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Fracton models provide examples of novel gapped quantum phases of matter that host intrinsically
immobile excitations and therefore lie beyond the conventional notion of topological order. Here, we
calculate optimal error thresholds for quantum error correcting codes based on fracton models. By mapping
the error-correction process for bit-flip and phase-flip noises into novel statistical models with Ising
variables and random multibody couplings, we obtain models that exhibit an unconventional subsystem
symmetry instead of a more usual global symmetry. We perform large-scale parallel tempering Monte Carlo
simulations to obtain disorder-temperature phase diagrams, which are then used to predict optimal error
thresholds for the corresponding fracton code. Remarkably, we found that the X-cube fracton code displays
a minimum error threshold (7.5%) that is much higher than 3D topological codes such as the toric code
(3.3%), or the color code (1.9%). This result, together with the predicted absence of glass order at the
Nishimori line, shows great potential for fracton phases to be used as quantum memory platforms.
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Introduction.—The study of quantum phases constitutes
a cornerstone of quantum many-body physics and can
potentially enable technological advances. Among its
modern applications is the possible realization of a fully
fledged quantum computer by means of fault-tolerant
methods for processing quantum information [1–3].
Topological codes [4,5] stand among the best options to
performing fault-tolerant quantum computation due to their
high thresholds and linear scaling of the system qubit
resources [6,7]. Nevertheless, 2D topological stabilizer
codes like the most studied surface code [4,6,8] permit
only topological implementations of Clifford gates [9],
while non-Clifford gates are necessary for realizing the
desired quantum advantages [10], motivating the quest for
new 3D codes. Fracton models [11–27] represent a gen-
eralization to 3D topological orders and provide alterna-
tives to quantum memories beyond the standard paradigm
of topological computing. These models host intrinsically

immobile pointlike excitations called fractons [15] which
make a key difference from conventional topological
orders and have potential beneficial applications. While
a few decoders [28,29] and several experimental platforms
[30–32] are proposed, the theoretical limit on error thresh-
olds of fracton codes is unexplored, which is nevertheless
crucial for devising new decoders and for justifying the
practical relevance of fracton codes.
Thegoal of this Letter is to investigate howa fractonmodel

behaves as an active error correcting code against stochastic
Pauli errors, which are widely used for benchmarking
quantum memories. We have defined error corrections in
the presence of a subextensive ground state degeneracy and
computed the optimal thresholds for one of the most
representative fracton models in three dimensions—the
X-cube model [16]. We address the problem by a combina-
tion of theoretical analyses and numerical simulations.Using
a statistical-mechanical mapping method [6] that has pre-
viously produced error thresholds for codes beyond those for
which it was initially conceived [33–40], we derive two
statistical models related to Pauli errors of theX-cubemodel,
in the formulation of classical spin variables that are suited
for simulations. The numerical simulation of statistical
models in three dimensions with randomness is generally
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challenging, and the required resources are even higher for
our models as they possess lower-dimensional subsystem
symmetries rather than a more conventional global sym-
metry. Only by utilizing state-of-the-art parallel tempering
Monte Carlo methods and performing large-scale simula-
tions have we been able to compute various many-body
correlation functions and determine the phase diagrams for
the two statistical models up to moderate error rates.
We estimate the optimal error thresholds of the X-cube

code against bit-flip (X) and phase-flip errors (Z) as pX
c ≃

0.152ð4Þ and pZ
c ≃ 0.075ð2Þ, respectively. The minimum of

these thresholds is remarkably higher than what was found
in conventional 3D topological codes such as the toric code
(0.033) [41,42] and the color code (0.019) [38], which
signals the potential of the X-cube model as a fault-tolerant
quantum memory. This is further confirmed by the ana-
lytical result that the Nishimori line is free of fracton glass
order through which the resilience of the quantum code
may be lost (see Supplemental Material [43]). In addition,
our results represent the first study of spin models with
both subsystem symmetries and quenched random dis-
order in three dimensions, hence are also of interest for the
statistical mechanics community.
X-cube model as quantum memory.—Consider a cubic

lattice L with periodic boundary condition (PBC). We
introduce a qubit to every edge l and define stabilizer
generators Ac and B

μ
v at each unit cube c and vertex v of the

lattice. Specifically, Ac is defined to be the tensor product of
Pauli X operators on the 12 edges of a cube, and Bμ

v is a
tensor product of Pauli Z operators on the four edges
adjacent to a vertex and perpendicular to the spacial
direction μ ¼ x, y, z. Namely,

Ac ≔
Y
l∈c

Xl; Bμ
v ≔

Y
l∈v∶l⊥μ

Zl; ð1Þ

as visualized in Fig. 1. For convenience, we label the set of
qubits as Q and those of stabilizer generators as A ≔ fAcg
and B ≔ fBx

v; B
y
vg, respectively.

The X-cube model is a paradigmatic fracton model
constructed by summing over these stabilizer generators,

HX-cube ¼ −
X
c∈L

Ac −
X
v∈L

ðBx
v þ By

v þ Bz
vÞ: ð2Þ

As Ac and Bμ
v commute, this Hamiltonian is exactly

solvable [16], and its ground states satisfy Ac ¼ 1 and
Bμ
v ¼ 1 for all c, v, μ. The elementary excitations are two

types of gapped topological defects. A unit cube with
Ac ¼ −1 is referred to as a fracton (solid cyan cube in
Fig. 1), which is an intrinsically immobile defect. A vertex
with Bμ

v ¼ 1 but Bν≠μ
v ¼ −1 corresponds to an excitation

termed a lineon (red ellipsoid in Fig. 1), which can move
along the μ direction but is immobile in the two directions
ν ≠ μ. The three possible lineons at each vertex are subject
to a constraint Bx

vB
y
vBz

v ¼ 1.

On a lattice of size L3 with PBC, the X-cube model has
26L−3 degenerated ground states, scaling subextensively
with system size [16,20]. These ground states are indis-
tinguishable by local operations, hence provide a fault-
tolerant code Hilbert space. We can view them as 6L − 3
logical quibits by introducing 6L − 3 pairs of nonlocal
operators ðXSj

; ZMj
Þ. Here, XSj

≔
Q

l∈Sj
Xl and ZMj

≔Q
l∩Mj≠∅ Zl are defined on extended strings and mem-

branes winding around the lattice (see Fig. 1).
Error correction.—Fractons and lineons can be used to

diagnose errors in the stabilizer code. For example, as
illustrated in Fig. 1, a phase-flip Z error on a single qubit l
will cause four fractons at each of its adjacent cubes.
Similarly, a single bit-flip X error will create two lineons at
the vertices sharing the edge. Therefore, an ensemble of
fractons or lineons can act as an A or B syndrome reflecting
Z or X errors in the system.
For simplicity, we consider a situation where each qubit

is affected by phase-flip and bit-flip errors independently
and assume perfect measurements for all stabilizer gene-
rators. Moreover, since the X-cube model is a Calderbank-
Shor-Steane (CSS) code [54], i.e., the type-A and type-B

FIG. 1. Stabilizer generators, excitations, and logical operators
of the X-cube model. A physical qubit is assigned to each
edge (l) of the lattice. A PauliX (Z) operator is presented as a cyan
(red) edge. Stabilizer generators Ac and Bμ

v are defined at unit
cubes (c) and vertices (v), respectively. The ground states satisfy
Ac ¼ 1 and Bμ

v ¼ 1 for all c, v and μ ∈ fx; y; zg. Cyan strings (S)
and gray membranes (M) represent string and membrane oper-
ators of the form XS ≔

Q
l∈S Xl and ZM ≔

Q
l∩M≠∅ Zl, re-

spectively. Fracton excitations Ac ¼ −1 are created by membrane
operators at their corners and colored as cyan cubes. String
operators create lineon excitations at their turns and ends. The
red ellipsoids represent lineons with Bμ

v ¼ 1, Bν≠μ
v ¼ −1, where μ

is indicated by the elongated directions. The extended strings and
membranes S1, S2, M1, and M2 represent two pairs of logical
operators creating no excitations due to PBC.
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stabilizer generators involve either purely X or Z operators,
we can correct the bit-flip and phase errors separately.
The error-correction process can be described by intro-

ducing a (co)chain complex,

ZA
2 ⇌

∂A

∂
†
A

ZQ
2 ⇌

∂
†
B

∂B

ZB
2 ; ð3Þ

where ZA
2 , Z

Q
2 , and ZB

2 denote the Z2 ¼ f0; 1g vector
spaces for labeling configurations of type-A stabilizer
generators (A), physical qubits (Q), and type-B stabilizer
generators (B), respectively. The boundary maps ∂A and ∂B
are linear and specify the qubits involved in every type-A
and type-B stabilizer generator. Correspondingly, the

transpose operator ∂†A (∂†B) maps an error configuration η ∈
ZAðBÞ

2 to an ensemble of fractons (lineons) created by Zη ≔Q
l∈η Zl (Xη ≔

Q
l∈η Xl). In general, ∂†A∘∂B ¼ ∂

†
B∘∂A ¼ 0

for all CSS codes.
Only certain error configurations are compatible with a

given syndrome. Among those, error configurations are
equivalent if and only if they can be connected by type-A
and type-B stabilizer generators. Namely, provided η − η0 ∈
im∂A or im∂B, two errors η and η0 will have the same effect
on the encoded quantum state, where im∂ denotes the
image of the boundary map. Thus, the spaces of Xη and Zη

can be divided into equivalence classes by the quotients
ZQ

2 =im∂A andZ
Q
2 =im∂B. We denote the equivalence classes

as ½η�X ≔ ηþ im∂A and ½η�Z ≔ ηþ im∂B, respectively.
For a possible B or A syndrome σ with probability PrðσÞ,

the total probability of those equivalence classes compat-
ible with σ satisfies

P
λ prð½ησ þ λ�Þ ¼ PrðσÞ, with λ ∈ ZQ

2

labeling inequivalent logical operators. The correction can
be realized successfully if, for typical syndromes, there
exists a most probable equivalence class ½η�σ� such that
prð½η�σ�Þ → PrðσÞ in the large system limit [6]. However,
this is only possible when the rate p for local X and Z errors
lie below some optimal threshold values pX

c and pZ
c . For

p > pc, the error class cannot be unambiguously identified,
and the code becomes ineffective. Finding the optimal error
thresholds is therefore crucial to any quantum code.
Mapping to statistical-mechanical models.—An elegant

and numerically preferable way to determine pX
c and pZ

c of
the X-cube code is utilizing a statistical mapping method
[6] which maps bit- and phase-flip errors to suitably chosen
statistical-mechanical models.
Suppose both X and Z errors occur independently at each

qubit at rate p. Then the probability the system is affected
by an X or Z error configuration η ∈ ZQ

2 is

prðη;pÞ ¼
Y
l∈Q

pηðlÞð1 − pÞ1−ηðlÞ ∝
�

p
1 − p

�P
l
ηðlÞ

; ð4Þ

where ηðlÞ ¼ 1 or 0 on edges with or without an error.

This probability can be interpreted as a Boltzmann
weight by introducing an effective temperature T satisfying

e−
2
T ¼ p

1 − p
: ð5Þ

Equation (5) defines the so-called Nishimori line and
allows us to control the rate of random qubit errors through
the auxiliary temperature (see Supplemental Material [43]).
Accordingly, the total probability of a bit-flip error

equivalence class ½η�X ≔ ηþ im∂A is mapped to the par-
tition function of an interacting spin Hamiltonian HA

η ,

prð½η�X;pÞ ∝
X
f∈ZA

2

eβ
P

l∈Q
ð−1ÞηðlÞþ∂AfðlÞ

¼
X

fSc¼�1g
e−βH

A
η ðfScgÞ≕ZA

η ðβÞ; ð6Þ

where β ¼ 1=T is the inverse temperature, f ≡
ffðcÞgc∈A ∈ ZA

2 represents a configuration of type-A
stabilizer generators, ∂AfðlÞ ¼

P
c∈∂†Al

fðcÞ labels the

edges of f, and Sc ¼ ð−1ÞfðcÞ ∈ f�1g denotes effective
Ising variables on the center of cubes.
The form of HA

η realizes a 3D random plaquette Ising
(RPI) model on a dual lattice with quenched disorder,

HA
η ðfScgÞ ¼ −

X
l∈Q

ð−1ÞηðlÞ
Y
c∈∂†Al

Sc; ð7Þ

where c ∈ ∂
†
Al specifies the four A-stabilizer generators

sharing an edge l (see Fig. 2), while the probabilities of
their coupling to be antiferromagnetic and ferromagnetic
are p and 1 − p, respectively. Moreover, aside from a
global Z2 symmetry, HA

η is invariant under a subsystem

FIG. 2. Illustration of the 3D random plaquette Ising (RPI)
model and the 3D random anisotropically coupled Ashkin-Teller
(RACAT) model. (a) The four interacting Sc spins in the RPI
model correspond to the four type-A stabilizer generators sharing
an edge in the original X-cube model. (b) The RACAT model
has two spins Sxv and Syv at each vertex, corresponding the two
independent type-B stabilizer generators. The coupling coeffi-
cients take random signs depending on the absence and presence
of local errors.
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symmetry flipping spins in individual planes and may be
viewed as a novel random spin model.
Analogously, the modeling of a phase-flip error equi-

valence class ½η�Z ≔ ηþ im∂B leads to a 3D random
anisotropically coupled Ashkin-Teller (RACAT) model
with quenched disorder on the original cubic lattice,

HB
η ðfSμvgÞ ¼ −

X
v

X
μ¼x;y;z

ð−1Þηðlμ̂vÞSμvSμvþμ̂; ð8Þ

where Sxv ¼ ð−1Þfyv , Syv ¼ ð−1Þfxv , and Szv ¼ SxvS
y
v are

effective Ising variables, and f ≡ ffxv; fyvgv ∈ ZB
2 denotes

the indicator vectors for type-B stabilizer generators. The
spins are coupled only along with the unit μ̂ direction
(Fig. 2). In contrast to the usual 3D Ashkin-Teller model
[55], the RACAT model Eq. (8) has the planar symmetries
of flipping all Sμ and Sν spins in an arbitrary μ − ν plane
besides a global Z2 × Z2 symmetry.
The disorder-free limits (p ¼ 0) of HA

η and HB
η are dual

to each other [56], as for general fracton and topological
CSS codes [43]. There is no exact duality in the presence
of disorder, nevertheless, our results suggest an approxi-
mate duality relation between the error thresholds pX

c and
pZ
c [43].
On the side of the statistical-mechanical models, the

relative probability between two X (or Z) error equivalence
classes under the error rate p is given by the difference
between their free energies,

prð½ηþ λ�XðZÞ;pÞ
prð½η�XðZÞ;pÞ

¼ ZAðBÞ
ηþλ ðβÞ

ZAðBÞ
η ðβÞ

¼ e−βδF
AðBÞ
η;λ ; ð9Þ

where λ ∈ ZQ
2 represents logical X (or Z) operators of the

X-cube model and can flip a sequence of coupling co-
efficients in HA

η (HB
η ). The condition of existing

prð½η�σ�XðZÞÞ → PrðσÞ for the most probable equivalence
class ½η�σ�XðZÞ requires that the free energy to introduce a
nontrivial string (membrane) defect (λ ≠ 0) diverges in the

thermodynamical limit, namely, δFAðBÞ
η;λ → ∞ (see Supple-

mental Material [43]). This is only possible when HA
η and

HB
η are in their ordered phases. Hence pX

c and pZ
c can be

determined from the order-disorder phase transitions of the
two random spin models.
Error thresholds and phase diagrams.—The phase dia-

grams of the RPI and RACAT models are shown in Fig. 3
obtained by large-scale parallel tempering Monte Carlo
simulations. We locate the phase transitions by cross-
checking the energy histogram, specific heat, order para-
meter, its susceptibility, and the correlation length [43].
To construct the appropriate order parameters, the planar

symmetries of HA
η and HB

η have to be taken into account as
they can lead to trivial cancellation of local orders. For the
RPI model, we define

QA ≔
1

L3

XL−1
z¼0

������
XL−1
x;y¼0

Scðx;y;zÞScðx;y;zþ1Þ

����
��

; ð10Þ

with h:i and ½:� denoting the thermal and disorder average,
respectively. The inner sum in Eq. (10) involves a sub-
extensive number (∝ L2) of spins, while the norm enforces
the planar-flip invariance [57]. Thus, QA defines a long-
range order which is subdimensional and made of planelike
objects.
The order parameter for the RACAT model is con-

structed similarly;

QB ≔
1

L3

XL−1
x;y¼0

������
XL−1
z¼0

Szvðx;y;zÞ

����
��

; ð11Þ

FIG. 3. Phase diagrams of the 3D RPI model and 3D RACAT model. The phase transitions are discontinuous in the low error rate (p)
regions (dashed lines) but are softened to be continuous ones when approaching the threshold values pX

c ≃ 0.152ð4Þ and pZ
c ≃ 0.075ð2Þ.

The error thresholds are determined by the largest p values exhibiting an order-disorder phase transition (see Supplemental Material
[43]). The effective temperature T is an auxiliary quantity and related to p by the Nishimori line (dotted line). A correctable X-cube code
corresponds to the part of the Nishimori line inside the ordered phases.
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which describes an order for extended line objects. Here,
the Szv spins are taken for simplicity, as the three Ising
variables in Eq. (8) are permutable.
At low X and Z error rates, the energy histograms reveal

a first-order phase transition for bothHA
η andHB

η [43]. This
agrees with previous studies on the disorder-free (p ¼ 0)
limit of the two models [56,57]. Hence the transition
temperatures can be estimated in a relatively straightfor-
ward way [43].
For larger p, the phase transitions are softened to

continuous ones in line with the Imry-Ma scenario
[58,59]. We can then locate the transitions by studying
the second-moment correlation length

ξL ≔
1

2 sin ðjkminj=2Þ
�

G̃ð0Þ
G̃ðkminÞ

− 1

�
1=2

; ð12Þ

where G̃ðkÞ ≔ P
rGðrÞe−ik·r is a Fourier transform of the

spatial correlator GðrÞ, and kmin denotes any smallest
nonzero wave vector [60].
The spatial correlators related to the order parametersQA

and QB are given by

GAðrÞ ≔ 1

L3

X
c∈L

½hScScþẑScþðr;0ÞScþðr;ẑÞi�; ð13Þ

GBðrÞ ≔ 1

L3

X
v∈L

½hSzvSzvþrẑi�; ð14Þ

so that GAðBÞðrÞ → ½QAðBÞ�2 in the limit of jrj → ∞.
Provided a continuous phase transition exists, ξL=L is

expected to be scaled as gðL1=νðT − TcÞÞ near the critical
point, and the curves for different system sizes should
intersect at ðTc; gð0ÞÞ, where g is a universal scaling
function and ν denotes the critical exponent of ξ.

We can use this property to search the largest error rates
where HA

η and HB
η continue showing a continuous phase

transition, which in turn implies the error thresholds of the
X-cube code.
Our simulations show that the ξLðTÞ=L curves exhibit

clear intersections up to an error rate pX
c ≃ 0.152ð4Þ for the

RPI model and pZ
c ≃ 0.075ð2Þ for the RACAT model (see

Fig. 4 and also Supplemental Material [43]). Thereafter,
a clear intersection cannot be recognized [43], indicating
lack of an order-disorder transition. Namely, for error rates
larger than pX

c and pZ
c , HA

η and HB
η host no long-range

order, and the X-cube code hence becomes uncorrectable.
Conclusions.—The X-cube model is the archetypal

stabilizer code exhibiting the fascinating quantum physics
of fracton topological orders. In this Letter we investigated
its capability as a quantum memory through a combination
of theoretical analyses and detailed numerical simulations.
We estimated its optimal error thresholds as pX

c ≃ 15.2ð4Þ%
against bit-flip noise and pZ

c ≃ 7.5ð2Þ% against phase-flip
noise, featuring a remarkably higher minimum error rate
(7.5%) compared to the 3D toric code (3.3%) [41,42] and
color code (1.9%) [38]. Our Letter establishes the
general connection between the fault tolerance of fracton
codes and statistical-mechanical models with subsystem
symmetries. The Pauli error thresholds in any CSS code
with zero-encoding rate [6,33,34,38] obey the inequality
HðpX

c Þ þHðpZ
c Þ ≤ 1 imposed by the quantum Gilbert-

Varshamov bound [61–63], where HðpÞ ≔ −p log2ðpÞ −
ð1 − pÞlog2ð1 − pÞ is the Shannon entropy. Our results
give HðpX

c Þ þHðpZ
c Þ ≃ 1.00ð2Þ, which not only satisfies

this constraint but is close to its upper bound, similar to
the situations found in conventional topological codes
[33,38,64]. We formulate this near saturation via an
approximate duality in the Supplemental Material [43]
and conjecture it for general fracton and topological CSS
codes. Our Letter can guide further studies of fracton
models, and the approximate duality predicts even higher
thresholds for the self-dual checkerboard [16] and
Haah’s [13] codes.

The data used in this work will be made available
in Ref. [65].
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