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Infrared Singularities of Multileg QCD Amplitudes with a Massive Parton at Three Loops
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We derive the structure of three-loop anomalous dimensions governing infrared singularities of QCD
amplitudes with one massive and an arbitrary number of massless external partons. The contributions of
tripole and quadrupole correlations involving a massive parton are studied in detail. The analytical
expression of tripole correlations between one massive and two massless partons is obtained at three loops
for the first time. We regularize the infrared divergences in the soft matrix element in a novel approach,
where no extra scale dependence is involved, and the calculation can be performed in momentum space.
Our results are essential to improve the theoretical predictions of single top and top quark pair productions

at hadron colliders.
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Introduction.—The structure of infrared (IR) singular-
ities of gauge-theory amplitudes is of basic importance for
both theory and phenomenology. Impressive progress has
been made to investigate IR structure of multileg scattering
amplitudes involving both massless and massive partons
[1-22] in the past decades. This enables us to systemati-
cally resum large logarithmic corrections to many impor-
tant observables. In the LHC era, precision top quark
physics is crucial for the measurements of the standard
model parameters and for the determination of back-
grounds for new physics phenomena. However, much less
is known about the IR structure of multileg amplitudes with
massive partons beyond two-loop order, which is essential
to understand soft-gluon effects and to improve the
theoretical predictions for top quark productions at hadron
colliders [23-34].

In soft-collinear effective theory (SCET) [35-37], the IR
singularities of on-shell QCD amplitudes are in one-to-one
correspondence to the ultraviolet (UV) poles of low-energy
matrix elements. The poles can be subtracted in MS scheme
by means of a multiplicative renormalization factor
Z7'(e.{p}.{m}.u). Here, {p}={pi.ps.....p,} and
{m} ={m,,my,...,m,} denote the momenta and masses
of the on-shell n partons, respectively. According to the
renormalization group (RG) equation, the Z factor for hard
scattering amplitudes can be determined by the correspond-
ing anomalous dimensions [8,10]
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where Z and I' are matrices in color space. The structure of
the anomalous-dimension matrix I is severely constrained
by soft-collinear factorization, non-Abelian exponentiation,
and the behavior of amplitudes in two-parton collinear
and small-mass limits. In this Letter, we focus on the IR
singularities of QCD scattering amplitudes with an arbi-
trary number of massless and one massive external partons.
We will investigate the kinematic dependence of the tripole
and quadrupole correlations in anomalous dimensions, and
derive their behavior in two-particle collinear and small-
mass limits. Finally, the analytical calculation for the three-
loop tripole correlation involving a massive parton will be
presented.

General form of anomalous dimensions.—In SCET, the
soft and collinear fields do not interact with each other after
decoupling transformation. RG invariance implies that
renormalization-scale dependence cancels in the combina-
tion of a hard Wilson coefficient and associated soft and
collinear matrix elements. It follows that T’ = 'y + >, T'.1,
where T’y and I denote the soft and collinear anomalous
dimensions, respectively. The collinear piece can be
expressed by a sum over single-parton contributions, each
of which is a color-singlet and linearly depends on the
collinear logarithm L; = In[u?/(—p? —i0)] [38] through
I = —TlypL; + 7L [39]. Here, T, is the cusp anomalous
dimension depending on the color representation of parton
i, and y'. controls the single-logarithmic evolution. T, is a
matrix in color space due to multiparton correlations of soft
interaction. The kinematic dependence of I, is encoded via
cusp angles formed by the Wilson lines belonging to
different pairs of massless or massive partons
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where s;; = 20;;p; - p; + i0. The sign factor o;; = +1 if
the momenta p; and p; are both incoming and outgoing,
and o;; = —1 otherwise. Here, and below, we label the
massive partons by capital indices 7, J - - -, and the massless
ones by lowercase indices i, j - - -. Because hard scattering
amplitudes are independent on the collinear scales, L; must
cancel in the sum of the soft and collinear anomalous
dimensions, i.e.,

or,  or

oL; oL,

(3)

This implies that I'; can only linearly depend on the cusp
angles, or depend on the conformal cross ratios of cusp
angles where all the collinear scales cancel. For hard
scattering amplitudes with four or more massless external
legs, the possible conformal cross ratios are found to be
Bijt = Bij + Br — P — Pji [9,10]. According to (3), the
coefficients of cusp angles f#;; and f;; in Iy have to be
related to the cusp anomalous dimension, so the cancella-
tion of collinear logarithms could be achieved by applying
color conservation relation ., T; + >, T; = 0. Here and
below T, denotes the color generator of the i(/)th
massless (massive) particle in the color-space formalism
of [40,41].

The RG equation implies that all the UV poles of a soft
matrix element can be written as an exponential of the soft
anomalous dimension, in analogy to (1). Non-Abelian
exponentiation theorem indicates that only the maximally
non-Abelian part of the conventional color factor of each
Feynman diagram contributes to the soft anomalous
dimension. In other words, the color structures involved
in soft anomalous dimensions must be connected. This was
first found in the case with two Wilson lines in [42,43], and
then generalized to multiparton scattering in [44,45]. By
symmetrizing the attachments to the Wilson lines and
applying the Lie algebra relation [T9¢,T?] = ife<T¢
repeatedly, any color structure can be rewritten as a sum
of symmetric products of generators multiplied by structure
constants. Eventually, soft anomalous dimensions only
contain the following color structures up to three-loop
order (sums over repeated color indices are implied)

Dij = T?T? =T;- ij Tijk = ifahc(T?T?TZ)y
T i = [P (T{TITLTY) (4)

ay a, — Ao (1) Ao(n)
where (T5'---T;") =1/n!3 ,T;7"---T;7", and o

goes through all the permutations of n objects.

The structure of soft anomalous dimensions for multileg
massless QCD amplitudes has been studied up to four-loop
order. On the other hand, it is only known up to two-loop
order for massive amplitudes. For massless amplitudes,
only dipole structures D;; are involved in soft anomalous
dimensions up to two-loop order, because it is impossible
to construct an antisymmetric (in the parton indices)
kinematic function independent of collinear scales for
the tripole structure 7, [46]. The authors in [21] first
calculated the nonvanishing nondipole corrections at three-
loop order, which correspond to 7;j; and are strongly
constrained by two-particle collinear limits. For amplitudes
with massive partons, 7 associated with antisymmetric
kinematic structures can appear from two-loop order, only
if at least two of the three partons are massive [13,14].

In the following, we will extend the structures of
anomalous dimensions to multileg QCD amplitudes with
single massive parton up to three-loop order. Color gen-
erators corresponding to massless and massive partons are
mixing in color conservation, increasing the complexity of
color algebra. Starting from three loops, color structures
T iir» T iji> T iijr» and T ;4 have to be taken into account.
Color conservation implies the following identity:

1 1
Tijir = 5 (T jjir + Tijr) — 5 Z (Tijir + 7 jina)
2 2 iz
1
) Z(Tijll + T jitg)s (5)

J#I

which helps to eliminate linearly dependent color structures
in the anomalous dimensions. The second (third) term on
the right-hand side vanishes when there are fewer than three
massless (two massive) partons. The only conformal cross
ratio for kinematic functions of tripole correlations involv-
ing a massive parton is given by

2

vi(n; - nj)

———~—  with
2(”1 : ”i)(”l : ”j)

Fijr = I # ], (6)
where v; = p;/my is the four velocity of massive parton /,
and n;;) is the lightlike unit vector along the momentum of
massless parton i(j). The kinematic variables correspond-
ing to quadrupole correlations 7;;; can be expressed in
terms of the three linearly independent variables r;j;, riy,
and r, since all the other conformal ratios are fully related
to these three variables, e.g.,

(ni-nj) (v - ny) _ lijr (7)
(”i : nk)(”I : ”j) Tikt
Finally, the general structure of the three-loop anomalous

dimensions for QCD amplitudes with one massive and an
arbitrary number of massless partons is given by
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+ [nondipole contributions involving two or more massive partons] + O(a?). (8)

Here, ycusp(@,) denotes the lightlike cusp anomalous
dimension [47], which is available up to four-loop order
[48-61]. yeusp(B1s @) is the angle-dependent cusp anoma-
lous dimension, which has been fully obtained up to three-
loop order in QCD [62—-64], and is partially known at four
loops [65,66]. The collinear anomalous dimensions y4()
can be extracted from the divergent part of the quark
(gluon) form factor up to four loops [60,61,67-69]. y€ is
available up to three loops [62—64,70-72]. The contribu-
tions in the first two lines of Eq. (8) have been presented in
[8-10,21,73]. The terms in the third line denote tripole and
quadrupole correlations with a massive parton starting from
three-loop order. Because of symmetry properties of 7
and f;j; [10], F4 and F3 can be chosen as odd functions,
ie., Fu(x,y,a0) = —F4(=x,y,a,) and Fj3(x,y,z,0,) =
—F;5(v,x,z,a,). The kinematic functions in (8) are
strongly constrained by the small-mass limits. When the
masses of the external partons are much smaller than the
characteristic hard scales, the amplitude can factorize into a
product of jet functions, describing collinear singularities,
times the corresponding massless amplitude [74,75]. This
implies that there is no color exchange between different
external partons in I'({p}. {m — 0}, ) —T'({p}. {0}, ),
where T'({p}, {0}, 1) denotes the corresponding anoma-
lous dimension in purely massless case. Moreover, the
anomalous dimensions for 1 — 2 splitting amplitudes I,
can be determined by I'({p},{m},u) in (8) when the
momenta of any two massless particles are aligned. The
fact that I's, only depends on color generators for the two
daughter particles requires that the contributions involving
color generators for other particles must cancel out. The
relevant derivations are provided in Supplemental Material
[76]. As a result, we have the following relations:

wl—i>IPooF4(w’ a),as) = f(SS) ’ Fh2(07as) = 3f(as)’
Fh3(07 r, I‘,O(S) :Zf(as)’ (9)

and

lim Fh3(rij1a Tikr> TjkI> as)
L‘?—)O

= 2f(ay) +4F4(Bijur- Bijir — 2Prjir- ). (10)

The first relation in (9) was first obtained in [21], while the
others are derived for the first time in this Letter.

Calculation of Fj,.—In this section, we present the
calculation of the three-loop coefficient

Ay

Fip(r.a,) = <4ﬂ

ffmw+a¢» ()

F»(r) can be conveniently obtained through the evalu-
ation of soft anomalous dimensions. To extract the UV
poles of soft matrix elements, appropriate regulators need
to be introduced to regularize IR divergences. For example,
an exponential regulator was proposed in [77] to isolate UV
poles, and the relevant calculations were performed sys-
tematically in configuration space. In [15], IR divergences
are regularized by assigning a residual external momentum
to each Wilson line. We note that for physical observables,
the low-energy matrix elements in SCET are free of IR
poles because they are regularized by the low-energy
measurements. This provides a natural approach to isolate
UV poles of soft matrix elements. Specifically, we consider
the soft function in factorization at cross-section level

S(w) = (O|T(Y}, Y5, Yi]6(w — v- p)T[Y, ¥, Y,][0), (12)

where Y,y = Y,(,)(0) denotes semi-infinite soft Wilson
line along n*(v*) direction, p* is the momentum operator
picking up the total momentum of all soft emissions in final
states, and T(T) indicates (anti-)time ordering. In practice,
this soft function has applications in phenomenology. For
instance, it can describe the soft-gluon effects for near-
threshold production of single top quark associated with
color-singlet states (e.g., W boson or charge Higgs) at
hadron colliders. In [78] one of us and a collaborator have
provided a novel method to compute inclusive soft func-
tions in terms of loop diagrams. In particular, the soft
function defined in (12) can be rewritten as
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S(w) = z—lﬂRe[E(w +i0) — X(w — i0)], (13)

S(o) = A i eiwf<0|T[Y;l (t0) Y, (10)

. Pexp {ig A "dsv- A"(sv)Tﬁ} Y, (0)Y,, (O)} 0),
(14)

where P indicates path ordering. This allowed us to avoid
any phase space integrations and to straightforwardly take
advantage of well-established multiloop technology.

In our calculation, only color-connected diagrams,
also called webs are taken into account due to non-
Abelian exponentiation theorem. Unlike the soft correlator
0y, Y, Y,|0), the soft function in (13) appears in
factorizations at cross-section level. Nevertheless, the
replica trick for evaluating the diagrammatic contributions
to the exponent [44,45] is still compatible [79]. A sample is
shown in Fig. 1, where each subdiagram on the right hand
side has the same color structure as the left one. This can be
seen by moving the gluon end points sequentially from
right to left along the attached Wilson lines in each
subdiagram. There are several advantages to extract UV
poles by evaluating diagrams from definition in (14). First,
w 1is the only dimensionful kinematic variable in the
integrals, so it can factor out and does not increase the
complexity of the integrals. Although both IR and UV
poles exist in individual diagrams, all the IR poles cancel
out when summing over all the diagrams contributing to
Fin(r). Second, gauge invariance is preserved, and the
calculation can be performed in general covariant gauge.
Finally, the calculation can be performed in momentum
space, which allows us to use sophisticated multiloop
computation techniques, e.g., integration-by-parts (IBP)
reduction and the differential equation (DE) method.

The calculation is performed in dimensional regulariza-
tion d = 4 — 2¢ and in general covariant gauge with gauge
parameter £ We use QGRAF [80] to generate the color
connected diagrams at three loops. After partial-fraction
decompositions, the scalar Feynman integrals in the dia-
grams can be mapped onto thirty integral topologies, each
of which consists of fifteen linearly independent quadratic

|

ny

"
e 1 |

FIG. 1. An example for the relation of color structures between
diagrams of the soft correlator and the soft function in (13). For
the subdiagrams on right hand side, the external and internal
double lines correspond to the semi-infinite and finite-length soft
Wilson lines in (14), respectively. The dashed gray lines denote
color connections between the soft Wilson lines along the same
directions.

and linear propagators. Using IBP reduction and eliminat-
ing redundant master integrals (MIs) across the integral
topologies [81,82], F,(r) can be further expressed
as a linear combination of 173 linearly independent Mls.
In this expression the gauge parameter £ manifestly cancels
out, demonstrating the validity of our setup. In the
next step, we use the DE method to solve for the MlIs.
The public packages CANONICA [83] and DLOGBASIS [84]
are helpful to convert the DE systems into a canonical
form [85]. The resulting symbol alphabet is {r,r —1,

r—2,(r=1)y/r,/r(r—1)}, where the last letter leads

to the generalized harmonic polylogarithms (GHPLs) [86]
in the solution of the DEs, and the letter (r — 1),/r can be
rationalized by changing variables to u = +/r — 1. The
boundary conditions are determined by the values of the
MlIs at r=1, which corresponds to the kinematic
point v* = nf{ + nb. The dimensional recurrence relations
[87—-89] help to express each MI at r = 1 in terms of a set of
quasifinite integrals in d = n —2¢(n = 4,6,38, ...), which
can be evaluated by performing the integrations over the
Feynman parameters with the package HYPERINT [90].
Eventually, we can iteratively solve the DEs order by order
in € in terms of Goncharov Polylogarithms (GPLs) and
GHPLs.

After inserting the results of the MIs into the expression
of F,(r), all the poles from e~> down to e~! notably cancel
out. Furthermore, all the GHPLs also manifestly drop out.
Finally, the expression can be remarkably simplified to

Fuo(r) =128[H_y g0+ H_1100+ Hi-100 = Hi000] +128({ +&3)[Hi g — H_1 9] +96({5 + 4)[H_y — H,]
+ 12805 [H 50— Ho g+ H_y 00— Hy ] +256[H | 500 + H2000 = H_2000 +H_1-200 = H_1200
—H\ _500—H_10000+ Hi0000] +48(20203 + 5), (15)
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where H; = H;(y/r) are the harmonic polylogarithms
[91,92]. We use the notation of dropping the zeros in
the vector a, adding 1 to the absolute value of the next right
nonzero index for each dropped 0. In small-mass limit
r — 0, all the terms in (15) vanish except the last one,
which returns to the tripole contribution in the purely
massless cases, as shown in (9). F,»(r, a,) does not have a
uniform transcendental weight (2L — 1) at L loops, differ-
ing from the tripole and quadrupole correlations in purely
massless cases. This interesting observation has also been
found recently in the boomerang-type webs [93].
Summary.—Based on soft-collinear factorization and
non-Abelian exponentiation theorem, we have derived
the general form of anomalous dimensions governing IR
singularities of QCD amplitudes with one massive and an
arbitrary number of massless partons up to three-loop order.
In comparison to the purely massless cases, two additional
color structures are introduced, and the corresponding
kinematic variables have been determined. We discuss
the relations between the kinematic coefficients using
the constraints from small-mass and two-particle collinear
limits. The three-loop analytical expression of the tripole
correlation involving a massive parton has been obtained
for the first time, which can be directly used to improve
theoretical predictions of cross sections for single top
productions. It is also an important ingredient to the IR
singularities of QCD amplitudes with a heavy quark pair.
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