMC fit only included the four most-

dominant background components: (1) and (2) 238U decay
chains and 60Co decays from internal crystal contamination,
(3) 232Th decay chain events on the copper plate underneath
the LiInSe2 crystal, and (4) 232Th decay chain events
(mostly γs) from external sources. α backgrounds can be
safely ignored, thanks to the strong pulse shape and
coincidence cuts applied to the collected data, resulting
in predominantly bulk γ backgrounds. All other simulated
background components were found to have only a
negligible effect on the final fit parameters. This results
in a satisfactory description of background features in the
collected spectrum without introducing degeneracies in the
fit from additional components which may not be differ-
entiated with available data. We perform a separate fit for
each nuclear model tested, and apply uniform priors to the
normalizations of each fitted component within the regions
of gA=gV discussed below.
Discussion.—For all three nuclear models examined, the

likelihood function within the fit is bimodal with respect to
gA=gV , exhibiting a local minimum both at gA=gV below
0.95 and again above 1.05. Fits arising from the gA=gV >
1.05 minimum result in a poor match to the observed
spectral shape, with decreases in log-likelihood as com-
pared to the gA=gV < 0.95 minimum of at least 65 (IBM),
90 (MQPM) and 118 (ISM). Despite this, the high-gA=gV
fit minima are still sufficiently favored that without a
restricted prior, the MCMC chain would still eventually
achieve convergence. In order to ensure a good conver-
gence of the MCMC chain about the global minimumwhile
avoiding numerical instabilities, we restrict ourselves to a
uniform prior on gA=gV ∈ ½0.6; 1.0�.
We extract the best-fit values from the maximum

a posteriori point, along with Bayesian credibility regions
(BCRs) for parameters pertaining to the T

115In
1
2

and gA=gV
value. We marginalize over all background component
normalizations as nuisance parameters; all three fits result
in compatible contributions from each of the included
background components. The best-fit values for gA=gV
along with the central 1σ BCRs arising from the fits are
summarized in Table II. Unsurprisingly, the various nuclear

calculations prefer different values of gA=gV , however, all
models strongly reject the free-nucleon value of gA=gV ¼
1.276 at > 5σ as determined by the Δ logL between the
best-fit values and the free-nucleon value, assuming Wilk’s
theorem [69].
From our fit results, we can also extract the value of

T
115In
1
2

¼ ½5.18� 0.06ðstatÞþ0.005
−0.015ðsysÞ� × 1014 yr. Here we

quote the best-fit value arising from the ISM model fit,
with statistical uncertainty determined by the width of the

TABLE II. 115In fit results for the ISM, IBM, and MQPM
nuclear models. For the fitted gA=gV and T1=2 values, we quote
the best fit value with uncertainty given by the width of the central
68% Bayesian credibility interval, along with the reduced-χ2

value for the best-fit reconstruction. Additional T1=2 values for
115In taken from literature are provided for reference.

Model gA=gV T
115In
1
2

(1014 yr) Reduced χ2

ISM 0.830� 0.002 5.177� 0.060 1.58
IBM 0.845� 0.006 5.031� 0.065 1.50
MQPM 0.936� 0.003 5.222� 0.061 1.60
Pfeiffer
et al. [42]

4.41� 0.25

Watt and
Glover [70]

5.1� 0.4

Beard and
Kelly [71]

6.9� 1.5

FIG. 4. (a) Half-lives versus gA=gV theory curves (dash-dotted
lines), assuming a conserved vector current [72], for 115In as well
as the best fit half-lives and gA=gV values (markers) resulting
from the spectral-shape fits for the IBM (red), ISM (yellow), and
MQPM (cyan) models considered in this Letter. (b) Enlargement
of (a) including previous half-life measurement from [42] in gray
with 1σ uncertainty (other measurements omitted for clarity).
Contours about the best fit values represent the joint two-
dimensional Bayesian credibility regions produced from the fit
posteriors and only include statistical uncertainties.
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1σ central BCR with negligible contributions from uncer-
tainties in the cut and live-time efficiencies. We choose to
quote the spread in half-life with respect to the IBM and
MQPM best-fit values (shown in Table II) as a systematic
uncertainty. This is slower by 3σ with respect to [42], but
falls within 2σ of the older, less precise measurements
[70,71]. Figure 4(b) displays the joint two-dimensional
Bayesian credibility regions for gA=gV and T1=2 for each
fitted nuclear model, along with the best-fit points.
We are then able to simultaneously calculate the T1

2
as a

function of gA=gV values [73] as shown by the dash-dotted
lines in Fig. 4. Our best fit values for T1

2
overestimate the

T1
2
by factors of 1.2 (IBM), 2.2 (MQPM), and 2.0 (ISM)

compared to [42], and simultaneously do not fall upon their
respective theory curves. This suggests that our quenching-
dependent calculations are not yet able to simultaneously
match the spectral shape and decay rate in 115In. It is worth
noting that the half-life in [42] is similarly incapable of
simultaneously matching the spectral shape and decay rate.
Previous work with 113Cd data has shown that this type

of tension between independent measurements of half-life
and quenched gA=gV values can be relaxed via the
introduction of a small relativistic nuclear matrix element
correction that affects the spectral shape due to the
enforcement of the conserved vector current assumption
[74]. Because of the closeness of our results with the
measurements presented in [70,71], we do not present any
conclusion regarding the accuracy of any single nuclear
model presented here. This Letter seeks to showcase the
ability of this technique to simultaneously provide two
independent experimental cross-checks to any nuclear
calculation framework used to model highly forbidden
nuclear β decays.
Conclusion.—From these data, it is clear that the value of

gA=gV that governs the 115In highly forbidden decay is
quenched by approximately 0.65–0.75 compared to the
decay of the free neutron. Interestingly, for each of the
nuclear models examined there is strong disagreement

between the measured T
115In
1
2

from [42] and the predicted

half-life value for the favored value of gA=gV calculated
from spectral shape analysis. This tension could point to
possible issues with regards to the many-body approaches
and Hamiltonians used in the various calculation frame-
works. At the same time, our better agreement with the
older measurements of [70,71] may point to additional
systematic effects that could be addressed in subsequent
spectral shape/half-life calculations. This measurement
showcases the utility of cryogenic bolometers for precision
studies to test various spectral shapes calculated using
different nuclear modeling frameworks for rare or forbid-
den nuclear processes. Further developments in fast cryo-
genic detectors, such as the use of transition edge sensors
for heat and/or light readout, would provide better sepa-
ration of low-energy pile-up events and could offer even

better energy resolution than the data presented here
[23,75]. Further refinements in the theory calculations of
the NMEs [76,77], coupled with studies of 115In and other
candidate isotopes [74] (for an expanded list see [78]) could
further increase the sensitivity to gA=gV across multiple
nuclear environments. Coupled with improved nuclear
modeling, this and future gA=gV measurements have the
potential to reduce the systematic uncertainty on the NMEs
for decay calculations, including those used by 0νββ
experiments to determine their current and projected
sensitivity limits.
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