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Standard model CP violation associated with the phase of the Cabibbo-Kobayashi-Maskawa quark
mixing matrix is known to give small answers for the electric dipole moment (EDM) observables.
Moreover, predictions for the EDMs of neutrons and diamagnetic atoms suffer from considerable
uncertainties. We point out that the CP-violating observables associated with the electron spin
(paramagnetic EDMs) are dominated by the combination of the electroweak penguin diagrams and
ΔI ¼ 1=2 weak transitions in the baryon sector, and are calculable within chiral perturbation theory. The
predicted size of the semileptonic operator CS is 7 × 10−16, which corresponds to the equivalent electron
EDM deqe ¼ 1.0 × 10−35 e cm. While still far from the current observational limits, this result is 3 orders of
magnitude larger than previously believed.
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Introduction.—The searches for the electric dipole
moments (EDMs) of elementary particles [1–4] represent
an important way of probing the TeV scale new physics
[5–7]. Recent breakthrough sensitivity to CP violation
connected to electron spin (which we will refer to as
“paramagnetic EDMs”) [3] established a new limit on the
linear combination of the electron EDM de and semi-
leptonic nucleon-electron N̄Nēiγ5e operators, commonly
parametrized by a CS coefficient. The rapid progress of the
last decade, as well as some additional hopes for increased
accuracy (see, e.g., [8–10]), makes one revisit the standard
model (SM) sources of CP violation, and the expected size
of the paramagnetic EDMs in the SM.
The SM has two sources of CP violation. The first

source, undetected thus far, corresponds to the nonpertur-
bative effects parametrized by the QCD vacuum angle θ.
Recently it has been shown [11] that paramagnetic EDMs
are dominated by the two-photon exchange mechanism,
and the leading chiral behavior of the hadronic part of the
diagram is given by the t-channel exchange by π0, η. CP
violation due to θ comes through the π0ðηÞN̄N coupling.
The result, in combination with the experimental bound [3],
sets the independent limit on jθj < 3 × 10−8, which is still
subdominant to the limit provided by dnðθÞ.
The second source of the SM CP violation is the

celebrated Kobayashi-Maskawa (KM) phase δKM [12],

which is now observed to rather good accuracy in a plethora
of flavor transitions in B and K mesons. Observations are
often matched by rather precise theoretical predictions,
starting from [13]. The predictions of EDM-like observables
induced by δKM thus far can be summarized by two
adjectives: small and uncertain. The suppression comes
from the necessity to involve at least two W bosons and
multiple loops [14–16] involving all three generations of
quarks. As a result, short distance contributions to quark
EDMs do not exceed 10−33 e cm level [17]. At the same
time, it is clear that long-distance nonperturbative contribu-
tions, typically described as a combination of two transitions
changing strangeness by one unit, ΔS ¼ �1, dominate dn
and nucleon-nucleon forces [18–22]. A more recent estimate
[23] places dn in the ballpark of few × 10−32 e cm with a
wide order-of-magnitude expected range. It is fair to say that
magnitudes of dn and nucleon-nucleon forces (that feed into
the nuclear-spin-dependent atomic EDMs) cannot be accu-
rately predicted at this point.
What is the size of paramagnetic EDMs induced by

δKM? Recent estimates of de [24] (dominated again by
long-distance effects) converge at the tiniest value of
∼6 × 10−40 e cm, presumably with considerable uncertain-
ties corresponding to hadronic modeling of quark loops.
This result is subdominant to the CS estimate due to the
two-photon exchange mechanism in combination with
ΔS ¼ �1 transitions [25], which corresponds to equivalent
de of ∼10−38 e cm. To introduce useful notations, this is
the EW2EM2 order effect, where EW and EM stand for
electroweak and electromagnetic, respectively.
In this Letter, we demonstrate that the dominant con-

tribution to paramagnetic EDMs associated with the KM
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CP violation is given by the semileptonic CS induced in
EW3 order. It has an unambiguous answer in the flavor
SUð3Þ chiral limit and is calculable to ∼30% accuracy,
which can be further improved. Remarkably, the result
reaches the level of ∼10−35 e cm in terms of the de
equivalent, which is 3 orders of magnitude larger than
previously believed [25].
Our starting point is the expression for the equivalent de

that follows from atomic and molecular theory, and defines
the linear combination of two Wilson coefficients con-
strained by the most precise paramagnetic EDM measure-
ments performed with the ThO molecule:

dequive ¼ de þ CS × 1.5 × 10−20 e cm; ð1Þ

where e is the positron charge. Current experimental limit
[3] stands as jdequive j < 1.1 × 10−29 e cm. As per conven-
tion,CS is defined with the Fermi constant factored out, and
γ5 corresponds to the 1

2
γμð1 − γ5Þ definition of the left-

handed current

LeN ¼ CS
GFffiffiffi
2

p ðēiγ5eÞðp̄pþ n̄nÞ: ð2Þ

Our goal is to calculate CSðδKMÞ.
Leading chiral order CS calculation.—Because of the

conservation of the electron chirality in the SM, it is clear
thatCS ∝ me. This in turn rules out single-photon exchange
(EM penguin) as origin of meēiγ5e, and one would need
either a two-photon mechanism [11,25] or the EW penguin
Z-boson exchange and W-box diagram. The most crucial
property of EW penguins is that, although they are formally
of the second order in weak interactions, their size is
enhanced by the heavy top, so that the result scales as
G2

Fm
2
t . EW penguins (as is well known, EW penguins must

also includeW-box diagrams, and we include both) induce
Bs;d → μþμ− decays, and dominate the dispersive part of
KL → μþμ− amplitude. Dropping the vector part of the
lepton current (as not leading to meēiγ5e), and integrating
out heavy W, Z, t particles, one can concisely write the
semileptonic operator as

LEWP ¼ −PEW × ēγμγ5e × s̄γμð1 − γ5Þdþ ðH:c:Þ; ð3Þ

where

PEW ¼ GFffiffiffi
2

p × V�
tsVtd ×

αEMðmZÞ
4πsin2θW

IðxtÞ; ð4Þ

and the loop function is given by [26]

IðxtÞ ¼
3

4

�
xt

xt − 1

�
2

log xt þ
1

4
xt −

3

4

xt
xt − 1

; xt ¼
m2

t

m2
W
:

ð5Þ

These results are well established, and unlike the case of
four-quark operators, the subsequent renormalization group
evolution of Eq. (3) introduces only small corrections (see,
e.g., [27,28]). This is because the QCD evolution is trivial
(apart from small threshold corrections at mW) due to the
partially conserved nature of the quark current, and QED
evolution is small ∝ αEM=π.
The most convenient representation of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix is when δKM enters
mostly in Vtd. It enters the imaginary part of PEW and
couples the axial vector current of leptons to the s̄γμð1 −
γ5Þd − d̄γμð1 − γ5Þs quark current. This current can create
or annihilateCP-even combination of the neutral kaons that
(in neglection of small ϵK) can be identified with KS field.
Same operator in the muon channel induces KS → μþμ−
meson decay [29,30]. Within chiral perturbation theory, the
axial vector current of leptons is treated as an external left-
handed current, which gives rise to

LUee ¼ − if20
2

PEW × ēγμγ5e × Tr½h†ð∂μUÞU†� þ ðH:c:Þ;
ð6Þ

where U is the exponential of the meson octet M,
U ¼ exp½2iMf−10 �, in our convention it transforms as
U0 ¼ LUR†, and hij ¼ δi2δj3. At linear order, this leads
to ∂μK × ēγμγ5e, and upon application of the equation of
motion for electrons we arrive at

LKee ¼ −2
ffiffiffi
2

p
f0meēiγ5eðKS × ImPEW þ KL × RePEWÞ:

ð7Þ

In this expression, f0 is the meson coupling constant,
which in the SUð3Þ symmetric limit is equal to ≃134 MeV,
and we follow Ref. [31] conventions. Subsequent ms-
dependent corrections renormalize this coupling to f0 →
fK ≃ 160 MeV.While other s-quark containing resonances
may also contribute, the neutral kaon exchange, Fig. 1, will
give the onlym−1

s -enhanced contribution in the chiral limit.
We now need to find out how the neutral kaons couple to

the nucleon scalar densities, p̄p and n̄n, that occur due to
ΔS ¼ �1 transitions in the EW1 order. Instead of attempt-
ing such calculation from first principles (see, e.g., [32]) we
will use flavor SUð3Þ relations and connect this coupling
to the s-wave amplitudes of hadronic decays of strange
hyperons, following [31]. It is well known that empirical
ΔI ¼ 1=2 rule holds for hyperon decays, and the leading
order SUð3Þ relations fit s-wave amplitudes with Oð10%Þ
accuracy. It is strongly suspected that these amplitudes are
indeed induced by strong penguins (SPs), although this
assumption is not crucial for us. With that, one can write
the two types of couplings consistent with ð8L; 1RÞ trans-
formation properties:
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LSP ¼−aTrðB̄fξ†hξ;BgÞ−bTrðB̄½ξ†hξ;B�Þþ ðH:c:Þ: ð8Þ

In this expression, B is the baryon octet matrix, and ξ ¼
exp½iMf−10 �. Assuming a and b to be real, and taking
f0 ¼ fπ , they are fit by [31] to be [33]

a ¼ 0.56GFfπ × ½mπþ�2; b ¼ −1.42GFfπ × ½mπþ�2:
ð9Þ

Brackets over mπþ indicate that these are numerical values
taken, 139.5 MeV, rather than mu þmd-proportional theo-
retical quantitymπ. These values can be easily found via the
least square fit to the nonleptonic s-wave amplitude, which
also indicates 10% theoretical accuracy of this fit. In the
assumption of a and b being real, only the KS meson
couples to nucleons, 21=2f−10 ½ðb − aÞp̄pþ 2bn̄n�KS, which
will provide the dominant contribution. This type of
coupling breaks P but respects CP symmetry. Restoring
the CKM factors, one can also include much subdominant
coupling to KL so that we have

LKNN ≃ −
ffiffiffi
2

p
GF × ½mπþ�2fπ
jVudVusjf0

× 2.84ð0.7p̄pþ n̄nÞ

× ðReðV�
udVusÞKS þ ImðV�

udVusÞKLÞ: ð10Þ

At the last step, we integrate out the K mesons as shown
in Fig. 1. Adopting it for a nucleus containing A ¼ Z þ N
nucleons, one arrives at a straightforward prediction for the
δKM-induced size of the electron-nucleon interaction:

CS ≃J ×
Nþ 0.7Z

A
×
13½mπþ�2fπmeGF

m2
K

×
αEMIðxtÞ
π sin θ2W

; ð11Þ

where J is the rephasing invariant combination of the
CKM angles,

J ¼ ImðV�
tsVtdV�

udVusÞ ≃ 3.1 × 10−5; ð12Þ

which carries about ∼6% uncertainty. Notice that the f0
factor in the numerator of Eq. (7) cancels against f0 in the
denominator of Eq. (10), and this cancellation would
persist even one changes f0 for fK.
The overall scaling of this formula in the chiral limit and

at large xt is

GFCS ∝ JG3
Fm

2
t mem−1

s Λ2
hadr; ð13Þ

where Λhadr is a typical hadronic energy or momentum
scale. Notice that this is far more singular behavior withmq

of a light quark than that arising in the chiral-loop-induced
expressions for dn. Also notice that the KS exchange
dominates for any conventional parametrization of the
CKM matrix, and the role of KL exchange is to add small
pieces of the amplitude that take ReðVudV�

usÞImðVtsV�
tdÞ,

arising from KS exchange, to full J . Substituting all SM
parameters, we obtain the following leading order (LO)
result:

CSðLOÞ ≃ 5 × 10−16: ð14Þ

In order to estimate accuracy of the LO ∼Oðm−1
s Þ result,

one could try to evaluate the next-to-leading-order (NLO)
corrections in the expansion over small ms. These correc-
tions can be divided into two groups: (1) corrections to the
KN̄N vertex at ms log ms order and (2) diagrams that do
not reduce to the t-channel K-meson exchange. Type (1)
corrections involve essentially the same diagrams as those
appearing in the corresponding corrections to the s-wave
hyperon decays [31,35]. The analysis of Ref. [35] showed
that when the loop corrections are included with the tree-
level a and b parameters and the total theoretical result is fit
to experimental data, one notices that the tree-level values
for a and b come out smaller than in Eq. (9), while the total
result is rather close to the tree-level fit for a, b. This comes
mostly from the renormalization of the meson and baryon
wave functions. The lesson from this is that the corrections
of type (1) for KNN weak coupling are expected to mirror
results of Ref. [35] for s-wave amplitudes, and therefore
would not deviate substantially from Eq. (10).
We then estimate type (2) corrections. It turns out that

they parametrically dominate over other types of correc-
tions, as the baryon pole diagrams, Fig. 2, contribute. The
ms scaling of these corrections is set by the ratio of the loop
integral, proportional to mK (at m2

K ≫ m2
π limit), divided

by mass splitting ΔmB in the baryon octet, e.g., mΛ −mn.
This quantity scales as m−1=2

s and therefore these baryon
pole diagrams dominate the NLO contributions in the chiral
limit. They are fully calculable (i.e., do not depend on

FIG. 1. EW3 order diagram that dominates in the chiral limit.
The top vertex is the CP-odd, P-even KSēiγ5e generated in EW2

order, and the bottom vertex is CP-even, P-odd KSN̄N coupling
generated at EW1 order.
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unknown counterterms), and the results for these correc-
tions are

CS;NLOðpÞ
CS;LOðpÞ

¼ m3
Kð0.77D2 þ 2.7DF − 2.3F2Þ

24πf20ðmΣþ −mpÞ
ð15Þ

CS;NLOðnÞ
CS;LOðnÞ

¼ m3
K

24πf20

� ða=bþ 3Þ
2

ffiffiffi
6

p ðmΛ −mnÞ
ð−0.44D2þ 3.2DFþ 1.3F2Þ

þ a=b− 1

2
ffiffiffi
2

p ðmΣ0 −mnÞ
ð−0.53D2 − 1.9DFþ 1.6F2Þ

�
: ð16Þ

It has been obtained using heavy baryon chiral perturbation
theory, and D, F are the coupling constants characterizing
the strength of the SUð3Þ-invariant baryon-meson strong
interaction, with F ¼ 0.46, D ¼ 0.8 typically used [31].
Since the dominant contribution comes from loops with
K − π transition, it is appropriate to take f20 ≃ fπfK . Using
these numbers, we discover that NLO corrections interfere
constructively with LO, and give 30% correction for the
proton, and 40% for the neutron, correspondingly.
Combining LO and NLO, we arrive at our final result:

CSðLOþ NLOÞ ≃ 6.9 × 10−16

⇒ dequive ≃ 1.0 × 10−35 e cm: ð17Þ

The size of the NLO corrections also allows us to estimate
the accuracy of this computation as Oð30%Þ.
As stated in the introduction, this result is much larger

than previously believed, and exceeds any contributions
of de into dequive by at least 4 orders of magnitude. The
enhancement of CS at EW3 order compared to EW2EM2

can be roughly ascribed to αW=α2EM ∼Oð103Þ. We note
that, although translating CS to d

equiv
e depends on the atoms

or molecules that one considers (ThO above), this depend-
ence is mild and dequive is within the same ballpark if we
instead consider, e.g., Tl or YbF [25].
Stepping away from chiral expansion, one can formulate

the necessary hadronic matrix element that will be required
to generate CS in combination with the dominant ImPEW
channel of Eq. (3). The corresponding d-to-s transitions
need to be taken in the first order, EW1, that break P and C
separately but conserve CP:

hNjiðs̄γμð1 − γ5Þd − d̄γμð1 − γ5ÞsÞjNiEW1

¼ fS
mN

iqμN̄N þ fT
mN

qνN̄σμνγ5N: ð18Þ

In this formula, qμ stands for the momentum transfer.
It turns out that there are only two form factors on the right-
hand side of this expression that have the same CP
properties as the left-hand side. Moreover, fT in combi-
nation with ImPEW leads to CP-odd P-even interactions
that do not induce EDMs. Therefore only fS form factor
(that sometimes is called induced scalar) at q2 → 0 is
relevant. We have provided the first two terms in the chiral
expansion of fS for neutrons and protons, so that effectively
fS ∝ aðbÞ ×mNm−2

K þ � � �. While we use chiral perturba-
tion theory, in principle, calculation of fS can be attempted
using lattice QCD methods.
Finally, we note that other semileptonic operators such as

ēeN̄iγ5N that lead to nuclear-spin-dependent effects are not
generated the same way at EW3 order and therefore will be
suppressed compared to Eq. (11).
Conclusions.—We have shown that δKM induces the

CP-odd electron nucleon interaction at the level much
larger than previous estimates [25]. The main mechanism is
not a two-photon exchange, EW2EM2, between electron
and the nucleus, but the combination of a weak nonleptonic
EW1 transition with the semileptonic EW2 electroweak
penguin. Although the result is still small, it is not
unthinkable that the progress in sensitivity to paramagnetic
EDMs may reach the level of dequive in the future. Indeed,
some novel proposals [8] envision that statistical sensitivity
to paramagnetic EDMs can be brought down to de∼
Oð10−35–10−37Þ e cm.
It is not surprising that the CS operator can be predicted,

at least in the SUð3Þ chiral expansion, rather precisely. This
clearly distinguishes our CS calculation from dnðδKMÞ
estimate that carries an order of magnitude uncertainty
with unclear prospects for improvement. In contrast, the
only significant source of uncertainty in CS is in the
induced scalar form factor, Eq. (18), that can be improved
in the future with the use of lattice QCD methods.

FIG. 2. The baryon pole diagrams that contribute to CS at the
NLO level in the chiral limit. The left vertex is the nucleon-
hyperon mixing induced by Eq. (8), while the top vertex is
induced by Eq. (6). The vertices without black dots are the strong
interaction with the coupling constants D and F. The diagrams
with the nucleon-hyperon mixing on the right side give the same
amount of contribution.
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Even if one takes chiral SUð3Þ expansion skeptically, it
is clear that unique m−1

s (LO) and m−1=2
s (NLO) contribu-

tions to CS identified in our Letter would not be cancelled
—unless completely accidentally—by other contributions,
mirroring a similar argument of [36] made for dnðθÞ.
Therefore, 10−35 e cm should be adopted as the robust
δKM-induced SM benchmark value for all experiments
attempting the search of de using electron spins in heavy
atoms and molecules. It also allows for establishing the
maximum sensitivity to CP-violating new physics via de.
Taking a one-loop perturbative scaling, de ∝ ðα=πÞmeΛ−2

NP,
and equating it to dequive ðδKMÞ, one arrives at the maximum
scale that is possible to probe with paramagnetic EDMs:
Λmax
NP ∼ 5 × 107 GeV. Notice, however, that in models

with no chiral me suppression of de and/or tree-level CS
generation by new physics, the ultimate scale can be
larger [37,38].
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