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We address the problem of closing the detection efficiency loophole in Bell experiments, which is crucial
for real-world applications. Every Bell inequality has a critical detection efficiency η that must be surpassed
to avoid the detection loophole. Here, we propose a general method for reducing the critical detection
efficiency of any Bell inequality to arbitrary low values. This is accomplished by entangling two particles in
N orthogonal subspaces (e.g., N degrees of freedom) and conducting N Bell tests in parallel. Furthermore,
the proposed method is based on the introduction of penalizedN-product (PNP) Bell inequalities, for which
the so-called simultaneous measurement loophole is closed, and the maximum value for local hidden-
variable theories is simply the Nth power of the one of the Bell inequality initially considered. We show
that, for the PNP Bell inequalities, the critical detection efficiency decays exponentially with N. The
strength of our method is illustrated with a detailed study of the PNP Bell inequalities resulting from the
Clauser-Horne-Shimony-Holt inequality.
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Introduction.—Quantum correlations arising from local
measurements on entangled particles [1] allow for multiple
applications, including device-independent randomness
expansion [2–5], quantum key distribution [6–10], secret
sharing [11,12], self-testing [13,14], and certification of
quantum measurements [15–17]. All these tasks require a
loophole-free Bell test [18–21] as a necessary condition.
The most challenging problem from the applications’
perspective is closing the detection loophole [22], since
otherwise an adversary can simulate the behavior of
entangled particles provided that a sufficient fraction of
them remains undetected. Therefore, a fundamental prob-
lem is to identify quantum correlations that cannot be
simulated with local hidden-variable (LHV) models even
when the detection efficiency is relatively low.
The detection efficiency in a Bell inequality test is the

ratio between the number of systems detected by the
measuring devices and the number of systems emitted
by the source. It depends not only on the properties of the
detectors, but also on the losses in the channel. Closing the
detection loophole requires surpassing a certain threshold
detection efficiency, which depends on the quantum corre-
lations chosen. For symmetric Bell tests (i.e., those in
which all detectors have the same detection efficiency) and
zero background noise, the necessary and sufficient thresh-
old detection efficiency for entangled qubits can be as low
as 2=3 for partially entangled states [23] and 0.828 for

maximally entangled states [24]. Massar [25] showed that
high-dimensional systems could tolerate a detection effi-
ciency that decreases with the dimension d of the local
quantum system. However, this result is of limited practical
interest since an improvement over the qubit case occurs
only for d > 1600. Vértesi, Pironio, and Brunner [26]
identified a symmetric Bell inequality for which the
efficiency can be lowered down to 0.618 for partially
entangled states and 0.77 for maximally entangled states,
using four-dimensional systems and assuming perfect
visibility, which is still not sufficiently low for practical
applications. Other proposals for loophole-free Bell tests
with low detection efficiency either combine low-efficient
detectors with nearly perfect ones [27–30] or use more than
five spatially separated parties [31–33], which is unprac-
tical for real-world applications.
The critical detection efficiency η is not the only

important parameter in a loophole-free Bell experiment.
Another essential variable is the required visibility v, which
quantifies how much noise can be tolerated. The best
combinations of parameters ðη; vÞ reported in photonic
experiments in distances ⪅ 200 m are (0.774, 0.99) [19],
(0.763, 0.99) [5], and (0.8411, 0.9875) [4]. However, these
values are very difficult to achieve in longer distances.
In this Letter, we propose a general method to reduce

the detection efficiency requirement exponentially for any
given Bell inequality. This is achieved by violating N Bell
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inequalities in parallel with a source of N entangled states
carried by a single pair of particles. The value of the
required detection efficiency then scales like ðC=QÞN ,
where C is the LHV bound, and Q is a quantum value,
i.e., the decay is exponential. Moreover, our method
reduces the required detection efficiency for a given target
visibility or a Bell inequality violation. We analyze in detail
the case of parallel violation of N Clauser-Horne-Shimony-
Holt (CHSH) Bell inequalities [34]. Another advantage of
our approach is that the observed correlations can be
directly used for practical applications, since the observed
value of N CHSH inequalities can be connected to the
violation of an individual CHSH inequality. Hence, there is
no need to develop new protocols based on Bell inequalities
with more settings [35].
Physical setup.—Consider a Bell experiment in which

two spatially separated parties, Alice and Bob, have access
to a source of high-dimensional entanglement carried by a
single pair of particles. The key examples to keep in mind
are hyperentangled states [36], in which two photons are
entangled across multiple degrees of freedom, and photon
pairs entangled in high-dimensional degrees of freedom
[37]. Throughout the text, we consider photons as physical
carriers of entanglement; however, similar reasoning can be
applied to atoms, ions, etc.
Let us assume now that the carried high-dimensional

entangled state is a product ofN entangled states, as it is the
case for hyperentanglement [36]. We also assume that Alice
and Bob can perform joint measurements on their sub-
systems producing N outcomes each from a single click of
their detectors. The main idea of the method is to use N
outcomes from each run of the experiment to violate N Bell
inequalities in parallel. In this way, the probability of
detectors’ clicks for each of the N inequalities is of the
order of the Nth root of the efficiency of the photon
detection, i.e., it is effectively increased. We will provide a
rigorous analysis that supports this claim.
To the best of our knowledge, the conjecture that the

critical detection efficiency could be lowered by integrating
several qubit-qubit entangled states in one pair of particles
was first made in Ref. [38], without a proof. In Ref. [39], it
was shown that the critical detection efficiency could be
reduced for the so-called Einstein-Podolsky-Rosen-Bell
inequalities that require perfect correlations [40]. Similar
ideas have been developed in later works focused on
quantum key distribution [41,42] and the P value of a
Bell test [43]. Very recently, the idea has been explored for
the case of 2-qubit maximally entangled states [44]. In this
Letter, we introduce a much more powerful and practical
tool: penalizedN-product (PNP) Bell inequalities. This tool
leads to smaller critical detection efficiencies than those
obtained in Ref. [44] and applies to any quantum violation
of any Bell inequality, thus opening a new path toward
loophole-free Bell tests with longer distances and higher
dimensions.

Product Bell inequalities.—Let us consider N Bell
inequalities of the same type in parallel. Our first task is
to identify a single parameter that quantifies the violation of
local realism. One way to do it is to consider the product of
the N parameters of all N Bell inequalities. Following this
approach, let us start with a Bell inequality of the formX

a;b;x;y

pða; bjx; yÞcx;ya;b ≤ C; ð1Þ

where pða; bjx; yÞ denotes the conditional probability
of Alice and Bob to observe outcomes a and b
(with a; b ∈ ½m�), respectively, given their choice of meas-
urement settings x and y (with x; y ∈ ½n�), respectively,
and C is the LHV bound. Throughout the text, ½n� ¼
f0; 1;…; n − 1g. An N-product Bell inequality based on
Eq. (1) is defined as

X
a;b;x;y

pða;bjx; yÞ
YN
i¼1

cxi;yiai;bi
≤ CN; ð2Þ

where a ¼ ða1;…; aNÞ is a tuple of Alice’s measurement
outcomes, with ai ∈ ½m� for all i ∈ f1; 2;…; Ng, and b, x,
y similarly defined. CN denotes the maximum value of the
N-product Bell inequality attainable by LHV models.
One could expect that CN ¼ CN . However, this is not the

case for arbitrary Bell inequalities of the form given
by Eq. (1), including the CHSH inequality [34]. Indeed,
for the CHSH inequality, C ¼ 3

4
but C2 ¼ ð10=16Þ [38] and

C3 ¼ ð31=64Þ [43]. This fact is also referred to as the
simultaneous measurement loophole in Bell tests [38].
The problem of determining the closed form for CN (for
the cases when CN > CN) is closely related to the so-called
parallel repetition theorem in interactive proof systems
[45]. This problem was tackled in Refs. [46–48], where
only asymptotic upper-bounds on CN were reported.
Moreover, the authors of Ref. [47] emphasized the diffi-
culty of finding exact values of CN .
In this Letter, we take a different approach to the

problem. Instead of trying to find the values of CN , we
propose a method for modifying the Bell expression in
Eq. (2) in a way that CN ¼ CN holds for all N. We achieve
this by adding a nonlinear “penalty term” to the left-hand
side of Eq. (2), which forces a product local strategy (i.e.,
one in which each outcome ai depends only on xi, and
similarly for Bob) to be optimal. Given a Bell expression
specified by coefficients cx;ya;b and the LHV bound C, we
define a penalized N-product (PNP) Bell inequality as
follows:

X
a;b;x;y

pða;bjx; yÞ
YN
i¼1

cxi;yiai;bi
− κðAþ BÞ ≤ CN; ð3Þ

where κ ∈ R is some large positive number and
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A ¼
XN
i¼1

X
x

Xxi¼x0i

x0≠x

Xm−2

ai¼0

jpðaijxÞ − pðaijx0Þj; ð4aÞ

B ¼
XN
i¼1

X
y

Xyi¼y0i

y0≠y

Xm−2

bi¼0

jpðbijyÞ − pðbijy0Þj: ð4bÞ

The sum over x0 is taken such that x and x0 match on the ith
element, but are not the same. The same holds for the sum
over y0. pðaijxÞ denotes the marginal probability of out-
come ai of Alice’s measurement specified by x. pðbijyÞ is
analogously defined for Bob.
The general idea of the method is rather straightforward.

By taking large enough κ, we force both quantities A and B
in Eq. (4) to be exactly 0. The condition A ¼ 0 implies that
Alice has to choose her local strategy among nonsignaling
ones with respect to her local outcomes ai and settings xi.
(B ¼ 0 implies the same for Bob). Note that this set of
strategies is larger than the set of product strategies
for which pðajxÞ ¼ Q

N
i¼1 pðaijxiÞ holds. Nevertheless, it

is not difficult to show that the nonsignaling constraints
A ¼ B ¼ 0 enforce the bound to be CN for the ideal case of
infinite runs of the experiment [49].
The remaining question is how large should one take κ to

be. We answer this question below for the case of m ¼ 2.
Result 1: Given a Bell inequality specified by the

coefficients cx;ya;b, with a; b ∈ f0; 1g, x; y ∈ ½n�, it is suffi-
cient to take κ ¼ nN−1ðΣN − CNÞ, such that the LHV bound
of the corresponding PNP Bell inequality is CN , where ΣN
is the algebraic bound of the N-product Bell inequality
without the penalty term.
Note that, instead of ΣN , any known, possibly tighter,

bound on CN can be used [50].
Proof.—For the proof, we use the terminology of

probability vectors and local polytopes introduced in
Ref. [51]. For the Bell scenario with n settings per party
and binary outcomes, the probability vector is defined as
p ¼ ½pð0; 0j0; 0Þ;…; pð1; 1jn − 1; n − 1Þ�; i.e., it is a vec-
tor that uniquely specifies the behavior pða; bjx; yÞ. The
local polytope PLHV is the region in the space of p,
corresponding to LHV models. This polytope is convex
and, by the Minkowski-Weyl theorem, it can be described
either as a convex hull of its extremal points (in this case
determined by local deterministic strategies) or as an
intersection of half-spaces (which in this case are tight
Bell inequalities and axioms of probabilities). The above
concepts generalize straightforwardly to our scenario with
multiple inputs and outputs, and we will use p and PLHV to
denote these concepts for our case.
For convex polytopes, the maximum of a linear function

such as the one in Eq. (1) is attained at one of its extremal
points. Although the expression in Eq. (3) is not linear on the
wholePLHV, it is linear in each part ofPLHV for which every
expression inside moduli in Eq. (4) has a definite sign.

Hence, the global maximum has to be attained at either one
of the extremal points of PLHV, or at a point resulting from
the intersections of the facets of PLHV by the hyper-
planes pðaijxÞ − pðaijx0Þ ¼ 0 and pðbjjyÞ − pðbjjy0Þ ¼ 0,
for some sets of i, j and some pairs x ≠ x0 and y ≠ y0. Let us
denote the set of all of such points as E ¼ fpege.
Among all the points pe in E, there are some, let us call

themE0, for whichA ¼ B ¼ 0 holds. For points in EnE0, the
minimal value of Aþ B is n−ðN−1Þ [49]. On the other hand,
the value of the expression in Eq. (3) on any of the points pe
without the penalty term, cannot exceed its algebraic
maximum ΣN . Therefore, taking κ ¼ nN−1ðΣN − CNÞ
ensures that the LHV bound of Eq. (3) cannot exceed the
one for strategies compatible with A ¼ B ¼ 0, i.e., the
product bound CN (see the Supplemental Material [49]). ▪
The purpose of the upper bound on the sufficient value of

κ is not only theoretical. In practice, even if we use a
product quantum strategy, due to experimental errors both
A and B will have small yet nonzero values. These errors
will be multiplied by κ and could potentially result in large
errors in the value of the violation.
Lowering the critical detection efficiency.—Here, we

show that having a source of photon pairs carrying N
entangled states each alongside with PNP Bell inequalities
allows for a significant reduction in the critical detection
efficiency requirements for the violation of local realism.
To avoid the fair sampling assumption [52], the parties

need to either treat “no-click” events as additional out-
comes or employ a local assignment strategy [53]. The
latter means that whenever one party’s detector does not
click (when it should), the party draws an outcome
according to some local (deterministic) strategy. This
allows the parties to use the same Bell inequality without
the need to find one with more outcomes.
In this Letter, we consider the local assignment strategy

for mitigation of the “no-click” events. Let ⊗N
i¼1 ρAB be a

state carried by photon pair in out setup. Let ⊗N
i¼1 A

xi
ai and

⊗N
i¼1 B

yi
bi
be the POVM (positive-operator valued measure)

elements of Alice and Bob respectively, i.e., they are
formed by the POVM elements Ax

a and By
b, that are the

same for all i. Evidently, this leads to quantum behavior
of the form pða;bjx; yÞ ¼ Q

N
i¼1 trðAxi

ai ⊗ Byi
bi
ρABÞ. Let

α∶½n� ↦ f0; 1g and β∶½n� ↦ f0; 1g be deterministic
assignment strategies ai ¼ αðxiÞ and bi ¼ βðyiÞ, for all
i, employed by Alice and Bob respectively in case of a
“no-click” event. If, for instance, Bob’s detector does not
click but Alice’s does, the parties’ observed behavior
is pða; bjx; yÞ ¼ Q

N
i¼1 trðAxi

aiρAÞδbi;βðyiÞ, where ρA is
Alice’s reduced state ρAB and δ·;· is the Kronecker delta.
Similarly, the parities observe the behavior pða;bjx; yÞ ¼Q

N
i¼1 trðByi

bi
ρBÞδai;αðxiÞ whenever Alice’s detector does not

click, but the one of Bob does. Finally, for the cases of no
clicks on both detectors, the parties observe a local
deterministic behavior pða;bjx; yÞ ¼ Q

N
i¼1 δai;αðxiÞδbi;βðyiÞ.
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Let us now take ca;bx;y ≥ 0 in the considered Bell inequal-
ity, which can always be achieved. Assuming the detection
efficiency of Alice’s and Bob’s detectors to be η, the value
of the PNP Bell expression is the following:

η2QN þ ηð1 − ηÞðAN þ BNÞ þ ð1 − ηÞ2CN; ð5Þ

with

Q ¼
X
a;b;x;y

cx;ya;btrðAx
a ⊗ By

bρABÞ; ð6aÞ

A ¼
X
a;b;x;y

cx;ya;btrðAx
aρAÞδb;βðyÞ; ð6bÞ

B ¼
X
a;b;x;y

cx;ya;btrðBy
bρBÞδa;αðxÞ; ð6cÞ

where we have assumed that the local strategies α and β
reproduce the LHV bound C. Clearly, since all the afore-
mentioned strategies are product, the penalty term is
exactly 0. Notice that in Eq. (5), η appears only in its
second power, precisely due to the fact that the N-qudit
state⊗N

i¼1 ρAB is carried by a single pair of photons. This is
what we meant when we said that the effective detection
efficiency for each of the N Bell inequality is of the order
of ηð1=NÞ.
To observe a violation of local realism, one needs to

ensure that the value of the expression in Eq. (5) is greater
than the LHV bound CN . Solving this inequality with
respect to η, we obtain the following value of the required
detection efficiency for given Q, A, and B:

η ¼ 2CN − AN − BN

QN þ CN − AN − BN : ð7Þ

This equation has the following interesting implication.
Remark 1: For any given Bell inequality with binary

outcomes and a quantum strategy with Q > C, it follows
from Eq. (7) that the detection efficiency requirement
decays exponentially with N.
Indeed, if we take A ¼ B ¼ δC, then

η ¼ 2ðC=QÞNð1 − δNÞ þOððC=QÞ2NÞ. For any Bell
inequality, δ < 1 whenever Q > C. Hence, the decay of
η with N → ∞ is at least exponential with the factor of
logðC=QÞ. The above remark is in parallel with the results
of Massar [25,54].
In order to find the critical detection efficiency ηcrit for a

given Bell inequality and its corresponding PNP Bell
inequality, one needs to optimize η in Eq. (7) over all
possible values of ðQ;A; BÞ. In what follows, we solve this
optimization problem for the N-product CHSH inequality.
PNP inequality for the CHSH inequality.—The coeffi-

cients of the CHSH inequality [34] in its nonlocal game
formulation are cx;ya;b ¼ 1

4
δa⊕b;xy, where a; b; x; y ∈ f0; 1g

and ⊕ denotes addition modulo 2. For this form of the
CHSH inequality, we have C ¼ 3

4
, the quantum bound

Qmax ¼ 1
2
þ ð1=2 ffiffiffi

2
p Þ, and Σ ¼ 1. In order to minimize the

expression in Eq. (7) over all quantum states and mea-
surements, first we determine the maximal values of A and
B attainable for a given value of Q, and then optimize
Eq. (7) over Q. In particular, due to the symmetry with
respect to A and B in Eq. (7), we are interested in the
situation A ¼ B. For this case, the optimal relation is the
following:

A ¼ B ¼ 1

2
þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − qÞ

�
1þ qffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q2
p �s

; ð8Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4Q − 2Þ2 − 1

p
. As Q changes from 3

4
to

1
2
þ ð1=2 ffiffiffi

2
p Þ, q increases from 0 to 1, and, hence, A and

B decrease from 3
4
to 1

2
. For the 2-qubit state ρAB and qubit

measurements Ax
a and By

b that produce the relation in
Eq. (8) see the Supplemental Material [49]. We used the
Navascués-Pironio-Acín hierarchy [55] to indicate the
dimension-independent optimality of Eq. (8).
Employing the relation in Eq. (8), we optimize η in

Eq. (7) overQ in order to obtain the optimal value ηcrit for a
givenN. We plot the results in Fig. 1. In the same figure, we
show the minimal visibility v0.75 for which violation can
still be observed with detectors of a given detection
efficiency η ¼ 0.75. As we can see, even though taking
2-, 3-, and 4-product CHSH inequalities does not decrease
the value of ηcrit, one can obtain a significant advantage in
terms of visibility for η > ηcrit.
In Fig. 2 we plot ηv, the required detection efficiency to

observe a violation of the PNP Bell inequality with
visibility as low as v. We also account for possible
experimental imperfections by taking nonzero values of
Aþ B. Note that the tolerance to the imperfections can be
significantly increased if, instead of taking an algebraic

FIG. 1. (Solid line) Critical detection efficiency ηcrit for the PNP
Bell inequality as a function of N. (Dashed line) Visibility (per
qubit pair) required for a loophole-free Bell test when η ¼ 0.75 as
a function ofN. Perfect statistics is assumed, i.e., the penalty term
Aþ B ¼ 0.
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maximum
P

N in Result 1, a known bound on the parallel
repetition of the Bell inequality is used [50].
Summary and outlook.—In this Letter, we addressed the

problem of reducing the detection efficiency requirements
for loophole-free Bell experiments in order to achieve
loophole-free Bell tests over longer distances. We presented
a method that, when applied to any given Bell inequality,
produces a new Bell inequality by taking a penalized
product of N copies of it, for which the critical detection
efficiency decays exponentially with N. This implies that
the critical detection efficiency can be drastically reduced in
experiments using photon sources that allow for encoding
multiple copies of a qubit-qubit (or qudit-qudit) entangled
state on a single pair of particles. Examples of such sources
are hyperentanglement sources and sources of high-dimen-
sional entanglement.
We applied our method to several binary Bell inequal-

ities and found that the lowest detection efficiencies occur
for the PNP CHSH inequality. The advantage of the CHSH
inequality is in terms of both critical detection efficiency
and visibility of the violation. Our method can be applied to
any Bell inequality with more outcomes, given that Result 1
can be extended to an arbitrary number of outcomes. A
natural target for future work is to identify Bell inequalities
for which the critical detection efficiencies are low enough
for mid-distance photonic loophole-free Bell tests and
related applications such as device-independent quantum
key distribution.
Other important questions deserve separate investiga-

tion. For instance, we believe that the bound on the penalty
coefficient κ in Result 1 can be significantly lowered.
Another relevant problem is the calculation of P values for
PNP Bell inequalities, which would depend on the value of
the penalty term. Finally, it is interesting to see whether
PNP Bell inequalities can be used for a single-shot Bell
test [43].
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