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Quantum state preparation is an important subroutine for quantum computing. We show that any n-qubit
quantum state can be prepared with a ΘðnÞ-depth circuit using only single- and two-qubit gates, although
with a cost of an exponential amount of ancillary qubits. On the other hand, for sparse quantum states with
d ⩾ 2 nonzero entries, we can reduce the circuit depth to ΘðlogðndÞÞ with Oðnd log dÞ ancillary qubits.
The algorithm for sparse states is exponentially faster than best-known results and the number of ancillary
qubits is nearly optimal and only increases polynomially with the system size. We discuss applications of
the results in different quantum computing tasks, such as Hamiltonian simulation, solving linear systems
of equations, and realizing quantum random access memories, and find cases with exponential reductions
of the circuit depth for all these three tasks. In particular, using our algorithm, we find a family of linear
system solving problems enjoying exponential speedups, even compared to the best-known quantum and
classical dequantization algorithms.
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The speed limit of quantum state preparation is a
question with fundamental and practical interests, deter-
mining the efficiency of inputting classical data into a
quantum computer, and playing as a critical subroutine
for many quantum algorithms, such as in machine learning
[1–3] and Hamiltonian simulations [4,5]. Without ancillary
qubits, an exponential circuit depth is inevitable to prepare
an arbitrary quantum state [6–16] and the optimal result
Θð2n=nÞ was recently obtained by Sun et al. [17].
Leveraging ancillary qubits, the circuit depth could be
reduced to be subexponential scaling [17–23], yet in the
worse case with an exponential number of ancillas. Very
recently, the optimal circuit depth ΘðnÞ was achieved by
Refs. [17,21] with Oð2nÞ [17] and Õð2nÞ [21] ancillary
qubits.
Despite the previous results in minimizing circuit depth,

the subexponential circuit depth is only achieved at the cost
of exponential space complexity. Moreover, when consid-
ering applications in the field of quantummachine learning,
strong data structure assumptions leave space for quantum-
inspired classical algorithms. With a classical data structure
enabling l2 sampling, there are classical algorithms with
polylogarithmic runtime dequantizing the quantum algo-
rithms for recommendation systems [24], solving linear
systems [25,26], semidefinite programs [27], etc. These
results show that space resources should not be neglected
when discussing the quantum exponential advantages.
In practice, the data may behave with a certain structure.

Indeed, if the one imposes certain restrictions on the target
quantum states, the circuit depth and the ancillary qubit

number might be further reduced [28–34]. A typical
scenario that has both theoretical and practical relevance
is the sparse data structure, such as sparse classical data,
Hamiltonians of physics systems, etc. Using a constant
number of ancillary qubits, arbitrary d-sparse quantum
states (with d nonzero entries) can be prepared using a
circuit depth of OðdnÞ [28–31]. However, it was unclear if
the sparse preparation procedure could be further sped up
with more, but polynomial, ancillary qubits. The funda-
mental speed limit of sparse state preparation is still an
open question, which is important for studying the ultimate
power of quantum machine learning algorithms.
In this Letter, we study the speed limit of quantum state

preparation. We first develop a deterministic algorithm
(independent of Refs. [17,21]) for preparing an arbitrary
quantum state with optimal circuit depth ΘðnÞ and Oð2nÞ
ancillary qubits. The scheme requires a much more sparse
connectivity than Ref. [17], as each qubit connects to a
constant number of other qubits. We next introduce an
algorithm for d-sparse quantum states (d ⩾ 2) that achieves
the optimal circuit depth ΘðlogðndÞÞ, exponentially faster
than the best-known results [28–30]. The sparse state
preparation requires Oðnd log dÞ ancillary qubits, which
is also nearly optimal. Based on the results, we find a
family of linear system tasks that can be solved with the
circuit depth and the number of ancillary qubits being
OðpolyðnÞÞ, and hence show an exponential improvement
compared to the best known quantum and classical
dequantization algorithms. We also show how our tech-
niques can be applied to improving Hamiltonian simula-
tions and quantum random access memories (QRAMs).
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Access model.—A general n-qubit state can be
expressed as

jψi ¼
XN−1

k¼0

akjki; ð1Þ

with N ¼ 2n, ak ∈ C,
P

N−1
k¼0 jakj2 ¼ 1, and jki≡

jknkn−1 � � � k1i being the basis with bits kj for
j ¼ 1; 2;…; n. Before discussing our state preparation
protocol, we first introduce how our quantum circuit
accesses the classical description of a target quantum state.

Let bn;k ≡ jakj, bl;j ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jblþ1;2jj2 þ jblþ1;2jþ1j2

q
for

0⩽l⩽n − 1, θl;j ¼ arccosðbl;2j=bl−1;jÞ for bl−1;j ≠ 0, and
θl;j ¼ 0 for bl−1;j ¼ 0. We require classical preprocessing
to calculate θl;j, and argðakÞ. Here, bl;j are recursively
defined so that we can encode the amplitudes in a treelike
fashion allowing parallelization. This recursive definition is
not required for phase argðakÞ, because after encoding the
amplitude, the phase can be encoded with a single layer of
phase gates (see Sec. I of Ref. [35] for details). The
preprocessing takes time OðNÞ by sequential calculations,
or OðlogNÞ by parallel calculations with OðNÞ space
complexity. These complexities are optimal because read-
ing and writing N values already require ΩðNÞ resource.
For sparse quantum state with d nonzero elements, the

quantum state can be expressed as

jψi ¼
Xd−1

k¼0

ψkjqki; ð2Þ

where ψk ∈ C and qk is the index (with n digits) of the kth
nonzero entries. We assume d ¼ 2ñ with integer ñ,
which can be always satisfied by appending jqki with

zero amplitude. Similarly, we let b0n;k ≡ jψkj, b0l;j ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jb0lþ1;2jj2 þ jb0lþ1;2jþ1j2

q
for 0⩽l⩽ñ − 1, and θ0l;j≡

arccosðb0l;2j=b0l−1;jÞ, and require classical preprocessing
to calculate θ0l;j, argðψkÞ. The value of qk should also be
encoded to the circuit. The preprocessing time is OðndÞ for
sequential calculation, or OðlogðndÞÞ for parallel calcu-
lation with OðndÞ space complexity.
The calculated angles and the labels of nonzero basis

jqki for sparse states can then be directly mapped to the
parameters of the quantum circuit, so the time complexity
for generating quantum circuits are identical to the pre-
processing time. Note that the preprocessing only needs to
be performed once for preparing arbitrary copies of state.
Here and after, we assume that the classical preprocessing
has been completed.
Quantum state preparation.—Without loss of generality,

the task of quantum state preparation is to prepare jψi from
an initial product state j0i⊗n using single- and two-qubit

gates. The qubit layout of our protocol is illustrated in
Figs. 1(a) and 1(b). There is an (nþ 1)-layer binary tree of
qubits, H. The lth layer of H is denoted as Hl, and its jth
qubit is denoted as Hl;j. The lth layer of H is connected to
the leaf layer of another binary tree Vl with (lþ 1) layers.
In this layout, each qubit connects to at most constant
number of the other qubits, while Ref. [17] assumes that
two-qubit gates can be applied on any two qubits. With the
qubit layout above and the access model introduced
previously, we have the following result.
Theorem 1: (Arbitrary quantum state preparation)

With only single- and two-qubit gates, an arbitrary n-qubit
quantum state can be deterministically prepared with a
circuit depth ΘðnÞ and OðNÞ ancillary qubits.
Our method saturates the circuit depth lower boundΩðnÞ

[17,19]. Below we sketch our protocol and refer to Sec. I
of [35] for the formal description.
The root of H is initialized as j1i and all other qubits are

initialized as j0i. The protocol contains 5 stages. In stage 1,
with a OðnÞ layer of CNOT and single qubit gates, H is
prepared as

jψ stage 1i ¼
X2n−1

k¼0

akj1iH0
⊗
n

l¼1

jðk; lÞi0Hl
; ð3Þ

where j1iH0
the state of H0, and jðk; lÞi0Hl

is the state of Hl.
Here ðk; lÞ≡ knkn−1 � � � kn−lþ1 represents the last l digits of

FIG. 1. (a) Layout of binary tree H. Each block represents a
qubit. (b) Layout of binary tree V2, which connects to the second
layer of H with dashed box, i.e., H2. Here, V2;root is V2;2;0. In (a)
and (b), CNOT gates are only applied at qubit pairs connected by
solid lines. (c) CNOT gate between two distant qubits (black
circles) based on pre-shared Bell states (blue circles).Mx;z and X,
Z represent measurements and Pauli gates [40].
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k, and jðk; lÞi0 ≡ j0i⊗ðk;lÞj1ij0i⊗2l−ðk;lÞ−1. At each layer,
there is only one qubit activated (at state j1i) while the rest
of the qubits are at state j0i. The amplitude of the basis
j1iH0

⊗n
l¼1 jðk; lÞi0Hl

at Eq. (3) is identical to the amplitude
of jki at Eq. (1). So the remaining task is all about basis
transformation.
In stage 2, for each l, we map the state of Hl

to the state of the root of Vl. More specifically, we
perform jðk; lÞi0Hl

j0iVl;root
→ jðk; lÞi0Hl

jkn−lþ1iVl;root
, where

Vl;root ¼ Vl;0;0. With a total circuit depth OðnÞ, we obtain

jψ stage 2i ¼
X2n−1

k¼0

akj1iH0
⊗
n

l¼1

jðk; lÞi0Hl
jkn−lþ1iVl;root

: ð4Þ

In the remaining of the algorithm (stage 3 to 5), our goal is
to uncompute H. This can be realized by flipping each
qubit of Hl conditioned on the states of its parent and
Vl;root. By utilizing the binary trees Vl, the uncomputation
can be done withOðnÞ circuit depth [35]. We can then trace
out all qubits except for the roots of Vl, and the state
becomes

P
2n−1
k¼0 αk⊗n

l¼1jkn−lþ1iVl;root
, which is equivalent

to Eq. (1).
We also show in [35] that our scheme can be approxi-

mated to accuracy ε using Cliffordþ T gates with depth
Oðn logðn=εÞÞ. This decomposition is important for fault-
tolerant implementation based on surface code [41].
Nonlocal entangling gate implementation.—Similar to

QRAMs, encoding exponential data to a quantum state may
require spatially nonlocal gates. The nonlocal gate can be
realized by quantum network with preshared Bell states
[40,42]. As shown in Fig. 1(c), the scheme requires a pair of
ancillary qubits at Bell state 1=

ffiffiffi
2

p ðj01i þ j10iÞ. Each
ancillary qubit couples to either the control or target qubit.
Effective CNOT can then be realized with local operations
and classical communication. The protocol has been
demonstrated in superconducting qubit [40] and trapped-
ion systems [43]. Alternatively, nonlocal gates can also be
realized with spin-photon network [44]. In fault-tolerant
settings, surface code based on teleportated CNOT gate
above has also been proposed in [45], which can be
straightforwardly applied to our scheme. In [35], we further
show that our scheme can be implemented even in a
nearest-neighbor coupled two-dimensional qubit array,
only at the cost of a mild increase of the ancillary qubit
number to Oðn2NÞ.
Sparse quantum state preparation.—The protocol can be

further improved if the target states are sparse. We first
introduce two subroutines that are useful for sparse state
preparation and then discuss several other applications.
Both subroutines work on a quantum system containing an
index register and a word register, which are systems with
a certain number of qubits.
The first subroutine is the product unitary memory

(PUM), which can be considered as a generalization of

QRAM protocol in [46,47]. We define an n-word product
unitary function ÛðkÞ≡⊗1

l¼nÛlðkÞ with ÛlðkÞ ∈ SUð2Þ
and k ∈ f0; 1 � � � ; d − 1g. We define the selector unitary
of Û as selectðÛÞ, which satisfies selectðÛÞjkijzi ¼
jkiÛðkÞjzi. Here, jki is the basis of the ⌈ log2 d⌉-qubits
index register, and jzi is the basis of the n-qubits word
register. The selector unitary can also be represented as
selectðÛÞ≡P

d−1
k¼0 jkihkj ⊗ ÛðkÞ. We have the following

result (see Sec. III A of [35] for details).
Lemma 1: (PUM) Given an arbitrary ⌈ log2 d⌉-index,

n-word product unitary function ÛðkÞ, selectðÛÞ can be
realized with circuit depthOðlogðndÞÞ andOðndÞ ancillary
qubits using only single- and two-qubit gates.
The second subroutine is the sparse Boolean memory

(SBM). We consider an n-index, ñ-word Boolean
function f∶f0;1gn→f0;1gñ. Let Sf¼fkjfðkÞ≠0…0g
containing all input indexes with nonzero output. We
say that f is s sparse if Sf has no more than s elements.
Its corresponding sparse Boolean function selector satisfies
selectðfÞjkijzi ¼ jkijz ⊕ fðkÞi, where ⊕ represents bit-
wise XOR. Let flðkÞ be the lth digit of fðkÞ, selectðfÞ can
also be expressed as

selectðfÞ≡ X2n−1

k¼0

jkihkj⊗
1

l¼ñ
ðflðkÞX̂ þ f̄lðkÞÎ1Þ; ð5Þ

where f̄lðkÞ is the NOT of flðkÞ, X̂ is the Pauli-X operator,
and Îm represents the m-qubit identity. We have the
following result (see Sec. III A of [35] for details).
Lemma 2: (SBM) Given an arbitrary n-index, ñ-word,

s-sparse Boolean function f, selectðfÞ in Eq. (5) can be
realized with a quantum circuit with circuit depth
OðlogðnsñÞÞ and OðnsñÞ ancillary qubits using only
single- and two-qubit gates.
Based on Lemmas 1,2, and the access model discussed

previously, we are now ready for our sparse state prepa-
ration protocol. Our result is as follows.
Theorem 2: (Sparse state preparation) With only

single- and two-qubit gates, arbitrary n-qubit, d-sparse
(d ⩾ 2) quantum states can be deterministically prepared
with a circuit depth ΘðlogðndÞÞ and Oðnd log dÞ ancillary
qubits.
As we prove in Lemma 3 at Sec. II of [35] that the circuit

depth is lower bounded by ΩðlogðndÞÞ, our protocol also
achieves the optimal circuit depth for sparse states.
Below, we show how our protocol works for preparingP
d−1
k¼0 ψkjqki in Eq. (2). We introduce registers A and B,

consisting of ñ ¼ ⌈ log2 d⌉ and n qubits, respectively.
All qubits are initialized to j0i. Then, we prepare regis-
ter A to state

P
d−1
k¼0 ψkjkiA, which uses Oðlog dÞ circuit

depth and OðdÞ ancillary qubits according to Theorem 1.
Next, we introduce an n-word product unitary function
ÛprepðkÞ ¼⊗1

j¼n ðqk;jX̂ þ q̄k;jÎ1Þ, where qk;j is the jth digit
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of qk. We query select ðÛprepÞ with register A as index
register and register B as word register, and the output state
is
P

d−1
k¼0 ψkjkiAjqkiB. According to Lemma 1, this step can

be realized with OðlogðndÞÞ circuit depth and OðndÞ
ancillary qubits. The remaining procedure is to uncompute
register A. To do so, we introduce another n-index, ñ-word
Boolean function fprep. Let Q be a set containing all
nonzero entries qk of the target state. The definition of fprep
is that fprepðqkÞ ¼ k for qk ∈ Q and fprepðqÞ ¼ 0 for q ∉ Q
(i.e., Sfprep ¼ Q). We query selectðfprepÞ with register B as
index register and register A as word register, after which
the state becomes

P
d−1
k¼0 ψkj0…0iAjqkiB. The target state is

obtained by tracing out register A.
Because fprep is d sparse, according to Lemma 2,

this step has circuit depth OðlogðndÞÞ and space complex-
ity Oðnd log dÞ. So the total circuit depth and space
complexity of sparse state preparation is ΘðlogðndÞÞ and
Oðnd logdÞ. Moreover, as mentioned previously, it takes
classical runtime OðndÞ to generate the quantum circuit,
which can be reduced toOðlogðndÞÞ for parallel calculation
with OðndÞ space complexity.
Theorem 2 also provides a method for approximating

nonsparse states with sparse states. We denote amax
j as the

jth largest value of jakj. Suppose
P

d
j¼1 jamax

j j2 ¼ 1 − ε, we
can then set all amplitudes jakj < amax

d to zero and norma-
lize the sparse state. According to Theorem 2, the quantum
state can be approximated to fidelity F ¼ 1 − ε with circuit
depth OðlogðndÞÞ (see Sec. IX of [35] for details).
We next discuss applications of our results.
Hamiltonian simulation.—A Hamiltonian Ĥ can gener-

ally be expressed as a linear combination of products of
single qubit unitaries (such as Pauli strings)

Ĥ ¼
XP−1

p¼0

αpV̂ðpÞ; ð6Þ

for some αp > 0, V̂ðpÞ ¼⊗n
l¼1 V̂lðpÞ and V̂lðpÞ ∈ SUð2Þ.

Simulation of e−iHt with optimal complexity with
respect to the accuracy can be achieved with block
encodings [5,48]. We say that Û is a block encoding
[48] of Ĥ if ðh0j⊗a ⊗ InÞÛðj0i⊗a ⊗ InÞ ∝ Ĥ for some
integer a. One common construction way of block-encod-
ing is based on linear combination of unitaries [5]. We
define Ĝ as a quantum state preparation operator satisfying
Ĝj0i ¼ jGi≡P

p

ffiffiffiffiffiffiffiffiffiffi
αp=α

p jpi with α≡P
p αp. It can be

verified that ðĜ† ⊗ InÞselectðV̂ÞðĜ ⊗ InÞ is a block encod-
ing of Ĥ. Conventional ways to implement selectðV̂Þ and
block encoding requires a circuit depth OðnPÞ [4].
In contrast, according to Theorem 1 and Lemma 1, Ĝ, Ĝ†

can be realized with circuit depth OðlogPÞ, and selectðV̂Þ
can be realized with circuit depth OðlogðPnÞÞ. So the
block encoding can be constructed with circuit depth

OðlogðnPÞÞ. Combining qubitization [5] with our fast
construction of block encoding, we have the following
result (see Sec. IV of [35] for details), which reduce the
circuit depth exponentially to respect to nP.
Theorem 3: (Hamiltonian simulation by qubitization)

Let Ĥ be a Hermitian operator expressed as Eq. (6).
Using only single- and two-qubit gates, the evolution
e−iĤt can be simulated to precision ε with circuit depth
OðlogðnPÞðαtþ logð1=εÞÞÞ and OðnPÞ qubits.
We note that another version of parallel Hamiltonian

simulation has been proposed in Ref. [20], achieving
doubly logarithmic circuit depth with respect to the
precision Oðlog3 logð1=εÞÞ. The algorithm is based on a
state preparation method with cubic circuit depth. In Sec. V
of [35], we show that the circuit depth can be further
reduced to Oðlog2 logð1=εÞÞ based on Theorem 1.
Solving linear systems.—Given an invertible matrix

H ∈ R2n×2n and vector b ∈ R2n, quantum algorithms of
linear systems aim at generating an approximation of
quantum state jxi proportional to H−1 · b. For sparse H,
jxi can be obtained with a circuit depth OðpolyðnÞÞ
[1,48,49]. The results has also been generalized to non-
sparse cases [50]. However, these quantum algorithms
assume the query of quantum state preparation and
Hamiltonian simulation oracles. In general, to achieve
poly-logarithmic circuit depth, data structure with space
complexity Oð2nÞ is required, leaving room for classical
dequantization algorithms [24–26]. Specifically, based on
an analog data structure withO½nnzðHÞn� space complexity
[nnzð·Þ refers to the number of nonzero entries], classical
dequantization algorithms [25,26] can sample from the
distribution of the measurement outcomes of jxi with a
circuit depth OðpolyðnÞÞ.
Therefore, whether we could more efficiently solve

linear systems heavily relies on efficiency of the quantum
state preparation and Hamiltonian simulation oracles. Here,
considering sparse matrices of Eq. (6), we show an
exponential advantage of quantum computing algorithms
based on Theorems 2,3.
Theorem 4: (Solving linear system) Let Ĥ be a

Hermitian expressed as Eq. (6) with condition number κ.
Let jbi be a OðpolyðnÞÞ-sparse quantum state. With
only single- and two-qubit gates, the quantum state jxi
proportional to H−1jbi can be approximately prepared to
precision ε using ÕðpolyðlogðnPÞ; α; κÞÞ circuit depth and
Oðpolyðn; PÞÞ qubits, where Õ neglects the logarithmic
dependence on κ, 1=ε.
With P; α ¼ OðpolyðnÞÞ, our method has Õðpolyðn; κÞÞ

circuit depth and OðpolyðnÞÞ space complexity. In com-
parison, the data structures by classical dequantization
algorithms [25,26] have OðnnzðĤÞ logNÞ ¼ OðNPnÞ
space complexities, which is exponentially larger.
Furthermore, assuming that P; α ¼ Oð1Þ and jbi is
Oð1Þ-sparse, the circuit depth of our parallel method is
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further reduced to ÕðlogðnÞpolyðκÞÞ, which is also expo-
nentially lower than the depth ÕðnpolyðκÞÞ of the quantum
algorithms using sequential selectðĤÞ [4,51]; Yet, both of
them have OðnÞ space complexity. More details are
provided in Sec. VI of [35].
QRAMs.—At last, we show applications for QRAMs.

Given a binary dataset D≡ fDkg2n−1k¼0 ∈ f0; 1gn, QRAMs
are memory architectures enabling the transformation

QRAMðDÞ
X2n−1

k¼0

ψkjkij0i ¼
X2n−1

k¼0

ψkjkijDki: ð7Þ

Efficient implementation of QRAM is important for many
applications, especially for quantum machine learning [52].
Conventional methods haveOðnÞ circuit depth usingOðNÞ
ancillary qubits [46,47,53,54]. IfD is d sparse (with at most
d nonzero elements), the space complexity can be signifi-
cantly reduced using quantum read-only access memory
(QROM) [55]. Alternatively, Eq. (7) can be realized by
performing n-Toffoli gates for d times. However, these
methods have circuit depth linear with d, which is not yet
optimal.
On the other hand, by defining fqramðkÞ≡Dk, Eq. (7)

can be satisfied by select ðfqramÞ. According to Lemma 2,
we can obtain the following result.
Theorem 5: (Sparse QRAM) With only single- and

two-qubit gates, arbitrary QRAMðDÞ in Eq. (7) with
d-sparse D can be implemented with circuit depth
OðlogðndÞÞ and OðndÞ ancillary qubits.
Our protocol thus has an exponentially lower circuit

depth compared to existing ones [46,47,53–55], while the
space complexity remains polynomial.
Moreover, we can construct a nonsparse QRAM for

continuous amplitude, i.e., jDki ∈ C2, based on Lemma 1
(see Sec. VII of [35]). Our method requires OðnÞ circuit
depth and OðNÞ ancillary qubits. The connectivity is
identical to those for binary QRAMs [46,47,53,54], which
is more sparse than other continuous QRAM schemes
developed recently [22,23] assuming all-to-all connectivity.
Discussions.—We have achieved optimal circuit depth

for general and sparse quantum state preparation. While
Theorems 1,2 assume that only single- and two-qubit gates
are allowed, our results can be generalized to constant
weight operations, i.e., operations applied to a constant
number of qubits. It therefore represents a fundamental
limit of quantum information processing imposed by
constant-weight operations. Future direction includes find-
ing optimal space-time trade-offs for sparse state prepara-
tion, and exploring more practical applications.
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