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We consider quantum circuits composed of single-qubit operations and global entangling gates
generated by Ising-type Hamiltonians. It is shown that such circuits can implement a large class of
unitary operators commonly used in quantum algorithms at a very low cost—using a constant or effectively
constant number of global entangling gates. Specifically, we report constant-cost implementations of
Clifford operations with and without ancillae, constant-cost implementation of the multiply-controlled
gates with linearly many ancillae, and an Oðlog�ðnÞÞ cost implementation of the n-controlled single-target
gates using logarithmically many ancillae. This shows a significant asymptotic advantage of circuits
enabled by the global entangling gates.
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Executing a quantum computer program requires its
compilation to native gates directly supported by the
controlling apparatus. While most of the existing quantum
computing hardware supports arbitrary single-qubit gates
as their native physical-level instruction, the choice of
entangling multiqubit operations may vary strongly across
different platforms. Here we focus on leveraging parallel
global instructions available in some quantum computer
architectures [1–3]. Such global operations draw their
power from the ability to apply a layer of pairwise
commuting 2-qubit gates simultaneously. A notable exam-
ple is the Molmer-Sorensen gate available in the trapped-
ion architecture [2,4] that evolves a system of qubits under
the Ising-type Hamiltonian. In this Letter, we report a
streamlined implementation of two common quantum
computing subroutines enabled by global entangling gates:
elements of the Clifford group and multiply-controlled
gates. Clifford operations play a central role in quantum
error correction, certain simulation algorithms [5], and a
variety of applications based on pseudorandom unitary
operators [6–8]. Multiply-controlled gates are ubiquitous
in applications that rely on arithmetic circuits or the
quantum singular value transformation [9,10].
We consider computational primitives that implement a

selectable set of commuting two-body Ising interactions in
one go, which we call global tunable gates. We further-
more treat single-qubit gates as a free resource, which is
justified since the implementation of entangling operators
on the physical level tends to be more difficult and error
prone compared with the single-qubit gates. Such a
selection of the costing metric implies that the particular
nature of the Ising interaction (e.g., XX; YY; ZZ) used is

irrelevant—indeed, the results hold uniformly for all
possible choices of the interaction since the changes
between them are accomplished by the single-qubit gates
(basis change) and can be merged into the single-qubit gate
layers. For the sake of simplicity of mathematical expres-
sions, we chose to work with the CZa interaction defined
as CZa ¼ eiπaj11ih11j. Here a ∈ ½0; 1� is a tunable parameter.
In other words, CZ0 is equivalent to the identity, whereas
CZ1 ¼ CZ is single-qubit equivalent to the CNOT gate.
We define an n-qubit global tunable (GT) gate as a
diagonal unitary operator

Y
1≤i<j≤n

CZaði;jÞ
i;j ;

where i and j indicate pairs of qubits acted upon by each
CZa gate, and we allow the parameter a ¼ aði; jÞ to be
tuned individually for each pair of qubits i and j. We
assume all-to-all qubit connectivity.
Multiple versions of GT gates have been experimentally

demonstrated [1,2,11,12]. In particular, Ref. [2] showed that
the pulse complexity required for a GT gate is not much
more than that required for a single 2-qubit gate, i.e., 3n − 1
degrees of freedom used for a GT instruction and 2nþ 1 for
a 2-qubit gate, for an n-qubit quantum computer. This is
understood by considering the pulse design space, where
some number of degrees of freedom must first be spent to
decouple the computational states from the mutually shared
information bus at the end of the entangling operation (2n)
and then using additional degrees of freedom to induce the
desired degree of entanglement between qubit pairs of
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choice. Since there are at most Oðn2Þ pairs to entangle, OðnÞ
additional degrees of freedom introduced to each of n qubits
suffice, making the hardware-level requirement for a GT
gate and that for a 2-qubit gate not too different.
Our main contributions are as follows. First, we show

that any n-qubit Clifford operation can be implemented
using a constant number of GT gates (at most 21) using no
ancilla. The number of GT gates is at most four if n ancillae
are available. The latter construction meets the information-
theoretic lower bound that applies to the no-ancilla case.
Second, we show how to construct a multiply-controlled
Toffoli (Toffoli-n) gate using Oðlog�ðnÞÞ [13] GT gates
with OðlogðnÞÞ ancillae or using 4 GT gates with OðnÞ
ancillae. We also consider adaptive quantum circuits that
include intermediate measurements and classical feed
forward. We show that Toffoli-n can be implemented by
an adaptive circuit with only two GT gates and OðnÞ
ancillae. Our results achieve a substantial improvement
over the state of the art.
Previous work.—The use of the GT gates to efficiently

implement an n-qubit Clifford operation has been studied in
the literature. An implementation with 12nþ Oð1ÞGT gates
requiring no ancilla was developed in Ref. [14] and super-
seded by Ref. [15], which improved it to 6nþ Oð1Þ GT
gates, still using no ancilla. Subsequently in Ref. [16] the
complexity was improved to 6 logðnÞ þ Oð1Þ GT gates,
however, with n=2 ancillae. Recently in Ref. [3], an ancilla-
free, ðn; 2n�-GT method was reported. Finally, an ancilla-
free implementation with 2 logðnÞ þ Oð1Þ GT gates follows
from Ref. [17] by noticing that R−1

A W01 in formula (4)
therein is a single GT gate, and nonoverlapping GT gates can
be implemented in parallel. In all these approaches, one
employs a decomposition of an n-qubit Clifford into stages
of 1- and 2-qubit gate layers, to then implement the 2-qubit
gate layers efficiently using GT gates. Here, we too employ
this decomposition; see, e.g., Lemma 8 of Ref. [18], where
any n-qubit Clifford U can be realized by a layered circuit

U ¼ -L-CX-CZ-L-CZ-L-: ð1Þ

Here -L- stands for a layer of single-qubit gates, -CX- is a
linear reversible circuit, and -CZ- is a layer of CZ gates. In
contrast to previous results, we show how to implement
arbitrary Clifford operation using O(1) GT gates either with
or without ancilla (the constant is smaller with ancilla). We
note that a single GT gate suffices if the input state of a
Clifford circuit is a fixed basis vector, such as j0ni. Indeed, in
this case, the output stateUj0ni can be prepared by a layered
circuit -L-CZ-L-, as follows from the well-known local
equivalence between stabilizer states and graph states [19].
In contrast, our implementation with O(1) GT gates works
for an arbitrary input state.
GT gates were also used to efficiently implement a

Toffoli-n, implying the same asymptotic for arbitrary
multicontrolled unitaries. Briefly, a 3-GT construction

of Toffoli-3 was reported in Ref. [20] and a 7-GT
construction of Toffoli-4 was reported in Ref. [21].
Toffoli-4 was improved to rely on 3 GTs in Ref. [14],
with one clean ancilla, along with 3nþ Oð1Þ GT imple-
mentation of a multiply-controlled Toffoli using n=2þ
Oð1Þ ancillae. An ancilla-free implementation (of, tech-
nically speaking, multicontrolled iX) that takes 2n GT
gates was reported in Ref. [22]. In all of these references,
the GT gates used were the single-angle, all-pair (drawn
from a selectable subset of qubits) kind. Indeed, when
using a more general GT, the complexity can be improved
to OðlogðnÞÞ by nesting Toffoli-m, m ≤ n, in a depth-
optimal fashion with OðnÞ ancillae, or 3n=2 GTs with no
more than seven ancillae [16].
Clifford operations.—We focus on implementing n-qubit

Clifford operations by quantum circuits composed of GT
gates and “free” single-qubit gates. Here, we use only
Clifford GT gates that apply CZ to a subset of qubits.
Following Ref. [15] we will refer to such gates as Global
CZ (GCZ). Our main result is the following.
Theorem 1: Any n-qubit Clifford operator can be

implemented using 4 GCZs with n ancillae or using 26
GCZs with no ancilla.
To prove the theorem we first show how to realize a

special class of Clifford operators using 3 GCZs. Let GLðnÞ
be the group of binary n × n invertible matrices. Here and
below multiplication and inversion for binary matrices are
defined over the binary field F2.
Lemma 1: For any matrix A ∈ GLðnÞ there exist

2n-qubit Clifford circuits C3ðAÞ and C0
3ðAÞ, each with

the GCZ cost of 3, such that

C3ðAÞjx; yi ¼ jA−1y; Axi and ð2Þ

C0
3ðAÞjx; yi ¼ jy ⊕ Ax; A−1yi ð3Þ

for all x; y ∈ Fn
2 . These circuits require no ancilla.

Proof.—Given a binary n × n matrix M and a pair of
n-qubit registers R1 and R2, let CX1;2ðMÞ be a 2n-qubit
unitary operator that EXORs the ith qubit of R1 to the jth
qubit of R2 for each pair pair i; j ∈ f1; 2;…; ng such that
Mi;j ¼ 1. Here and below EXOR stands for the Exclusive
OR logical gate. By definition we have CX1;2ðMÞjx; yi ¼
jx; y ⊕ Mxi and CX2;1ðMÞjx; yi ¼ jx ⊕ My; yi for all
x; y ∈ Fn

2. These operators can be implemented with a
single GCZ by conjugating each qubit in the register R2 and
R1 respectively by the Hadamard gate (which converts
all CNOTs to CZs) and noticing that any layer of CZs is
a single GCZ gate. Now the desired transformations in
Eqs. (2) and (3) can be implemented as

C3ðAÞ ¼ CX1;2ðAÞCX2;1ðA−1ÞCX1;2ðAÞ

and
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C0
3ðAÞ ¼ CX1;2ðI ⊕ A−1ÞCX2;1ðIÞCX1;2ðI ⊕ AÞ:

▪
We are now ready to prove Theorem 1.
Proof.—According to Eq. (1), it takes two -CZ- layers

and one -CX- layer to implement arbitrary n-qubit Clifford
operationU. This implementation uses no ancilla. Each -CZ-
layer is, trivially, a single GCZ gate. Thus below we focus on
the -CX- layer. Let V be the circuit implementation of the -
CX- layer in Eq. (1). We have Vjxi ¼ jAxi for all x ∈ Fn

2

and some matrix A ∈ GLðnÞ. Using Lemma 1 with y ¼ 0n

one concludes that the map jx; 0ni ↦ jAx; 0ni can be
implemented with 3 GCZs; see Eq. (3). Equivalently, V
admits a 3-GCZ implementation using n ancillae initialized
to and returned in the state j0i. This shows that U admits a
5-GCZ implementation using n ancilla. Moreover, the left -
CZ- layer in Eq. (1) can be merged with the rightmost GCZ
gate in the implementation of V. Indeed, this -CZ- layer acts
nontrivially only on the data (top) n qubits, and thus it
commutes with the layer of Hadamards in the implementa-
tion of V which acts nontrivially only on the ancillary
(bottom) n qubits. Thus U admits a 4-GCZ implementation
using n ancilla. This proves the first part of the theorem.
To prove the second part, we develop an ancilla-free

implementation with at most 25 GCZs when 3jn (3 divides
n) and 26 GCZs otherwise. Based on Eq. (1), it suffices to
show that any n-qubit linear reversible circuit V can be
implemented using at most 23 GCZs with zero ancilla
(when 3jn).
Let us first describe a 12-GCZ implementation of a 3k-

qubit linear reversible circuitWðAÞ that uses 2k dirty ancillae
(that is, ancillae that store an unknown data and must be
returned in the initial state) to implement a k-qubit linear
reversible transformation jxi ↦ jAxi up to a register swap.
Specifically, suppose the initial state of k data qubits and 2k
ancillae is jx; y; zi. We would like to implement the map

WðAÞjx; y; zi ¼ jz; Ax; yi: ð4Þ

We will use the following fact proved in Ref. [23].
Fact: Suppose n ≥ 3. Then any matrix A ∈ GLðnÞ can

be expressed as a group commutator A ¼ D−1B−1DB for
some B;D ∈ GLðnÞ.
Apply the circuit C3ðAÞ constructed in Lemma 1 four

times with the matrix A replaced by B (first application),
D (second application), B−1 (third application), and D−1

(fourth application). This gives the sequence of trans-
formations as

jx; y; zi⟶
C3ðBÞ jB−1y; Bx; zi⟶

C3ðDÞ
jB−1y;D−1z;DBxi

⟶
C3ðB−1Þ

jB−1DBx;D−1z; yi

⟶
C3ðD−1Þ

jz;D−1B−1DBx; yi ¼ jz; Ax; yi:

In other words, we implemented the k-qubit transformation
jxi ↦ jAxi using 2k dirty ancilla up to qubit register
permutation using four applications of the C3 gate, which
costs 12ð¼ 4 · 3Þ GCZs.
Assume that 3jn. We want to implement the map jvi ↦

jAvi with a given A ∈ GLðnÞ using constantly many GCZ
gates and no ancilla. Specifically, write A as

A ¼

2
64
A00 A01 A02

A10 A11 A12

A20 A21 A22

3
75: ð5Þ

Here each block Ai;j has size k, where k ¼ n=3, which is
well defined given 3jn. First, we use two GCZ gates to

transform A into a form where A00 and
�
A00

A10

A01

A11

�
are

invertible.
To accomplish this, label the individual matrix rows as

x1; x2;…; xk; y1; y2;…; yk; z1; z2;…; zk top to bottom.
Consider the first k elements of these rows. We need to
make x1; x2;…; xk restricted to the first k bits be linearly
independent. This can be done by adding a row from the y�
or z� sets onto some of x� rows. This is accomplished in
parallel by a depth-1 CNOT circuit made with CNOTðyi; xjÞ
or CNOTðzi; xjÞ gates. The x� rows are now linearly
independent as prefix rows of length k, and as a result also
as prefix rows of length 2k. Thus, to make the first 2k rows
linearly independent as length-2k prefix rows, we can add
some CNOTðzh; yiÞ in the CNOT depth 1. Composing both
stages we obtain the transformation of A into the desired
form at the GCZ cost of 2, since each CNOT layer can be
implemented as a GCZ cost-1 operation.
Next, we use 3 GCZ gates to transform A into the block-

diagonal form such that the only nonzero blocks are A00,
A11, and A22. First, apply the transformation

A ←

2
64

I 0 0

A10A−1
00 I 0

A20A−1
00 0 I

3
75 · A: ð6Þ

It sets to zero the blocks A10 and A20 (and, possibly,
modifies the blocks A11, A12, A21, and A22). This trans-
formation can be implemented by the CNOT gates with
controls on the top third of qubits and targets on the bottom
two thirds and thus it costs one GCZ gate (and some extra
Hadamard gates). Since we assumed that ðA00

A10

A01

A11
Þ is invert-

ible, after the transformation [Eq. (6)] the block A11 is
invertible. Thus the same argument applies to the remaining
off-diagonal blocks A01 and A21, and then again for the pair
of blocks A02 and A12. Transforming A to the block-
diagonal form
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A ←

2
64
A00 0 0

0 A11 0

0 0 A22

3
75 ð7Þ

thus costs 5 GCZs. Note that each diagonal block
describes a linear reversible circuit acting nontrivially
on exactly n=3 qubits. To implement all three, we can
combine C3 from Lemma 1 twice (first time applied to first
and third multiregisters, second time applied to first and
second multiregisters) with the 12-GCZ circuit imple-
menting the transformation in Eq. (4) for k ¼ n=3 as
follows:

jx; y; zi⟶
C3ðA00ÞjA−1

00 z; y; A00xi

⟶
C3ðA22A00Þ

jðA22A00Þ−1y; A22z; A00xi

⟶
WðA11A22A00Þ

jA00x; A11y; A22zi:

The overall GCZ cost of A is 5þ 3 · 2þ 12 ¼ 23, using
zero ancilla. Thus the overall cost of the Clifford U when
3jn is 25 GCZs.
Finally, consider the case 3∤n. Suppose n ¼ 3kþ 2

(n ¼ 3kþ 1 is handled similarly). Then, in Eq. (5) the
qubits are broken into the sets of k, kþ 1, and kþ 1. To
employ the circuit WðAÞ in Eq. (4), we have one less qubit
than we need. To compensate for this lack of a qubit, an
intermediate step is used after the reduction to block
diagonal form, Eq. (7), where, at the cost of one GCZ
gate, we disentangle (diagonalize) one qubit each in the two
qubit sets of the size kþ 1. Then we have a block diagonal
decomposition with five blocks, of which three have sizes
k × k, and the remaining two have sizes 1 × 1. The circuit
WðAÞ can now be implemented since there is enough
ancillary space to accommodate it. The overall cost of the
Clifford U for arbitrary n is thus at most 26 GCZs.
In the Supplemental Material [24] we describe local

optimizations reducing the cost further to 20 or 21 GCZs,
depending on whether 3jn. ▪
Multiply-controlled Toffoli.—We show two different

methods to implement an n-qubit Toffoli gate. The first
uses OðlogðnÞÞ ancillae and Oðlog�ðnÞÞ GT gates. The
second uses OðnÞ ancillae and O(1) GT gates. Below we
assume n ≥ 3. Let ORn∶f0; 1gn → f0; 1g be the n-bit
Boolean OR function. Define an n-qubit unitary operator as

ORnjxi ¼ ð−1ÞORnðxÞjxi:

It flips the phase of the n-qubit register jxi if and only if at
least one bit of x is nonzero. Clearly,ORn coincides with the
multiply-controlled Z gate up to relabeling of basis states 0
and 1 (which, in turn, coincides with the n-qubit Toffoli up
to a conjugation by the Hadamard gate on the target qubit).

Here we show how to implement ORn by a quantum circuit
composed of single-qubit gates and fractional CNOT gates,
that are then mapped into a small number of GT gates.
Suppose q ≥ 0 is an integer. Let Xq be some fixed 2qth

root of Pauli X, such that ðXqÞ2q ¼ X. One can choose the
primary root,

Xq ¼ H

�
1 0

0 exp ½iπ=2q�

�
H; ð8Þ

where H is the Hadamard gate. For example, X0 ¼ X is
Pauli-X. Let the fractional CNOT gate be

CXq ¼ j0ih0j ⊗ I þ j1ih1j ⊗ Xq:

Our construction closely follows Refs. [25,26]. Choose an
integer p ≔ ⌈log2ðnþ 1Þ⌉ ≈ logðnÞ. Consider a bit string
x ∈ f0; 1gn with the Hamming weight wðxÞ ¼ x1 þ x2þ
� � � þ xn. Note that ORnðxÞ ¼ 1 if and only if

ðXqÞwðxÞj0i ¼ j1i for some q ¼ 0; 1;…; p − 1:

If wðxÞ is odd then ðX0ÞwðxÞj0i ¼ j1i. Otherwise wðxÞ is
even, and thus wðxÞ=2 is an integer. If wðxÞ=2 is odd then
ðX1ÞwðxÞj0i ¼ ðX0ÞwðxÞ=2j0i ¼ j1i. Otherwise wðxÞ≡ 0
(mod 4) and thus wðxÞ=4 is an integer. If wðxÞ=4 is odd
then ðX2ÞwðxÞj0i ¼ ðX0ÞwðxÞ=4j0i ¼ j1i, etc. Thus we have
the identity

ð−1ÞORnðxÞ ¼ h0pjðXwðxÞ
0 ⊗ XwðxÞ

1 ⊗ � � � ⊗ XwðxÞ
p−1 Þ†ORp

· ðXwðxÞ
0 ⊗ XwðxÞ

1 ⊗ � � � ⊗ XwðxÞ
p−1 Þj0pi: ð9Þ

Consider a register with nþ p qubits where the last p
qubits are ancillae initialized in j0i. One can implement the

gates XwðxÞ
q controlled by the Hamming weight wðxÞ of the

first n qubits and target on the last p qubits using n fractional
CNOT gates CXq. In fact, all np fractional CNOT gates can
be implemented using one GT gate, since all controls are on
the first n qubits and all targets are on the last p qubits; hence
all commute (note that adding left and right layers of
Hadamards on the ancillae transforms each CXq gate to
CZa with a ¼ 1=2q). Next, we need to implement ORp on
the ancilla register of size p, which is nothing but an
exponentially reduced version of the original problem of
implementing ORn. One can thus recursively apply the
reductions until only two qubits are left, after which OR2

can trivially be implemented using a single 2-qubit gate.
This results in the 2log�ðnÞ − 1 GT construction of an
n-qubit Toffoli using logðnÞ þ OðlogðlogðnÞÞ ancillae.
To obtain an O(1) GT circuit, we avoid the recursion.

Instead, as soon as the problem is reduced to that of
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implementing the ORp, we invoke two-GT construction
to obtain ORp, which uses 2p − p − 1 ancillae. This is a
GT-enabled modification of a well-known method [27] to
implement a multicontrolled Z gate that relies on computing
all possible EXORs of p Boolean inputs (which takes one
GT gate)—note the EXORs with a single literal do not need
to be computed on the ancillae, since they are the input.
Once all possible EXORs are available, apply the single-
qubit gate Z1=2p−1 to all EXORs to obtain ORp (to obtain
multicontrolled Z odd and even weight EXORs experience
the application of phases with opposite angles). This costs
no GT gates. Finally, uncompute the EXORs using one
GCZ gate. The overall cost of implementing n-fold OR is
thus 4 [¼ 1þ ð1þ 1Þ þ 1] GT gates using 2⌈ logðnÞ⌉ − 1 <
2n ancillae. In the Supplemental Material [24] we show how
to halve the gate counts in the above implementation using
adaptive quantum circuits. We note that the gate count
2log�ðnÞ − 1, is in fact limited by the constant 9, since
log�ðnÞ cannot exceed the value of 5 due to not enough
elementary particles in the known universe to constitute
qubits. Thus, in effect both reported constructions carry a
constant cost.
Discussion.—Our results significantly improve over state

of the art, and for the most part settle asymptotic complex-
ities. We show that GT gates are a very powerful primitive
for compiling short quantum circuits, since a serial
approach would require Oðn2= logðnÞÞ [28] and OðnÞ gates
respectively, for the Clifford and multiply-controlled
Toffoli gates. Our results demonstrate the power of parallel
single instruction multiple data operations in quantum
computer settings, not unlike its classical, conventional
computer counterparts.
Our result also implies that GT gates enable more

efficient generation of pseudorandom unitary operators
known as unitary t designs [29]. In particular, n-qubit
approximate unitary t designs can be realized with O(1) GT
gates for any constant t ¼ Oð1Þ since such designs can be
realized using single-qubit gates and at most Õðt4Þ Clifford
layers [7].
This study sheds more light on space-time tradeoffs in

quantum circuits. In particular, it turned out that the no-
ancilla implementation of a Clifford unitary is possible
without increasing the asymptotic complexity compared
with a much simpler ancilla-enabled implementation. An
analogy can be drawn to the multiply-controlled Toffoli gate
implemented using single-qubit and 2-qubit gates, where it
too turned out that a no-ancilla implementation is possible
[30] at the same asymptotic cost as a significantly more
straightforward and practical ancilla-enabled implementa-
tion [27]. Our study left the door open to discover a constant
GT gate count implementation of the multiply-controlled
Toffoli gate using few or no ancilla, as well as implemen-
tation of other commonly used unitary operations, such as
the quantum Fourier transform.
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