
Szilard Engines and Information-Based Work Extraction for Active Systems

Paolo Malgaretti 1,* and Holger Stark 2

1Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11),
Forschungszentrum Jülich, Cauerstr. 1, 91058 Erlangen, Germany
2Institut für Theoretische Physik, Technische Universität Berlin,

Hardenbergstr. 36, 10623 Berlin, Germany

(Received 24 March 2022; revised 6 July 2022; accepted 1 November 2022; published 23 November 2022)

The out of equilibrium nature of active systems can be exploited for the design of information-based
engines. We design two types of an active Szilard engine that use a Maxwell demon to extract work from an
active bath composed of noninteracting active Brownian particles. The two engines exploit either the
quasistatic active pressure of active Brownian particles or the long correlation time of their velocities. For
both engines the active bath allows us to overcome the Landauer principle and to extract larger work
compared to conventional Szilard engines operating in quasithermal equilibrium. For both of our engines,
we identify the optimal regimes at which the work extracted and the efficiency are maximized. Finally, we
discuss them in the context of synthetic and biological active systems.
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Since Maxwell proposed his demon as an attempt to
circumvent the second law of thermodynamics [1,2],
several attempts have been put forward to rectify thermal
fluctuations [3,4]. An interesting twist to the idea of the
demon has been provided by Szilard [5,6]. He proposed an
engine that can extract work from a single thermal reservoir
using information obtained from the system when meas-
uring some observable [7,8]. Recently, several works have
addressed the realization of Szilard engines in experiments
and theory spanning from the single electron [9] and
boson systems [10,11] up to the macromolecular [12]
and colloidal [13] scale.
Up to now the “fluctuations” in such Szilard engines

have been regarded as thermal. This imposes constraints on
the dynamics of the bath, which, among others, limit the
extracted work by the Landauer principle. However, in
many situations the fluctuations are not of thermal origin.
Rather, they are induced by the motion of active agents,
such as swimming bacteria, a school of fish, or a swarm of
drones [14–19]. This implies that Landauer’s principle does
not apply anymore, raising the question of how well Szilard
engines perform in contact with such nonthermal baths.
The striking feature of active agents is their persistent
motion, i.e., even within the overdamped regime their
(active) velocity has a finite correlation time [16,17], in
contrast to the delta-correlated velocities of their passive
counterparts. This is captured by the active Brownian
particle (ABP) model [20] characterized by a velocity
correlation time τM and speed v0 [17], which gives a
persistence length λ ¼ v0τM. For t ≫ τM the motion of
ABPs is diffusive with effective diffusion constant Deff ¼
Dþ v20τM=d in d dimensions [17], whereas for t≲ τM their
motion is persistent and it differs from their equilibrium

counterparts. Despite its simplicity, such a simple model
has been exploited to explain many experimentally
observed phenomena spanning from wall accumulation
[21,22] to motility induced phase separation (MIPS)
[23,24]. Indeed, recent works have addressed the role
of a bath of active entities on the performance of heatlike
[25–32] and ratchetlike engines [33–40].
In this Letter we show that the persistent motion of

active 59agents, modeled as ABPs, enables two generic
realizations of an active Szilard engine (see Fig. 1). First,
in the traditional quasistatic regime, the performance of
the Szilard engine in contact with an active bath differs
from its passive counterpart due to the active pressure
[28]. Second, we suggest a dynamic Szilard engine that
does not operate in the quasistatic regime but exploits the
finite correlation time of the active velocity. In order to

FIG. 1. Cartoon of the active Szilard engine. In the quasistatic
regime, the demon measures in which half of the box the active
particle is located and then places a wall (in green) with an
attached weight at x ¼ L=2. After a full quasistatic expansion
performing workWexp, the green wall hits the box and is removed
by the demon. This puts the system in its initial state. In the
dynamic regime, the demon measures the position of the particle
with precision δ and the sign of the velocity. It puts a wall (in
green) with precision δ ahead of the particle and lets it push
against the wall for a time τ. Then, the wall is removed and the
system is back in its initial state.
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keep the model as general as possible, we rely on the
minimal model of an ABP to capture the effect of
persistent motion. Indeed, such a simple (yet general)
model allows for closed expressions of the work extracted
and its efficiency depending on the key parameters
controlling the activity of the system. In particular, our
active Szilard engines exhibit a remarkable improvement
of the performance compared to their passive counterpart
operating in thermal equilibrium, in line with recent
experimental results [41].
Model.—In the following, we focus on the motion of an

overdamped ABP along the direction perpendicular to the
wall and model its perpendicular velocity component as a
random variable with finite correlation time τM [17],

hvðtÞi ¼ 0; hvðtÞvðt0Þi ¼ v20e
−jt−t0 j

τM þ 2Dδðt − t0Þ; ð1Þ

where D is the (translational) thermal diffusion coefficient.
Equations (1) have been shown to properly reproduce the
statistical properties of ABPs [as modeled by Eqs. (S1) and
(S2) in the Supplemental Material [42] ] as well as of run-
and-tumble bacteria [43]. The case of passive particles in
thermal equilibrium is characterized by v0 ¼ 0. In the
active case and in the quasistatic regime (t ≫ τM) the
model under study is equivalent to that of a particle moving
in one dimension and hopping between two states; namely,
moving right or left [28]. In the following, we analyze the
performance of the two possible driving protocols of active
Szilard engines: the quasistatic regime and the dynamic
regime.
Quasistatic active Szilard engine.—First we focus on the

case in which the engine moves on timescales larger than
τM and hence the time evolution of the density of the ABPs
can be regarded as quasistatic. The Maxwell demon in this
type of Szilard engine operates as follows. A single ABP is
confined in a box with lateral area A (see Fig. 1). The
demon detects the position of the particle and inserts a
wall in the middle of the box (x ¼ L=2). Because of the
reduction of volume available to the particle, the pressure
in the occupied chamber increases and the volume of the
chamber expands till the movable wall hits the box (at
x ¼ 0; L). Then, the wall is removed and the system
assumes its initial state again.
In the following, we consider just a single active particle

(The same results hold also for the case of noninteracting
active particles by simply multiplying the pressure by the
number N of active particles.) placed in the left half of the
box as in Fig. 1. The density is ρ̄ ¼ 1=ðAxÞ and, under a
mean-field approximation, the pressure is given by [28]

βΠðxÞ ¼ R2

A
κ3

Pe2 þ 2Γκx
; ð2Þ

where

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2 þ 2Γ

p

R
; Γ ¼ R2

τMD
; Pe ¼ v0R

D
: ð3Þ

Here, κ is the inverse of the length that characterizes the
accumulation of ABPs at the walls [28] with R the radius of
the particle, Γ is the dimensionless hopping rate, and Pe
the Péclet number, respectively. Accordingly, the work
extracted during the expansion becomes

βWexp ¼ A
Z

L

L
2

βΠðxÞdx ¼ βW0 ln

�
1þ χL
1þ χL=2

�
; ð4Þ

where xA is the momentary volume available to the particle
and we have identified the effective length χ−1 and strength
W0 of the work cycle,

χ−1 ¼ Pe2R

2Γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2 þ 2Γ

p ; βW0 ¼ 1þ Pe2

2Γ
: ð5Þ

Figure 2 shows the dependence of the work extracted from
the system as a function of Pe and Γ. As expected, in the
limit of passive systems, i.e., for Pe → 0 or Γ → ∞, βWexp

approaches the work of the Szilard engine for a thermal
bath βWth

exp ¼ ln 2 [7,8]. At variance, for active systems
(Pe > 0 and Γ ≪ ∞), the work extracted in the case of an
active bath exceeds that of the thermal bath. In particular,
we can identify an intermediate regime, for

ffiffiffiffiffiffi
2Γ

p
< Pe <

2ΓL=R (see Ref. [28]), in which βWexp ∝ Pe2 whereas
βWexp ∝ Pe in the asymptotic regime, Pe > 2ΓL=R. Note
thatWexp ≫ Wth

exp is not in contradiction with the Landauer
principle [8,44,45] since the latter only applies to a thermal
bath. In the case of active baths the work is done at the
expense of the energy injected in the system to keep the
bath in the active state. The features we have described so
far are generic for the active Szilard engine; namely, the
considerable excess work during expansion as compared
to a thermal bath and its correct asymptotic behavior for
Pe → 0 or Γ → ∞. However, the total extracted work
during one cycle Wcyc depends on the very realization of
the active engine. In Supplemental Material [42] Sec. B, we
present an alternative protocol. It includes a compression

(a) (b)

FIG. 2. Work extracted during the expansion,Wexp, normalized
by the equilibrium value of a Szilard engine, as a function of Pe
(a) or Γ (b), with L=R ¼ 100.
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step which results in a different dependence of Wcyc on Pe
and Γ including local maxima.
According to our model the energy input in the system

over the cycling time τ is due to the measurement M and
due to the energy Wτ consumed, on average, by the ABP
during the cycle period τ to keep itself in the active state.
The input energy is partially dissipated and partially
converted into the work, Wexp [46]. Therefore we have
Wτ þM ¼ Wexp þWdiss with

Wdiss ¼ Pτ þ γwL2

τ
þM: ð6Þ

Note, since the measurement does not contribute to the
work, we add it to the dissipated energy. Furthermore, Pτ is
the energy dissipated, on average, by the active particle
during the cycle period τ and γwL2=τ is the (approximated)
energy dissipated by the piston (For heat engines that are
in contact with thermal baths at different temperatures the
heat exchange with the thermal baths should be added to
hWdissi.), where γw is its effective friction coefficient.
Next, we define the efficiency [28,47,48] as

η ¼ Wexp

Wexp þWdiss
¼

�
1þWdiss

Wexp

�
−1
: ð7Þ

We remark that for the quasistatic processes assumed to
derive Eq. (4), Wexp does not depend on τ and the
dependence of η on τ is determined solely by the dissipated
energy Wdiss. Interestingly, Wdiss diverges for both τ → 0

and τ → ∞ and it has a minimum at [28] τopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γwL2=P

p

which, via Eq. (7), implies a maximum for the efficiency. In
order to be consistent with the quasi-static assumption, τopt
should exceed the typical relaxation time of the density
profile that, for large Pe, scales as τrlx ≃ L=v0. Hence,
τrlx < τopt implies

γwv20 > P: ð8Þ

For microswimmers it is well known that only a small
part of the consumed mean powerW can be converted into
work such as pushing a piston, while the rest is needed for
the swim mechanism. Estimating this work power as γpv20,
where γp is the friction coefficient of the ABP, the
efficiency α of the ABP in a homogeneous and unbound
fluid becomes

α ¼ γpv20=W ≪ 1: ð9Þ

Reported values for diffusiophoretic colloids are α ≃
10−9–10−5 [49,50] whereas for living organisms α ≃ 10−3

(Chlamydomonas [51]), and α ≃ 10−2 (Paramecium [52]
and demembranated sperm flagella [53]). Thus, with
W ≳ P and, using Eqs. (8)–(9), we obtain

γwα > γp: ð10Þ

Since both, γp and γw scale with their linear size, the
constraint in Eq. (10) together with α ≪ 1 requires a
significant length scale separation between the ABP and
the piston. This is also due to the quasistatic process, we
considered so far, where pressure instantaneously relaxes to
its stationary value. Therefore, now we formulate an engine
where this constraint is released.
Dynamic active Szilard engine.—The intrinsic out-of-

equilibrium nature of active systems provides additional
means to control their dynamics. For example, in the case
of active Brownian particles one can exploit the finite
correlation time of their velocity to design a specific
“demon.” Within such a scenario, the protocol of the
demon works as follows. Every time τ the demon measures
the position, with finite precision [The relation between the
precision of the position measurement δ and the measure-
ment cost M is not trivial due to the active nature of the
ABP. We can estimate it from the thermal case where
M ≃ −kBT lnðδ=2LÞ. The factor 2 comes from measuring
the direction of motion [7].] δ, and the direction of motion
of the ABP and it puts a wall ahead of the particle with
precision δ. The wall is connected to a weight that opposes
the motion of the particle with a force F (see Fig. 1). Thus,
after colliding with the wall, the ABP pushes against it and,
hence, acts against both the force F and the drag force of
the wall, γwvw, where γw is the friction coefficient of the
wall and vw its velocity. Accordingly, at contact with the
wall the ABP moves at a reduced velocity

vw ¼ γpv0 − F

γp þ γw
¼ v0

1 − F=γpv0
1þ γw=γp

≡ v0v̄w ð11Þ

with γp the friction coefficient of the ABP. Now, at time
t ¼ 0 the velocity vw of the particle is measured while
pushing against the wall. Then, the work done against the
conservative force F in between two measurements is

Wact ¼ F
Z

τ

τδ

vðtÞjvwdt; ð12Þ

where vðtÞjvw means that at t ¼ 0 the velocity is vw and
τδ ≃ δ=v0 is the time the particle takes to reach the wall
placed with precision δ. Accordingly, in the case of large
activity v2w ≫ D=τM and relatively high measurement
precision τδ ≪ minðτM; τÞ, the average work is linear in
τM and becomes (see Supplemental Material [42] Sec. B)

hWacti ≃ FvwτMð1 − e−τ̄Þ; ð13Þ

where we introduced the reduced measurement time
τ̄ ¼ τ=τM. Introducing the rescaled work W̄act ¼ hWacti=
ðγpv20τMÞ, we realize that it depends on two dimensionless
parameters, the reduced conservative force F̄ ¼ F=γpv0
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and the ratio of drag coefficients γ̄ ¼ γw=γp. Figure 3(a)
plots the dependence of the rescaled hWacti on τ̄. As
expected, in the limit of thermal equilibrium, τM → 0,
hWacti vanishes, whereas for τ ≫ τM, hWacti attains its
maximum value FvwτM, which in rescaled units becomes
F̄v̄w. Because of Eq. (11) for v̄w, hWacti has a quadratic
dependence on F̄ [see Fig. 3(b)] and it attains a maximum
at F̄ ¼ 1=2, i.e., when the force exerted by the piston is half
of the stall force of the ABP. The magnitude of βhWacti can
be estimated for an ABP with radius R ¼ R̄ × 10−6 μm,
velocity v0 ¼ v̄0 × 10−6 m= sec, and moving in water
with τM ¼ 1=Dr ¼ 8πηR3=kBT as βγpv20τM ≃ 25R̄4v̄20.
Accordingly, for R̄ ¼ 2 and v̄ ¼ 2 the work extracted at
F̄ ¼ 1=2 is βhWacti ≃ 240 whereas for biological
swimmers it amounts to βhWacti ≃ 108 for Clamydomonas
(R ¼ 10 μm, v ¼ 50 μm= sec, see Ref. [51]) and βhWacti ≃
1012 for Paramecium (R ¼ 25 μm, v ¼ 103 μm= sec,
see Ref. [52]).
Interestingly, in contrast to the quasistatic Szilard engine

[see Eq. (4)], in the current case the average work hWacti
retains an explicit dependence on τ that will be also visible
in the efficiency. In order to compute its mean value using
the definition of Eq. (7), we need to introduce the total
dissipated energy per time step in full analogy to Eq. (6),

hWdissi ¼ Pτ þMþ hWpst
dissi; ð14Þ

where

hWpst
dissi ¼

γwv2wτM
2

W̄pst
diss with W̄pst

diss ¼ 1 − e−2τ̄ ð15Þ

is the energy dissipated by the piston (see Supplemental
Material [42] Sec. C). In the limit of small measurement
times, τ̄ ≪ 1, it approaches hWpst

dissi ¼ γwv2wτ, as expected,
while for long measurement times, τ̄ ≫ 1, it plateaus at
hWpst

dissi ¼ γwv2wτM=2. Finally, the mean efficiency after
some algebra (see Supplemental Material [42] Sec. D),
becomes

hηi ≃
�
1þ 1

α

τ̄ þ M̄þ 1
2
αγ̄v̄2wW̄

pst
diss

W̄act

�−1
; ð16Þ

where we approximated γpv20=P ≃ α and we have intro-
duced the dimensionless energy cost of measurement
M̄ ¼ ðM=PτMÞ. Equation (16) can be further simplified
since α ≪ 1 and γ̄v̄2wW̄

pst
diss ≲ τ̄, which follows from Eq. (15)

and the definition of γ̄ and v̄wall (for more details, see
Supplemental Material [42] Sec. E). Hence, we obtain

hηi ≃ α
W̄act

τ̄ þ M̄
: ð17Þ

Figure 4 shows that the efficiency of the dynamic Szilard
engine, hηi is bound by that of the ABP, α. Moreover, hηi
has a nonmonotonic dependence on τ̄ independently
whether the measurement cost is much smaller then
(M̄ ≪ 1), similar to (M̄ ≃ 1), or larger then (M̄ ≫ 1)
the energy dissipated by the ABP to keep in the active state.
This is at variance to the monotonic increase of hWacti in τ̄
[see Fig. 3(a)] and is due to the linear increase of the power
dissipated by the ABP with τ̄. Interestingly, the value, τ̄opt,
at which the efficiency is maximized grows with M̄ as
τ̄opt ≃ lnM̄ (see the gray-dashed line in Fig. 4 and Fig. S3),
whereas the maximum value of hηi can reach up to 10% of
the efficiency of the ABP. Finally, hηi depends on F̄ solely
through hWacti and hence it retains the nonmonotonic
dependence on F̄ [see Fig. 3(b)].
In this Letter we have discussed the general features of

Szilard engines operating in contact with active baths.
Importantly, the active bath differs from a thermal bath by
the persistent motion of its constituents. The resulting
enhanced active pressure and the exponential time corre-
lations of the velocity enable two designs of an active
Szilard engine that exploit different regimes.
In the quasistatic regime the slow expansion of the active

Szilard engine on times much larger than the typical
relaxation time of the ABP’s density is driven by the active
pressure. Its magnitude depends on both the Péclet number
as well as the box size [28]. The work extracted from the
active bath during expansion outnumbers the equilibrium
counterpart. Thus, the Landauer limit [8,44,45] can be
overcome at the expense of the additional energy pumped
into the system by the active bath. Since the active bath

(a)

(b)

FIG. 3. Normalized work W̄act ¼ hWacti=ðγpv20τMÞ extracted
during a measurement interval of rescaled duration τ̄ as a function
of τ̄ with γw=γp ¼ 1 (a) or F̄ with τ̄ ¼ 1 (b).

FIG. 4. Efficiency hη̃i as function of τ̄, for M̄ ¼ 0.1, 1, 10
lighter colors standing for larger values of M̄. The black dot-
dashed line is ∝ 1=τ̄, the black dashed line is ∝ τ̄, and the gray
dashed line is the loci of the maxima for M̄ ∈ ½0.01; 100�.
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undergoes a quasistatic work cycle,Wexp is independent of
the cycling time τ. The efficiency depends on τ solely
through the energy dissipated by the ABP and the piston
such that it becomes maximum at a finite value τopt. For
longer cycling times, the dissipation is essentially due to the
energy spent to keep the system active and the efficiency
scales ∝ 1=τ.
In the dynamic regime the active Szilard engine probes

the velocity correlation time, τM, of the ABP. This
implementation of the active Szilard engine has no prac-
tical counterpart for thermal baths. In fact, for an ABP
with radius R ¼ 1 μm suspended in water, we have
τM ≃D−1

r ¼ 8πηR3=kBT ≃ 6 sec. In contrast, for a passive
colloid of the same size and also suspended in water the
velocity correlation time is τth ≃m=γp ≃ 10−7 sec, where
m is the mass of the colloidal particle. Accordingly, while
an ABP can perform work on a relatively slow timescale
of seconds, for a passive particle the demon would need
to monitor velocity correlations on a very fast timescale
of 10−7 sec. Interestingly, the work extracted, hWacti,
becomes maximum when F is half of the stall force
Fopt ¼ γpv0=2. Since the extracted work scales as
βhWacti ∝ R4v20, it varies in a large range from 1 for
micron-sized colloids up to 1012 for a Paramecium. The
dynamic Szilard engine works with an efficiency hηi
bounded from above by the efficiency α of an ABP.
Interestingly, hηi shows a nonmonotonous dependence
on both the dimensionless measuring time τ̄ ¼ τ=τM with
a maximum at τ̄opt ≈ 1, as well as on the conservative force
with the maximum attained at Fopt ¼ γpv0=2. For biologi-
cal swimmers α ∈ ½10−4; 10−2�, hence according to Fig. 4
the efficiency can be as high as hηi ≃ 10−3, which is quite
larger than typical efficiencies of other micrometric engines
with values smaller than ∼10−8 (see the diverse systems
discussed in Ref. [54]).
Our results highlight how the persistent motion of active

bath particles and the resulting features of enhanced active
pressure and long-time velocity or orientational correla-
tions, determine the dynamics of information-based
engines. These features can be exploited to design novel
micro- and nanoengines that outperform those relying on
equilibrium baths. Using the method of optical video
microscopy and real-time image analysis (see, e.g.,
Ref. [55]), we envisage the possibility to mimic the
Maxwell demon and to ultimately realize an active
Szilard engine.
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