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We investigate the dynamics of a single chiral active particle subject to an external torque due to the
presence of a gravitational field. Our computer simulations reveal an arbitrarily strong increase of the long-
time diffusivity of the gravitactic agent when the external torque approaches the intrinsic angular drift. We
provide analytic expressions for the mean-square displacement in terms of eigenfunctions and eigenvalues
of the noisy-driven-pendulum problem. The pronounced maximum in the diffusivity is then rationalized by
the vanishing of the lowest eigenvalues of the Fokker-Planck equation for the angular motion as the
rotational diffusion decreases and the underlying classical bifurcation is approached. A simple harmonic-
oscillator picture for the barrier-dominated motion provides a quantitative description for the onset of the
resonance while its range of validity is determined by the crossover to a critical-fluctuation-dominated
regime.
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Active particles capable of self-propulsion by converting
energy into directed motion have come into research focus
and are important from both a fundamental and an applied
point of view [1–5]. Examples for active agents include
various motile organisms, in particular bacteria [6–8] or
algae [9], as well as artificial realizations such as Janus rods
[10], spheres [11], or Quincke rollers [12]. Recently,
significant advances in our understanding of transport
properties of active motion in homogeneous environments
[4,13–18] and in media crowded with obstacles [19–25]
have been achieved.
External fields, torques, and gradients induce various

forms of taxis such as chemotaxis [26,27], magnetotaxis
[28,29], gravitaxis [30], rheotaxis [31], or viscotaxis [32]
due to a combination of the persistence of motion and
different noise sources [1,4]. Already the case of a
homogeneous force field such as gravity gives rise to
counterintuitive dynamics by coupling to the orientational
motion. For systems of L-shaped chiral microswimmers
[33] and Janus rods [34], mass-anisotropic colloids [35,36],
and microorganisms [30] gravitaxis has been demonstrated
experimentally. In particular, these experiments have dis-
covered that chiral active particles subject to a gravitational
field can move upwards, which was also supported by
simulation studies in bottom-heavy microswimmers [37]
and chiral swimmers [38]. Experimental studies of sedi-
menting active particles revealed an enhancement of
diffusivity by activity [39], while an analytical solution
for the density profile has been obtained only recently [40].
The sedimentation profile of active particles was also
studied in detail in computer simulations and experiments
with Janus particles [41] as well as for run-and-tumble
particles [42]. Yet, the temporal dynamics and transport
properties such as the mean-square displacement and the

corresponding diffusivity have not been elucidated in
detail.
In this Letter, we demonstrate by computer simulation

that gravitaxis of circle swimmers displays resonant dif-
fusivities for small orientational diffusion as the gravita-
tional torque approaches the intrinsic angular drift velocity.
We then elaborate a complete analytical solution of
gravitactic motion for the model developed by ten
Hagen et al. [33]. A formal expression for the intermediate
scattering function, encoding the spatiotemporal motion, is
derived. Using a time-dependent perturbative approach we
extract the mean drift and the mean-square displacement.
Our analytic results reveal that the resonance is encoded in
the vanishing of the eigenvalues of the associated Fokker-
Planck operator. We rationalize the onset of the resonance
within a harmonic approximation and determine the growth
of the maximum of the resonance by crossover scaling.
Model.—We rely on the model derived in Ref. [33] for an

active chiral particle subject to an external (gravitational)
field. The particle moves at constant speed v along a
direction uðtÞ ≔ ðcos ϑðtÞ; sinϑðtÞÞ parametrized by a
time-dependent angle ϑðtÞ measured from the horizontal

_rðtÞ ¼ vuðtÞ ¼ vðcosϑðtÞ; sin ϑðtÞÞ: ð1Þ

The evolution of ϑðtÞ is governed by two contributions. The
external field results in an angle-dependent torque aligning
the orientation in a certain direction. The coating of the
active particle is such that with this orientation the self-
propulsion is horizontal. Additionally, the anisotropy of the
particle induces an internal angular drift ω > 0 resulting in
the equation of motion
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_ϑðtÞ ¼ ω − γ sin ϑðtÞ þ ζðtÞ: ð2Þ

Here, the torque γ is proportional to the external force and
ζðtÞ is a centered Gaussian white noise hζðtÞζðt0Þi ¼
2Drotδðt − t0Þ, where Drot is the bare orientational diffusion
constant. The equations of motion are rewritten with proper
substitutions from Ref. [33], where for simplicity we
discard noise terms and additional drift terms due to
(anisotropic) translational diffusion in Eq. (1). The
neglected terms can be incorporated with little effort but
do not change the overall picture of the resonance phe-
nomenon (see Supplemental Material [43]). Without the
external field the model reduces to the free circle swimmer
[13,17,46,47], while for γ > 0 the angular motion corre-
sponds to Brownian motion in a tilted washboard potential
[48,49]. Ignoring the noise in Eq. (2) yields the classical
dynamics of an overdamped driven pendulum displaying a
saddle-node bifurcation at the critical value γc ¼ ω [50].
The mapping of the gravitaxis problem to the noisy driven
pendulum constitutes our first result.
Simulation.—The model is encoded in 4 parameters

characterizing gravitaxis. We employ 1=ω as fundamental
unit of time, while the radius of the circular motion v=ω sets
the unit of length. Then γ=ω is the dimensionless torque and
Drot=ω quantifies the relative importance of fluctuations.
Stochastic simulations are performed and the displacement
ΔrðtÞ ≔ rðtÞ − rð0Þ is monitored in the stationary state. In
particular, we extract the mean displacement hΔrðtÞi and the
variance Var½ΔrðtÞ� ≔ h½ΔrðtÞ − hΔrðtÞi�2i.
In the stationary state the mean displacement grows

linearly in time with the average velocity vðhcosϑðtÞi;
hsin ϑðtÞiÞ. Since the stationary distribution of the angle
pstðϑÞ is elementary [51], the mean drift can be readily
obtained by quadrature. Here, we recall that without noise,
Drot ¼ 0, the orientational angle is locked at 0 < ϑ� ≤ π=2
with sinϑ� ¼ ω=γ provided the torque fulfills γ ≥ ω. If the
torque is weaker than the internal drift, γ < ω, the angular
motion is periodic [50]. Directly at the classical bifurcation,
the particle moves upwards against the field [52]. Upon
reintroducing the noise the average horizontal motion is
suppressed above the bifurcation, while below the fluctua-
tions enable a net drift (see also Fig. S.3 in Supplemental
Material [43]). The drift against the field direction is always
suppressed by noise.
The variance Var½ΔrðtÞ� increases as t2 for small times,

see Fig. 1, where the prefactor decreases drastically as the
torque is increased.Below the classical bifurcation character-
istic oscillations emerge, similar to the free circle swimmer
[17,53], while for γ > ω the variance increases monotoni-
cally. The long-time behavior is diffusive in the presence of
noise, Drot > 0, and the diffusion coefficient is enhanced
close to the classical bifurcation. The extracted long-time
diffusion coefficients D ≔ limt→∞ð1=4ÞdVar½ΔrðtÞ�=dt are
displayed in terms of the known diffusivity without external
torque [13,17] D0 ≔ v20Drot=½2ðD2

rot þ ω2Þ� in Fig. 2. Close

to the classical bifurcation a resonance emerges that becomes
narrower and more pronounced as the noise is decreased.
Theory.—The goal of this part is to provide a theoretical

explanation for the found resonance and to derive scaling
laws in the vicinity of the classical bifurcation. The dynami-
cal properties are encoded in the propagator Pðr; ϑ; tjϑ0Þ,
i.e., the conditional probability distribution that the particle

FIG. 1. Time-dependent variance Var½ΔrðtÞ� on logarithmic
scales for a rotational diffusivity of Drot=ω ¼ 0.01 for different
torques γ. Symbols correspond to simulation, the solid lines
represent the analytic solution. The dotted black lines are
evaluated within the harmonic-oscillator approximation,
Eq. (13b), for γ ¼ 1.1ω and γ ¼ 1.2ω. The thick black lines
are power laws serving as a guide to the eye.

FIG. 2. Resonance of diffusivity. The diffusivity D as a
function of the torque γ for different rotational diffusivities
Drot. The diffusivity is normalized to the diffusion coefficient of
a free circle swimmer D0 ≔ v2Drot=½2ðD2

rot þ ω2Þ�. Symbols
correspond to simulation, the full lines are analytical results.
The black dotted line corresponds to the harmonic-oscillator
approximation, Eq. (13b), for Drot ¼ 0.005ω. The right boun-
dary of the shaded area corresponds to the parametric curve
D̂rot ≔ jγ=ω − 1j−3=2Drot=ω ¼ const: asymptotically intersect-
ing the maxima of the diffusion coefficients. Inset: Increase
of the maximal diffusion coefficient Dmax for increasing inverse
noise 1=Drot on logarithmic scales obtained from theory.

PHYSICAL REVIEW LETTERS 129, 228003 (2022)

228003-2



has displaced by r and its instantaneous speed exhibits an
orientation ϑ at lag time t given it started with orienta-
tion ϑ0. Angles are considered to be 2π periodic. We
focus on its spatial Fourier transform P̃ ≔ P̃ðk; ϑ; tjϑ0Þ ¼R
dr expð−ik · rÞPðr; ϑ; tjϑ0Þ and derive by standardmeth-

ods [51] the (Fourier transformed) Fokker-Planck equation
(see also Supplemental Material [43])

∂tP̃ ¼ −∂ϑ½ðω − γ sinϑÞP̃� þDrot∂
2
ϑP̃ − ivk · uP̃

≕ ðLþ δLkÞP̃: ð3Þ

Here the operatorL encodes the motion of the angle, while
δLk ¼ −ivk · u describes the coupling to the translational
dynamics. The formal solution is thus P̃ðk; ϑ; tjϑ0Þ ¼
exp½ðLþ δLkÞt�δðϑ − ϑ0Þ.
From this quantity the intermediate scattering function

(ISF) Fðk; tÞ ¼ hexpð−ik · ΔrðtÞÞi is obtained in the sta-
tionary state by averaging over the initial angle and
integrating over the final one

Fðk; tÞ ¼
Z

2π

0

dϑ
Z

2π

0

dϑ0 P̃ðk; ϑ; tjϑ0Þpstðϑ0Þ

¼
Z

2π

0

dϑ exp½ðLþ δLkÞt�pstðϑÞ: ð4Þ

Moments of the displacement can be extracted by a series
expansion in the wave vector k

Fðk; tÞ ¼ 1 − ik · hΔrðtÞi − 1

2
h½k · ΔrðtÞ�2i þ…: ð5Þ

Here we follow the strategy of Ref. [17] (see also
Ref. [54]), solve the eigenvalue problem of the reference
system L, and apply time-dependent perturbation theory
for δLk. We denote by fjni∶n ∈ Zg the standard ortho-
normal basis in the Hilbert space L2½0; 2π� with real-space
representation hϑjni ≔ expðinϑÞ= ffiffiffiffiffiffi

2π
p

. In this basis L is
represented in terms of its matrix elements [51]

Lmn ¼ hmjLni ≔
Z

2π

0

dϑ
2π

e−imϑLeinϑ

¼ ð−Drotm2 − imωÞδmn þ
γ

2
mðδm;nþ1 − δm;n−1Þ: ð6Þ

In particular, the matrix representation is non-Hermitian
and tridiagonal due to the torque. Right and left eigenstates
Ljrλi ¼ −λjrλi;L†jlλi ¼ −λ�jlλi are readily obtained by
numerically diagonalizing the matrix, Eq. (6), yielding the
expansion coefficients hnjrλi, hlλjni as right and left
eigenvector of the matrix Lmn. The corresponding real-
space representation is obtained by expansion rλðϑÞ ¼P

n∈Zhϑjnihnjrλi. By conservation of probability λ ¼ 0

is an eigenvalue and the real-space representations of the
associated eigenstates are r0ðϑÞ ¼ pstðϑÞ and l0ðϑÞ ¼ 1.

Comparing with Eq. (4) we find the compact expression for
the ISF

Fðk; tÞ ¼ hl0j exp½ðLþ δLkÞt�r0i: ð7Þ

Since δLk ¼ −ivk · u, time-dependent perturbation theory
(Born series) [55]

eðLþδLkÞt ¼ eLt þ
Z

t

0

ds eLðt−sÞδLkeLs

þ
Z

t

0

ds
Z

s

0

du eLðt−sÞδLkeLðs−uÞδLkeLu

þOðδLkÞ3; ð8Þ

directly yields the moments of the series expansion in k as
in Eq. (5). In particular, expanding to second order in k and
squeezing in the completeness relation

P
λ jrλihlλj ¼ 1,

the time integrals can be formally performed (see also
Supplemental Material [43]). Then we read off the mean
drift velocity and the variance along the direction n ≔ k=k

n ·
d
dt
hΔrðtÞi ¼ 1

k
hl0jδLkr0i; ð9aÞ

Var½n ·ΔrðtÞ� ¼ 2

k2
X
λ≠0

1− λt− e−λt

λ2
hl0jδLkrλihlλjδLkr0i;

ð9bÞ

and infer the associated long-time diffusion coefficient

Dn ¼ −1
k2

X
λ≠0

1

λ
hl0jδLkrλihlλjδLkr0i: ð10Þ

The analytical expressions for the total variances as well as
the corresponding diffusion coefficients perfectly match the
simulations, see Figs. 1 and 2. The exact expressions in
terms of eigenfunctions and eigenvalues suggest that at
resonance the eigenvalues become smaller and smaller as
the rotational diffusion coefficient is decreased, which is
confirmed by numerical diagonalization (see Supplemental
Material [43]).
To gain further analytical insight, we evaluate Eqs. (9)

and (10) within a harmonic approximation for the motion
close to the classical fixed point ϑ�. For smallDrot ≪ ω and
well above the bifurcation the fluctuations are anticipated to
be small and the corresponding linearized Langevin equa-
tion reads

_ϑðtÞ ¼ −
1

τ
½ϑðtÞ − ϑ�� þ ζðtÞ; ð11Þ

with vanishing relaxation rate1=τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − ω2

p
→ 0 as γ↓ω.

The associated eigenvalues of the overdamped harmonic
oscillator are then simply λn ¼ n=τ; n ∈ N0 [51], and indeed
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they approach zero for γ↓0 (see also Supplemental
Material [43]).
To leading order we replace the perturbing operator δLk

by the complex number ivk · u� with the fixed orientation
u� ¼ ðcos ϑ�; sin ϑ�Þ. In this approximation, the drift
velocity is nonfluctuating and assumes its classical value.
In the same approximation the variance and diffusion
coefficient vanish by orthogonality of the eigenstates,
consistent with a purely deterministic and nonchaotic
motion. To leading nontrivial order we replace

δLk ≃ ivk · u� þ ðϑ − ϑ�Þ
∂

∂ϑ
δLk

����
ϑ¼ϑ�

: ð12Þ

Then within the harmonic-oscillator approximation, also the
off-diagonal matrix elements can be evaluated analytically,
in particular, their magnitude is proportional to the angular
oscillator width hðϑ − ϑ�Þ2i ¼

ffiffiffiffiffiffiffiffiffiffi
Drotτ

p
(see Supplemental

Material [43] for details). Furthermore, the angular position
operator ϑ − ϑ� induces only nonvanishing transition matrix
elements in Eqs. (9b), (10) coupling the ground state to the
first excited state. Therefore the sums reduce to a single term
and we find the compact expressions

Var½n · ΔrðtÞ� ≃ 2Dnτ

�
t
τ
− 1þ e−t=τ

�
; ð13aÞ

Dn ≃ ðvτÞ2Drotðnx sin ϑ� − ny cos ϑ�Þ2: ð13bÞ

Within the harmonic-oscillator approximation the vari-
ance is strictly proportional to Drot suggesting that for
sufficiently small orientational fluctuations the curves in
Figs. 1 and 2 should approach a master curve. The
corresponding curves are included in Figs. 1 and 2 as
black dotted lines and are in quantitative agreement for
small Drot ≪ ω and γ > ω not too close to the bifurcation.
The emergence of the resonance is thus rationalized in
terms of the softening of the harmonic relaxation rate
1=τ → 0 as the bifurcation is approached.
The harmonic-oscillator picture suggests that the diffu-

sion coefficient becomes infinite directly at the bifurcation
while the simulation and the full analytic expression predict
a rounding with a maximal diffusivity. The picture of the
harmonic oscillator should hold provided the barrier is
sufficiently high such that Kramers’ escape rate [51] is
much smaller than the harmonic relaxation rate. In terms of
the effective potential DrotUðϑÞ=kBT ¼ −ωϑ − γ cosϑ the
barrier height ΔU ≔ Uðπ − ϑ�Þ −Uðϑ�Þ reduces to

ΔU
kBT

¼ 4
ffiffiffi
2

p

3

ω

Drot
ϵ3=2½1þOðϵÞ�; ð14Þ

where we introduced the separation parameter ϵ ≔
ðγ − ωÞ=ω for the distance to the bifurcation (see
Supplemental Material [43] for details). This observation

suggests introducing the reduced rotational diffusion coef-
ficient D̂rot ≔ jϵj−3=2Drot=ω such that for D̂rot ≪ 1; ϵ > 0

the harmonic approximation holds, while for D̂rot ≫ 1 the
barrier can be crossed readily by fluctuations and the precise
height of the barrier should be irrelevant. By matching the
critical fluctuations to the harmonic oscillator we predict that
the maximal diffusivity should occur at D̂rot ¼ Oð1Þ or
Drot ∝ jϵj3=2. For small ϵ > 0, the relaxation time diverges as
τ ∝ jϵj−1=2 and fromEq. (13b)we infer the scaling law for the
maximal diffusivity

Dmax=D0 ∝ jϵj−1 ∝ D−2=3
rot ; for Drot → 0; ð15Þ

where we used that D0 ∝ Drot as Drot → 0. The numerical
values nicely follow the prediction asymptotically as shown
in Fig. 2.
Summary and conclusion.—We have demonstrated that

the long-time translational diffusivity of a chiral active
Brownian particle in gravitaxis displays a resonance for the
external torque approaching the intrinsic angular drift. The
resonance originates from an underlying bifurcation of the
classical driven pendulum. There are certain similarities
with the giant diffusion in tilted washboard potentials [48],
yet our approach of decomposition into eigenfunctions is
rather complementary and allows calculating the entire time-
dependence of low-order moments and is in spirit closer to
Ref. [49]. The connection of the resonance to the vanishing
low-lying eigenvalues is uncovered and an intuitive picture in
terms of a competition between a barrier-dominated and a
critical-fluctuation-dominated regime is developed.
The harmonic approximation is surprisingly accurate for

the variance as well as for the diffusivity, despite ignoring
the rare activation processes over the barrier. We conclude
that far above the bifurcation, the orientation performs only
small fluctuations most of the time close to the minimum of
the effective potential. Then the diffusion coefficient for the
translational diffusion remains also small. Yet, approaching
the bifurcation these fluctuations become more significant
as the confining angular potential becomes softer yielding a
significant enhancement of the diffusivity. For too large
angular fluctuations the harmonic approximation breaks
down as barrier-crossing events become important. After
such barrier crossings the orientation quickly completes a
full turn until getting stuck again. From the accurateness of
the harmonic oscillator description we conclude that these
fast events do not significantly contribute to the diffusivity.
The essence of the resonance is thus due to the enhance-
ment of small fluctuations as provided by the orientational
diffusion coefficient exploring a softening potential as the
bifurcation is approached.
Our theoretical work makes detailed predictions for

active motion of chiral agents in external fields that
can be tested in experiments, both for artificial and
biological asymmetric microswimmers. The method is
readily extended to calculate higher moments such as
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the skewness, the non-Gaussian parameter, or the complete
intermediate scattering function. While we explicitly con-
sidered gravitaxis, the underlying equations are rather
generic and the analysis and methods presented should
transfer with suitable adjustments to other forms of taxis at
the microscale such as durotaxis [56], chemotaxis [27],
thermotaxis [57], or topotaxis [58]. Also, the results could
be valuable for the transport phenomena of rigid polymer
solutions in a flow near a wall [59].
The resonance is of interest not only for single-particle

transport in external fields, but also has implications for the
collective motion of chiral active particles with alignment
interactions [60–63] provided effective mean-field equa-
tions can be derived [64–67] which would be similar in
structure to the equations of motion studied here.
Last our Letter has theoretical ramifications on the

interplay of the critical slowing down of classical transport
close to bifurcations and their smearing by random fluc-
tuations. The evolution of the eigenspectrum also for other
bifurcations, including the pitchfork or transcritical bifur-
cations, should be relevant for various branches of science,
such as the physics of the Josephson junction [50] or
collective (Kuramoto) synchronization [68].
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