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Although the Bethe ansatz solution of the spin-1=2 Heisenberg model dates back nearly a century, the
anomalous nature of its high-temperature transport dynamics has only recently been uncovered. Indeed,
numerical and experimental observations have demonstrated that spin transport in this paradigmatic model
falls into the Kardar-Parisi-Zhang (KPZ) universality class. This has inspired the significantly stronger
conjecture that KPZ dynamics, in fact, occur in all integrable spin chains with non-Abelian symmetry.
Here, we provide extensive numerical evidence affirming this conjecture. Moreover, we observe that KPZ
transport is even more generic, arising in both supersymmetric and periodically driven models. Motivated
by recent advances in the realization of SUðNÞ-symmetric spin models in alkaline-earth-based optical
lattice experiments, we propose and analyze a protocol to directly investigate the KPZ scaling function in
such systems.
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First proposed in the context of surface growth [1], the
Kardar-Parisi-Zhang (KPZ) equation has become central to
our understanding of many stochastic processes [2–4].
While the central limit theorem ensures that the late-time
physics of linear stochastic processes is typically Gaussian,
the KPZ equation evades this fate. Instead, it represents
a distinct universality class which emerges in myriad
dynamical phenomena, ranging from directed polymers
and traffic models to kinetic roughening [5–14].
The characterization of dynamical universality classes

requires one to specify both the scaling exponents and
functions of the theory. This is perhaps most familiar in the
context of Brownian motion, where the diffusive late-time
behavior follows a Gaussian scaling function; the width of
the corresponding distribution grows as ∼t1=z, where z ¼ 2
is the dynamical scaling exponent. By contrast, the scaling
functions for the KPZ universality class are significantly
more complex and their exact functional form represents a
relatively recent mathematical achievement [8,15–19].
The associated dynamical scaling exponent is neither
diffusive nor ballistic (z ¼ 1), but rather superdiffusive
with z ¼ 3=2.
Typically, KPZ behavior is expected in nonlinear, out-of-

equilibrium classical systems subject to external noise; in
this context, its observation is extremely robust and does
not require any fine-tuning or the presence of a particular
symmetry. To this end, the numerical and experimental
observation of KPZ universality in a one-dimensional
quantum spin chain (i.e., the spin-1=2 Heisenberg model),
fine-tuned for both integrability and SU(2) symmetry, has
attracted widespread attention [20–29]. Interestingly, this

observation is at odds with conventional expectations
for spin chain transport, which predict diffusion [30–33].
This naturally motivates the following question: Is the
Heisenberg chain an isolated exception, or the first example
of a broader group of quantum models in the KPZ
universality class?
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FIG. 1. (a) Schematic depicting a one-dimensional chain of
alkaline-earth atoms (each with N levels) trapped in an optical
lattice and interacting via nearest-neighbor superexchange. The
equilibration of an initial domain-wall-like imbalance encodes
the underlying KPZ dynamics. (b) Domain-wall dynamics as a
function of time for an SU(3)-symmetric, integrable spin chain.
(c) The polarization profiles at different times collapse upon
rescaling with t−1=z. The dynamical exponent, z ¼ 3=2, indicates
superdiffusion and is consistent with KPZ transport.
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Seminal recent work has made elegant progress on this
question by proving that all integrable spin chains with a
non-Abelian symmetry exhibit superdiffusive transport
with z ¼ 3=2 (Fig. 1) [25,28,29]. However, a single scaling
exponent does not uniquely specify the universality class
and no analysis has been able to determine the nature of the
corresponding scaling functions.
In this Letter, we present an extensive numerical inves-

tigation that supports the following stronger conjecture—
the dynamics of all integrable spin chains with a
non-Abelian symmetry belong to the KPZ universality
class [28,29]. Leveraging a novel tensor-network-based
technique dubbed density matrix truncation (DMT)
[34,35], we demonstrate that the spin dynamics of such
models are precisely captured by the KPZ scaling function
(Fig. 3). Intriguingly, our numerical observations suggest
that the conjecture holds not only for static systems, but
also for periodically driven (Floquet) systems [23,36], as
well as supersymmetric models.
By applying perturbations to break either the non-

Abelian symmetry or the integrability, we characterize
the approach to superdiffusive transport from regimes
where there is analytical control on the dynamics. We
reproduce these analytical results with unprecedented
accuracy, both verifying and benchmarking our numerics,
as well as providing independent evidence for the pur-
ported microscopic mechanism underlying superdiffusion
[22,28,29,37]. Finally, we propose an experimental imple-
mentation—based upon alkaline-earth atoms in optical
lattices—capable of investigating KPZ transport in a
variety of SUðNÞ-symmetric, integrable models.
In this Letter, we study the universality classes describ-

ing the infinite-temperature dynamics for a variety of one-
dimensional quantum spin chains. We will focus on the
dynamics of a locally conserved charge Q̂ ¼ P

r q̂r,
typically spin. If the system is characterized by a dynamical
universality class, at late times the correlation function must
collapse under an appropriate rescaling of space and time:

hq̂rðtÞq̂0ð0ÞiT¼∞ ∝ t−1=zf

�
r

t1=z

�
: ð1Þ

This collapse defines the dynamical scaling exponent z and
the scaling function fðξÞ, which together determine the
universality class.
Probing transport dynamics.—Let us begin by exploring

the dynamical exponent. While z can in principle be
extracted from the behavior of hq̂rðtÞq̂0ð0ÞiT¼∞, a simpler
and more robust numerical setup is to consider the
dynamics of a domain wall. More specifically, we perturb
an infinite-temperature density matrix with a weak domain-
wall-like imbalance in the charge density [Fig. 1(a)] [38]:

ρðt ¼ 0Þ ∝ ð1þ μq̂Þ⊗L=2 ⊗ ð1 − μq̂Þ⊗L=2; ð2Þ
where μ determines the strength of the perturbation and L
is the length of the chain.

As the system equilibrates, charge crosses the domain
wall—the precise details of how this occurs reveals proper-
ties of the dynamical universality class [Fig. 1(b)]. In
particular, we focus on the spatial profile of the charge
density qðr; tÞ ¼ hq̂rðtÞi (hereafter, denoted as polariza-
tion), as a function of time t and displacement r from
the domain wall. A natural measure of transport is the
total polarization transferred across the domain wall,
PðtÞ ¼ PL=2

r¼1 ½μ − qðr; tÞ�, which provides a robust way
to determine z: PðtÞ ∝ t1=z.
To implement the domain-wall dynamics, we represent ρ

using a matrix product density operator and compute its
evolution via DMT [34,35]. The truncation procedure in
DMT is specifically designed to preserve local operators,
such as the energy density, polarization, and their currents;
this choice makes DMT particularly amenable for
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FIG. 2. (a) Conjectured landscape of KPZ transport in inte-
grable, non-Abelian-symmetric models (blue dot). The non-
Abelian symmetry can be broken in two distinct ways, either
by adding a finite charge density to the initial state (orange line) or
by perturbing the underlying Hamiltonian (purple line). (b) The
total polarization transferred across the domainwall,PðtÞ, directly
determines the dynamical exponent. For the integrable SU(3)
model, z ¼ 3=2; when either the integrability or the symmetry is
broken in the Hamiltonian, z ¼ 2 [49]; when the initial state has
nonzero charge density, z ¼ 1. Note that the curve for the
integrability breaking case (green) is shifted down for clarity.
(c) Depicts the charge transport velocity v as a function of charge
density δ for both the SU(3) model and the SU(2) model (inset)
[53]. (d) The diffusion coefficient D diverges as the Izergin-
Korepin and XXZ (inset) integrable models approach the SU(3)
andSU(2) (inset) symmetric points. TheDMTbond dimension χ is
chosen to be f64; 128; 256g and f64; 128; 256; 512g for the SU(3)
and SU(2) cases, respectively. Green crosses in the inset mark
previous numerical results obtained from tDMRG simulations
with bond dimension χ ∼ 2000 [54].
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probing the universality class of many-body transport
dynamics [39].
Although we will explore a wide variety of integrable

models (Fig. 3), let us begin by focusing our discussions on
the SU(3)-symmetric, spin-1 chain [45–47]:

HSUð3Þ ¼
X

i

^S⃗i ·
^S⃗iþ1 þ ð ^S⃗i · ^S⃗iþ1Þ2; ð3Þ

where ^S⃗i is the vector of spin-1 operators acting on site
i. Figure 1(b) depicts the melting of the domain wall as
a function of time, starting from the initial state, ρðt ¼ 0Þ
with q̂ ¼ Ŝz [Eq. (2)]. The corresponding polarization
transfer, PðtÞ, exhibits a power law ∼t2=3 [blue
line, Fig. 2(b)], consistent with the expected z ¼ 3=2
exponent [48]. This exponent can be independently

confirmed via a scaling collapse of the polarization profile
[Fig. 1(c)].
In order to tune the system away from superdiffusion,

one can perturb the spin chain by either breaking the non-
Abelian symmetry of the underlying equilibrium initial
state [28,29] or the symmetry of the Hamiltonian. To study
the former, we initialize the system in ρðt ¼ 0Þ and add a
uniform magnetization δ (along the ẑ axis) on each site. The
polarization transfer exhibits markedly distinct dynamics
with a ballistic exponent, z ¼ 1 [orange line, Fig. 2(b)].
Analytically, for weak magnetizations, the velocity of this
ballistic transport is expected to scale linearly with δ; this is
indeed borne out by the data [Fig. 2(c)] [22,55]. For the
spin-1=2 Heisenberg model, an even stronger statement
can be made—the velocity extracted from DMT quantita-
tively agrees with analytic calculations [via generalized
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FIG. 3. (a)–(d) The KPZ scaling function emerges from a wide variety of integrable dynamics: static, non-Abelian-symmetric models,
their Floquet counterparts, and supersymmetric models. (a)[(d)] At late times, the rescaled polarization profiles of the SUð3Þ½SUð2j1Þ�
model differ from both the Gaussian and Lévy-flight expectations, but exhibit excellent agreement with the KPZ scaling function. Insets
of (a)[(d)]: relative difference with respect to the KPZ scaling function. We note that the agreement extends to longer length scales as
time is increased. (b)[(c)] Late-time, rescaled polarization profiles of static [Floquet] integrable models with different non-Abelian
symmetries. For all symmetries explored, the dynamics exhibit excellent agreement with the KPZ scaling function. Insets of (b)[(c)]:
zoom-in of the polarization profiles. The system sizes in the numerical simulation are chosen as: L ¼ 600 for all static models,
L ¼ 1200 for Floquet SU(3) and SO(3) models, and L ¼ 800 for other Floquet models. (e) For all models considered, the ratio between
the polarization gradient and the current is inhomogeneous, in stark contrast with the expectation for any linear transport equation. The
observed curvature is instead in agreement with KPZ transport. (f) In integrable supersymmetric models, the total charge transferred
across the domain wall (upper panel) and the extracted dynamical exponent z (lower panel) are consistent with superdiffusion.
(g) Polarization gradients in an integrable SUð2j1Þ model with varying hole density. At the same evolution time, systems with a smaller
hole density are closer to the KPZ expectation.
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hydrodynamics (GHD)] even in the nonlinear regime [inset,
Fig. 2(c)] [22,37].
Next, we break the symmetry of HSUð3Þ down to U(1) by

considering the so-called Izergin-Korepin family of inte-
grablespin-1models[56–67].Weparametrize thesymmetry-
breaking strength by Δ, such that when Δ ¼ 0, we recover
HSUð3Þ. For finite values ofΔ, we observe diffusive transport
with the polarization transfer scaling as PðtÞ ∼ t1=2 [purple
line, Fig. 2(b)]. In addition, the extracted diffusion coeffi-
cient,D, diverges asΔ → 0, consistent with the approach to
superdiffusion [Fig. 2(d)]. The analogous numerical experi-
ment in the Heisenberg model, where Δ controls the
anisotropy of the XXZmodel in the easy-axis regime, again
quantitatively agrees with analytic calculations.
A few remarks are in order. First, the agreement between

DMT numerics and GHD analytics (which have different
underlying assumptions) serves a dual benchmarking role; in
particular, it highlightsDMT’s ability to faithfully character-
ize late-time transport dynamics and GHD’s ability to
quantitatively compute transport coefficients in integrable
models [37,54]. Second, in addition to breaking the non-
Abelian symmetryof theHamiltonian, onecanalsoprobe the
effect of integrability breaking. To this end, we perturb
HSUð3Þ using SU(3)-symmetry-respecting, but integrability-
breaking next-nearest-neighbor interactions. As expected
for generic non-integrable models, PðtÞ ∼ t1=2, consistent
with diffusive transport [green line, Fig. 2(b)] [50–52].
Probing KPZ dynamics.—While our numerical obser-

vation of a z ¼ 3=2 exponent in HSUð3Þ clearly establishes
the presence of superdiffusion, it does not determine the
system’s dynamical universality class. Indeed, such an
exponent can also arise in long-range interacting systems
exhibiting Lévy flights, as well as rescaled diffusion
[20,23,24,68–70].
To this end, we now investigate the universal scaling

function. In particular, using our domain-wall dynamics,
we can compute the charge correlation function from the
spatial gradient of the polarization profile [23]:

hq̂rðtÞq̂0ð0ÞiT¼∞ ¼ lim
μ→0

∂rqðr; tÞ
2μ

¼ b

t2=3
f

�
br

t2=3

�
; ð4Þ

where b is a system-dependent parameter [71].
As depicted in Fig. 3(a), ∂rqðr; tÞ indeed collapses under

the rescaling, fðξ ¼ brt−2=3Þ. For Lévy flights, one expects
power-law tails (gray dashed line), which are manifestly
inconsistent with the data. However, the difference between
rescaled diffusion and KPZ is more subtle: for the former,
fðξÞ is Gaussian, while for KPZ, fðξÞ exhibits faster
decaying tails ∼ exp ð−0.295jξj3Þ [16–18]. The data quan-
titatively agree with the KPZ prediction: The longer the
evolution time, the closer ∂rqðr; tÞ is to the KPZ scaling
function [highlighted by the relative error, Fig. 3(a) inset].
This agreement allows us to directly extract b ¼ 0.460�
0.001, which reflects the ratio between the diffusive
smoothing, and the nonlinear growth and noise in the

KPZ equation. We emphasize that these observations apply
to any conserved charges generated by the non-Abelian
symmetry [39].
A complementary way to distinguish between rescaled

diffusion and KPZ dynamics is to study the ratio between
the spin current, jðr; tÞ ¼ −

R
r
−∞ ∂tqðr0; tÞdr0, and the pola-

rization gradient. In rescaled diffusion, Fick’s law ensures
that the two are proportional, jðr; tÞ ∝ t1=3∂rqðr; tÞ, while
the nonlinearity of KPZ transport leads to the breakdown of
this proportionality [16,23]. Crucially, as illustrated in
Fig. 3(e), we find that the ratio is not constant (as would
be predicted for rescaled diffusion) and rather is in good
agreement with the KPZ prediction.
Universality of KPZ dynamics.—We now turn our atten-

tion to the conjecture that KPZ dynamics emerge in several
broad classes of integrable models. We will focus on three
distinct settings: (i) static models with generic non-Abelian
symmetries, (ii) periodically driven (Floquet) models with
non-Abelian symmetries, and (iii) supersymmetric models.
In these latter two classes, even for the dynamical exponent,
there are no generic results, although some particular
instances are known to exhibit superdiffusion [23,48,72].
The construction of static, non-Abelian, integrable spin

chains has a rich history, with different prescriptions
for each of the four classes of simple Lie groups:
SUðNÞ, SOð2NÞ, SOð2N þ 1Þ, and SPð2NÞ [25,39,60–
66]. As detailed in the Supplementary Material, we con-
struct nearest-neighbor models with the following four
symmetries, SU(4), SO(3), SO(4) and SP(4). Following our
previous strategy for HSUð3Þ, we analyze the transport
dynamics of conserved charges for each of these models.
In all cases, we observe excellent agreement with the KPZ
universality class [Figs. 3(b) and 3(e)].
Extending this exploration to periodically driven systems

requires systematically building the corresponding Floquet
integrable models. Somewhat astonishingly, one can
straightforwardly build such models from their static
counterparts [36,73]. The Hamiltonian is divided into terms
acting on even and odd bonds (denoted as Heven and
Hodd, respectively), which are then alternatingly applied,
leading to a Floquet unitary: U ¼ e−iHoddT=2e−iHevenT=2.
Using this procedure, we can extend our analysis to the
Floquet regime for all of the previous non-Abelian models
[Figs. 3(c) and 3(e)]. Our conclusions are identical. The
resulting transport falls within the KPZ universality class
even though energy is no longer conserved.
Finally, let us consider integrable models where the non-

Abelian symmetry is replaced with supersymmetry. Such
models have been conjectured to exhibit superdiffusion, but
observing this, either numerically or analytically, remains
an open challenge [21,25]. Here, we focus on a pair of
spinful fermionic lattice models: the t-J model (with
t ¼ 2J), and the Essler-Korepin-Schoutens (EKS) model
[66,74–77]. These exhibit the two simplest supersymme-
tries, SUð1j2Þ and SUð2j2Þ, respectively.
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The defining feature of models with supersymmetry is
that their conserved charges fall into two types: bosonic and
fermionic, although only the bosonic charge can in prin-
ciple exhibit superdiffusion [21]. For the t-J model, each
lattice site can be occupied by either a spin-up fermion, a
spin-down fermion, or a hole. The conserved bosonic
charges are given by the total number of holes, and the
total spin. Holes live in the Abelian U(1) sector and thus
lack particle-hole symmetry leading to a finite Drude
weight and ballistic transport [21]. Therefore, we study
the spin polarization, given by the difference between the
number of spin-up and spin-down particles. As before, we
prepare a weak domain-wall in the spin polarization while
keeping the other charge densities—including the hole
density—constant.
For both the static and Floquet t-J models, we observe

superdiffusive spin transport (with z ¼ 3=2) via both the
polarization transfer [Fig. 3(f)] and the collapse of the
polarization profile [39]. The numerical evidence that spin
transport falls within the KPZ universality class is more
subtle. In particular, the polarization gradient, ∂rqðr; tÞ,
exhibits a discrepancy with both the KPZ and Gaussian
expectations [Fig. 3(d)]. However, the finite-time flow of
∂rqðr; tÞ approaches the KPZ scaling function in the same
qualitative fashion as is observed in the SU(3) case [insets,
Figs. 3(a) and 3(d)]; we conjecture that finite-time effects
are exacerbated in supersymmetric models owing to the
presence of additional ballistic modes [Fig. 3(g)] [78].
Moreover, a careful comparison of the relative error to the
Gaussian model suggests that rescaled diffusion cannot be
the correct limiting behavior [39].
Experimental proposal.—Recent advances in the control

and manipulation of alkaline-earth atoms in optical lattices
have opened the door to studying SUðNÞ-symmetric spin
models [79–88]. In particular, at unit filling in the Mott
insulating phase, the lack of hyperfine coupling in the ns2
1S0 electronic ground state naturally leads to SUðNÞ-
symmetric spin-exchange interactions [87,89–91]:

HSUðNÞ ¼ JSUðNÞ
X

i

XN

α;β¼1

ŝα;βi ŝβ;αiþ1; ð5Þ

where ŝα;βi ¼ jαihβj on site i; in one dimension, HSUðNÞ is
integrable and precisely corresponds to the models con-
sidered above [e.g., Eq. (3)].
The observation and characterization of KPZ transport

requires the ability to address two main experimental
challenges: (i) preparing near infinite-temperature states
with a well-defined domain-wall polarization and (ii) meas-
uring the tails of the scaling function with sub-percent
accuracy. The former can be accomplished via a two step
process: first, optical pumping via an intercombination
transition (e.g., ns2 1S0 ↔ nsnp 3P1) can be used to
generate arbitrary magnetization distributions which are
preserved upon cooling to the Mott insulator [39]; second,

with single-site addressing [26,92–97], a coherent optical
drive can be applied to half the system in order to prepare
the domain wall.
Achieving the latter is significantly more subtle. In order

to distinguish between KPZ dynamics and rescaled dif-
fusion, careful estimates suggest the need to experimentally
resolve the scaling function with a relative error of ∼10−3
[39]. Achieving this error floor requires the ability to
spatially resolve spin-transport dynamics over long time-
scales and large distances. For concreteness, let us consider
87Sr atoms loaded into a two-dimensional optical lattice
[87,98,99]. Recent experiments have demonstrated the
elegant use of cavity enhancement to realize homogeneous
lattices capable of supporting Mott insulators with a
diameter of ∼300 sites [39,98]. By implementing strong
confinement in one direction, one can subsequently divide
the system into ∼250 independent chains, each with length
∼150 sites. Assuming an on-site interaction energy,
U ∼ 3 kHz, and a tunneling rate, t ∼ 300 Hz, yields a
spin-exchange interaction, J ¼ 2t2=U ≈ 60 Hz [39,98].
Optimizing for an evolution time of ∼50=J and assuming
an experimental cycle time of∼10 s [87], we estimate that a
relative error of ∼10−3, can be achieved within two days of
averaging [39]. Finally, the presence of a finite density
(≳1% [39,100]) of doublons and holes in the Mott insulator
will perturb the polarization dynamics, but the exact nature
of their effect remains an intriguing open question.
Outlook.—Since it was first observed in the spin-1=2

Heisenberg model [20], the microscopic origin of KPZ
dynamics in integrable quantum magnets has remained a
mystery [101]. Our Letter suggests that any such under-
standing will need to encompass a broader physical setting,
including both Floquet and supersymmetric systems. In the
context of supersymmetry, an intriguing direction is to
characterize the impact of ballistic fermionic modes on the
KPZ dynamics. Finally, the ability to experimentally
measure the full counting statistics of spin transport opens
the door to studying KPZ dynamics from a new perspec-
tive, which is currently challenging to access both analyti-
cally and numerically [26,102].
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