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There has been recent interest in the question of whether QCD collinear singularities can be viewed as
the operator product expansion of a two-dimensional conformal field theory. We analyze a version of this
question for the self-dual limit of pure gauge theory (incorporating states of both helicities). We show that
the known one-loop collinear singularities do not form an associative chiral algebra. The failure of
associativity can be traced to a novel gauge anomaly on twistor space. We find that associativity can be
restored for certain gauge groups if we introduce an unusual axion, which cancels the twistor space
anomaly by a Green-Schwarz mechanism. Alternatively, associativity can be restored for some gauge
groups with carefully chosen matter.
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Introduction.—The celestial holography program (see
the recent reviews [1–3] and references therein) suggests,
among other things, that collinear singularities in the
scattering amplitudes of gauge theory and gravity are
controlled by a conformal field theory (CFT). This is
known to be true at tree level [4], and in the beautiful
paper [5] it was shown to persist to one-loop level in one
formulation of self-dual gravity and gauge theory.
In this Letter we analyze a different formulation of this

question for self-dual gauge theory, and find a different
result. In our Letter, we define self-dual gauge theory to
include states of both helicities, but with the LagrangianR
BFðAÞ−. This is in contrast to [5], where only states of

positive helicity are considered; see also [6–9] for earlier
studies of self-dual QCD. With our definition, which is
common in twistor studies [10], self-dual gauge theory can
be deformed to QCD by adding the operator 1

2
trðB2Þ.

Throughout this Letter, we will use “QCD” to mean pure
Yang-Mills theory (unless otherwise specified).
We analyze collinear singularities that appear not just in

amplitudes, but in form factors. Form factors are scattering
amplitudes in the presence of a local operator.
We say a collinear singularity is universal if it appears in

the same way in all form factors. Universal collinear
singularities in self-dual gauge theory capture certain
collinear singularities in QCD. This is because certain

form factors of self-dual gauge theory for the operator
trðB2Þ are the same as certain QCD amplitudes (e.g., at one
loop they compute QCD amplitudes with one negative
helicity gluon).
We ask the question: do universal collinear singularities

in self-dual gauge theory form a CFT? We find that the
answer is no: associativity of the operator product expan-
sion (OPE) fails at one loop [11].
We can trace the failure of associativity to an anomaly on

twistor space. In [12] we studied universal collinear
singularities of self-dual gauge theory, using a twistor
space analysis. The twistor uplift of self-dual gauge theory
is holomorphic BF theory [13]. It was shown in [14] that
holomorphic BF theory has a one-loop gauge anomaly on
twistor space, that can be canceled by the introduction of an
additional field [15]. The cancellation takes the form of a
Green-Schwarz mechanism, and holds if the gauge group is
SUð2Þ, SUð3Þ, SOð8Þ or an exceptional group. See Sec. 1.6
of [12] for the explicit cancellation of 4D amplitudes.
On space-time this additional field becomes an axionlike

field (which we simply refer to as an axion hereafter), with
a fourth-order kinetic term [17]:

Z
tr½BFðAÞ−� −

1

2

Z
ð□ρÞ2 − 2

ffiffiffi
5

p
h∨ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðdim gþ 2Þp
8π

ffiffiffi
3

p

×
Z

ρ tr½FðAÞ ∧ FðAÞ�; ð1Þ

where h∨ is the dual Coxeter number. The gauge field A has
helicityþ1, while B has helicity −1. We emphasize that the
4D theory, including the axion, is a conformal field theory.
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The twistor origin of the theory implies that it has vanishing
scattering amplitudes, but form factors are nonvanishing.
In [12] we showed on abstract grounds that, when we

cancel the twistor space anomaly, the universal collinear
singularities have the structure of a chiral algebra.
We find (by an explicit computation) that associativity of

QCD collinear singularities is restored when we add the
axion. This is a Green-Schwarz mechanism for associa-
tivity of the collinear singularities.
Conversely, once we introduce the axion, associativity of

the OPE forces the collinear singularities in the gauge
sector to have certain one-loop corrections. These include
the standard one-loop QCD correction. In this way, we find
a purely chiral-algebraic computation of the standard one-
loop collinear singularities.
Finally, we leverage associativity to find a remarkably

simple formula for the one-loop amplitudes of QCD with
an axion (or of QCD without an axion, but with carefully
chosen matter and gauge group).
The chiral algebra.—We will start by reviewing the tree-

level chiral algebra encoding collinear singularities in self-
dual gauge theory. Our analysis uses analytically continued
momenta, and so works in any signature. As is standard, in
the spinor-helicity formalism states are expressed in terms
of spinors λα, λ̃

_α. The chiral algebra lives on a copy of CP1

with homogeneous coordinates ðλ1∶λ2Þ. We will use a
coordinate z corresponding to ðλ1∶λ2Þ ¼ ð1∶zÞ.
The chiral algebra is generated by two towers of states

Ja½r; s�ðzÞ, J̃a½r; s�ðzÞ, corresponding to particles of pos-
itive and negative helicity, respectively. We can arrange
these into generating functions

Ja½λ̃�ðzÞ ¼
X

ωrþs 1

r!s!
ðλ̃_1Þrðλ̃_2ÞsJa½r; s�ðzÞ;

J̃½λ̃�ðzÞ ¼
X

ωrþs 1

r!s!
ðλ̃_1Þrðλ̃_2ÞsJ̃a½r; s�ðzÞ: ð2Þ

These generating functions correspond to gauge theory
states of positive and negative helicity, with momenta
encoded in the spinors λ̃ and λ ¼ ð1; zÞ. Because we are
expanding in powers of the energy ω, these chiral algebra
states should be thought of as soft modes. Precisely, we
have O−

a ðzÞ ¼ ωJ̃a½λ̃�ðzÞ;Oþ
a ðzÞ ¼ ð1=ωÞJa½λ̃�ðzÞ, where

O� are the positive and negative helicity hard gluon
operators dual to momentum eigenstates of energy ω.
In expressing the OPE, we write

hiji ¼ 2πiðzi − zjÞ; ½ij�¼ −2ϵ _α _βλ̃
_α
i λ̃

_β
j : ð3Þ

In Supplemental Material [22] we provide more details on
these conventions. The normalization of ½ij� is in order to
match standard conventions where hiji½ij� ¼ 2pi · pj.
The tree-level OPE was derived in [12] using twistor

space methods, but also matches the standard [23] tree-
level splitting amplitudes. The tree-level OPE is

Ja½λ̃1�ðz1ÞJb½λ̃2�ðz2Þ ∼ fcab
1

h12i Jc½λ̃1 þ λ̃2�ðz1Þ;

Ja½λ̃1�ðz1ÞJ̃b½λ̃2�ðz2Þ ∼ fcab
1

h12i J̃c½λ̃1 þ λ̃2�ðz1Þ: ð4Þ

These two OPEs correspond to splitting amplitudes þ ↦
þþ and − ↦ þ−. In QCD, there are also the parity-
conjugate tree level splitting amplitudes of the form − ↦
−− and þ ↦ −þ. These do not appear in our self-dual
gauge theory, which only has a þþ − vertex.
One loop corrections.—One loop QCD splitting ampli-

tudes have been analyzed in [24–26]. There are two new
processes at one loop, namely the − ↦ þþ amplitude and
its parity conjugate. In the normalization of [26] this
splitting amplitude is

split½1�þ ðaþ; bþÞ ¼ −
Nc

96π2
½ab�
habi2 : ð5Þ

This is the only one-loop amplitude from the analysis of
[26] that contributes to self-dual gauge theory. Indeed, all
one-loop diagrams in self-dual gauge theory, when all
particles are viewed as incoming, have positive helicity
external lines. Therefore they can only contribute to a − ↦
þþ splitting amplitude. The remaining one-loop splitting
amplitudes of QCD are either multiplicative corrections to
the tree-level splitting amplitudes, or the parity-conjugate
þ ↦ −− splitting amplitude. Neither of these can appear
from a one-loop diagram in self-dual gauge theory.
Perhaps surprisingly, our analysis shows that there are

two other terms in the OPE of the form −þ ↦ þþ and
−− ↦ −þ. These contributions, corresponding to two
states becoming a normal-ordered product of two states,
seem not to have appeared in other work on the topic;
perhaps they are not visible in standard QCD amplitudes,
but only in form factors. It would be fascinating to
understand the 4D interpretation of these terms.
Let us implement the splitting amplitude (5) in the chiral

algebra. Looking at the definition of ½ab� and habi in the
chiral algebra, we see that the only natural way is to add on
a term in the OPE of the form

Ja½λ̃1�ðz1ÞJb½λ̃2�ðz2Þ ∼ −
Nc

96π2
½12�
h12i2 f

c
abJ̃c½λ̃1 þ λ̃2�

�
1

2
z

�
:

ð6Þ

On the right hand side, the operator is evaluated at
1
2
z ≔ ðz1 þ z2=2Þ; this is forced by symmetry. We can

rewrite this OPE as

Ja½λ̃1�ðz1ÞJb½λ̃2�ðz2Þ∼−
Nc

96π2
½12�
h12i2f

c
abJ̃c½λ̃1þ λ̃2�ðz1Þ

þ Nc

192π2
½12�
h12if

c
ab

1

2πi
∂zJ̃c½λ̃1þ λ̃2�ðz1Þ:

ð7Þ
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Finally, specializing the generating function J½λ̃� to the
terms linear in λ̃, we find the OPE

Ja½1;0�ðz1ÞJb½0;1�ðz2Þ∼
Nc

48π2
1

h12i2 f
c
abJ̃c½0;0�ðz1Þ

−
Nc

96π2
1

h12if
c
ab

1

2πi
∂zJ̃c½0;0�ðz1Þ:

ð8Þ

Failure of associativity of the corrected OPE.—Now we
can ask if this new OPE satisfies the associativity relation of
a chiral algebra. The associativity of the OPE is encoded in
equalities between contour integrals of OPEs involving
three operators, coming from the change of contour. For
instance, one of the associativity equations is the identity

Kab

I
jzj¼1;jwj¼2

Ja½1;0�ð0ÞJb½0;1�ðzÞJc½0;0�ðwÞwdwdz

¼Kab

I
jzj¼2;jwj¼1

ðJa½1;0�ð0ÞJc½0;0�ðwÞwdwÞJb½0;1�ðzÞdz

þKab

I
jzj¼2;jwj¼1

Ja½1;0�ð0Þ

× ðJb½0;1�ðzÞJc½0;0�ðwþ zÞðwþ zÞdwÞdz; ð9Þ

where Kab is the Killing form. We find that this identity
fails to hold with our quantum corrected OPE [27].
We first note that the left hand side vanishes. If we take

the z contour integral first, the terms with a first order pole
are antisymmetric in the a and b indices. Similarly, the first
term on the right hand side vanishes because there is no
second order pole in w.
For the second term on the right hand, we can perform

the w contour integral first. This yields

−
I
z
Ja½1; 0�ð0ÞfdbcJd½0; 1�ðzÞz dz: ð10Þ

This is nonzero, because the one-loop correction to the
OPE introduces a second-order pole. The result of this
contour integral is

−
1

2πi
Nc

48π2
J̃e½0; 0�Kabfeadf

d
bc: ð11Þ

SinceKabfeadf
d
bc is the action of the quadratic Casimir in the

adjoint representation, it is proportional to δec. We conclude
that the one-loop corrected OPE is not associative.
Alternatively, if we build a chiral algebra in which

associativity is forced to hold, we find that all states of
negative helicity become zero.
Twistor space anomalies and chiral algebra associ-

ativity.—This failure of associativity is connected to the
twistor space anomaly we have already mentioned. As

explained in [12], from any local, anomaly-free theory on
twistor space we can build a chiral algebra living on the
twistor CP1.
If we do this for the twistor uplift of self-dual gauge

theory, then, at tree level, this matches the chiral algebra
describing the tree-level collinear singularities in self-dual
gauge theory. However, the twistor uplift is anomalous at
loop level. To cancel this anomaly, we need to introduce a
new field on twistor space, corresponding to the axion
in Eq. (1).
We know on general grounds [12] that the theory

including the axion corresponds to a consistent chiral
algebra. Here, we will determine that this chiral algebra
contains a one-loop correction to the classical OPE which
matches the one-loop splitting amplitude.
For associativity to hold, the axion field is essential. This

tells us that the failure of associativity of the quantum-
corrected OPE is a reflection of the twistor space anomaly,
and is solved by the same Green-Schwarz mechanism.
To perform the calculation, we need to describe the extra

elements in the chiral algebra coming from the axion field,
and their OPEs. Let us now do this.
Chiral algebra including the axion.—The chiral algebra

has four towers of states, each living in an infinite sum of
finite-dimensional representations of SUð2Þ. They are
enumerated in Table I. In the chiral algebra presentation,
we write the Lorentz group as SUð2Þ × SL2ðRÞ, where
SL2ðRÞ rotates the chiral algebra plane. Each state with
label m, n transforms in a representation of SUð2Þ of
highest weight 1

2
ðmþ nÞ and is a weight vector of weight

1
2
ðm − nÞ. Each tower of generators arises from on-shell

background field configurations of the 6d theory (which
reduce to on-shell configurations in 4D) which are local-
ized at points on the twistor sphereCP1. The quartic kinetic
term of the axion gives rise to two towers of generators, E,
F, which arise geometrically from the two-dimensional
basis of closed two-forms on twistor space. Since the 4D
theory is scale invariant, the generators also transform with
a specified weight, which we denote by dimension in
Table I, under homogeneous scaling of the 4D coordinates;
these quantum numbers can be deduced most easily from
the couplings in Sec. 7 of [12]. The OPEs involving the E,
F towers are

TABLE I. The generators of our 2D chiral algebra and their
quantum numbers. Dimension refers to the charge under scaling
of R4.

Generator Spin Field Dimension

J½m; n�, m, n ≥ 0 1 − ðmþ nÞ=2 A −m − n
J̃½m; n�, m, n ≥ 0 −1 − ðmþ nÞ=2 B −m − n − 2

E½m; n�, mþ n > 0 −ðmþ nÞ=2 ρ −m − n
F½m; n�, m, n ≥ 0 −ðmþ nÞ=2 ρ −m − n − 2
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Ja½r; s�ð0ÞE½t; u�ðzÞ

∼
1

2πiz
ðts − urÞ
tþ u

λ̂gJ̃a½tþ r − 1; sþ u − 1�ð0Þ; ð12Þ

Ja½r; s�ð0ÞF½t; u�ðzÞ

∼ −λ̂g
1

2πiz
∂zJ̃a½rþ t; sþ u�ð0Þ

− λ̂g
1

2πiz2

�
1þ rþ s

tþ uþ 2

�
J̃a½rþ t; sþ u�ð0Þ; ð13Þ

Ja½r; s�ð0ÞJb½t; u�ðzÞ

∼ λ̂g
1

2πiz
Kabðru − stÞF½rþ t − 1; sþ u − 1�ð0Þ

− λ̂g
1

2πiz
Kabðtþ uÞ∂zE½rþ t; sþ u�ð0Þ

− λ̂g
1

2πiz2
Kabðrþ sþ tþ uÞE½rþ t; sþ u�ð0Þ: ð14Þ

Let us explain the constant λ̂g. First, we define λg so that, for
X ∈ g, TrðX4Þ ¼ λ2gtrðX2Þ2, where Tr means the trace in the
adjoint and tr means the minimal trace [i.e., the funda-
mental for SUðNÞ]. This tensor identity is necessary for
the Green-Schwarz mechanism to hold. According to [28],
we have

λ2g ¼
10ðh∨Þ2
dim gþ 2

; ð15Þ

where h∨ is the dual Coxeter number, equal to Nc

for SUðNcÞ.
To account for the normalization of the interaction

between the gauge field on twistor space and the field
corresponding to the axion, we let

λ̂g ¼
λg

ð2πiÞ3=2 ffiffiffiffiffi
12

p : ð16Þ

One loop corrections.—Let us now consider the possible
one-loop corrections to the chiral algebra. We will then
normalize them using associativity. (In principle, one can
compute these using the method of [12], where the OPE
coefficients are computed by an analysis of Feynman
diagrams on twistor space. This was done in a similar
situation for 5d gauge theories in [29], and a related
analysis appears in the forthcoming work of [30].
However, we find that fixing the OPE coefficients using
associativity is significantly easier.)
Our chiral algebra has a symmetry called dimension in

the Table I. This comes from scaling on R4. It is a
symmetry that persists to the quantum level; therefore
any OPE must respect this symmetry.
One-loop corrections to the OPE cannot involve the

axion, as axion exchanges are already a one-loop effect.
One-loop corrections are determined by the OPEs involv-
ing J½0; 0�, J̃½0; 0�, J½1; 0�, and J½0; 1�. This is because these
generate the algebra. Further, one-loop corrections must
increase the number of J̃’s in an expression by one.
The most general correction to the OPE between J½1; 0�,

J½0; 1� currents is

Ja½1; 0�ð0ÞJb½0; 1�ðzÞ ¼ −
1

2πiz
CKfeðfcaefdbf þ fdaefcbfÞ∶Jc½0; 0�J̃d½0; 0�∶ð0Þ þ

1

2πiz
1

2
Dfcab∂zJ̃cð0Þ þ

1

2πiz2
DfcabJ̃cð0Þ;

ð17Þ

where C, D are constants to be determined. The terms
whose coefficient is D correspond to the known one-loop
splitting amplitudes of self-dual Yang-Mills theory.
OPEs involving Ja½0; 0� cannot get deformed. For

instance, consider the OPE between Ja½0; 0� and Jb½0; 0�.
This must result in a state in the chiral algebra of dimension
0 with exactly one copy of J̃. A glance at Table I tells us it is
not possible. A similar remark tells us that the OPE of
Ja½0; 0� with any of the other states we are considering does
not change.
In addition to this OPE, associativity of the chiral algebra

also forces a correction to the J − J̃ OPE, which is

Ja½1; 0�ð0ÞJ̃b½0; 1�ðzÞ ≃ C
1

z
Kfefcaefdbf∶J̃c½0; 0�J̃d½0; 0�∶

Ja½0; 1�ð0ÞJ̃b½1; 0�ðzÞ ≃ −C
1

z
Kfefcaefdbf∶J̃c½0; 0�J̃d½0; 0�∶

ð18Þ
for the same value of C as above.

Normalizing the quantum corrections using associa-
tivity.—The constants C and D in the quantum-corrected
OPE will be chosen so that the following identity holds:I
jzj¼1;jwj¼2

Ja½1;0�ð0ÞJb½0;1�ðzÞJc½0;0�ðwÞwdwdz

¼
I
jzj¼2;jwj¼1

ðJa½1;0�ð0ÞJc½0;0�ðwÞwdwÞJb½0;1�ðzÞdz

þ
I
jzj¼2;jz−wj¼1

Ja½1;0�ð0ÞðJb½0;1�ðzÞJc½0;0�ðwÞwdwÞdz:

ð19Þ
This identity is, of course, a consequence of the associa-
tivity of the OPE.
Proposition 1.—The OPE associativity identity (19)

holds if and only if we have the trace identity

TrðX4Þ ¼ λ2gtrðX2Þ2 ð20Þ
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and we take the constants C, D to be

C ¼ 3

2ð2πiÞ212 ; D ¼ −
h∨

ð2πiÞ312 : ð21Þ

The proof of this is provided in Supplemental Material [22].
It is an entirely routine argument: we simply compute both
sides of Eq. (19) and compare them.
Matching coefficients.—To compare to the known results

about one-loop splitting amplitudes, we should recall that
hiji comes with a factor of 2πi and ½ij� with a factor of −2.
This brings the coefficient of the one-loopþþ ↦ − term in
the OPE to

½ij�
hiji2

h∨
ð2πiÞ224 ¼ −

h∨
96π2

½ij�
hiji2 : ð22Þ

For the groups SUðNcÞ, h∨ ¼ Nc. This matches the
coefficient in [26].
We should emphasize that the chiral algebra, as an

abstract chiral algebra, does not know about this constant.
Multiplying the generators J̃; E; F of the chiral algebra by a
constant changes the coefficient of the one-loop OPE. In
our analysis, however, we have taken care that our chiral
algebra generators match states in the gauge theory exactly,
without a prefactor. When we do this, we do find the correct
coefficient, providing a chiral-algebraic derivation of the
one-loop splitting amplitude.
Amplitudes.—Associativity of the chiral algebra in the

presence of the axion gives us a remarkably simple formula
for the one-loop form factors of self-dual Yang-Mills theory
in the presence of the operator 1

2
trðB2Þ inserted at a fixed

position (the origin). This form factor has the same func-
tional form (without the momentum conserving delta
function; see Ref. [12]) as the one loop amplitude for
QCD with an axion, with one particle of negative helicity
(the form factor with all-positive helicities vanishes). We
find that the form factor is

�
1

2
trðB2Þ

����1−2þ…nþi

¼ −
1

192π2
X

2≤i<j≤n

½ij�h1ii2h1ji2
hijih12ih23i;…; hn1iTrgðt1;…; tnÞ

þ permutations in Sn−1; ð23Þ

where we sum over permutations of the labels 2;…; n, and
the trace is in the adjoint representation. We note that this
expression has both the first order pole we found when the
indices i, j are not adjacent in the trace, as well as the
second order pole when they are adjacent in the trace. We
derive this result in Sec. III of Supplemental Material [22].
We remark that since our chiral algebra is nonunitary,

there are many ways to define correlation functions con-
sistent with its OPE. In Sec. 8 of [12] we proved that a local

operator insertion in 4D corresponds to a choice of
conformal block, which gives a prescription for computing
a correlation function, in the chiral algebra. The diversity of
local operators, and form factors, in 4D maps to a plethora
of 2D correlation functions. See Ref. [12] for additional
form factor computations and more details on this
correspondence.
The expression (23) is valid also when the anomaly is

cancelled by carefully chosen matter, instead of an axion,
e.g., if the gauge group is SUð2Þ and Nf ¼ 8 (meaning 8
fundamental and 8 antifundamental fermions). In that case
we must take the trace in the adjoint minus the matter
representation. In the case ofN ¼ 1 supersymmetric Yang-
Mills theory, i.e., an adjoint matter fermion, the anomaly is
always cancelled and Eq. (23) vanishes.
This formula is a great deal simpler than the formulas

[24,31] for the corresponding QCD amplitudes without an
axion, bolstering our contention that the presence of the
axion simplifies amplitudes greatly.
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