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Upon loading, amorphous solids can exhibit brittle yielding, with the abrupt formation of macroscopic
shear bands leading to fracture, or ductile yielding, with a multitude of plastic events leading to
homogeneous flow. It has been recently proposed, and subsequently questioned, that the two regimes are
separated by a sharp critical point, as a function of some control parameter characterizing the intrinsic
disorder strength and the degree of stability of the solid. In order to resolve this issue, we have performed
extensive numerical simulations of athermally driven elastoplastic models with long-range and anisotropic
realistic interaction kernels in two and three dimensions. Our results provide clear evidence for a finite-
disorder critical point separating brittle and ductile yielding, and we provide an estimate of the critical
exponents in 2D and 3D.
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Yielding of amorphous materials is a practically and
scientifically important problem [1–5]. When a material is
mechanically slowly driven from an initial quiescent glassy
state, two different types of yielding behavior are observed.
One is brittle yielding, where the sample catastrophically
breaks into pieces and displays one or several macroscopic
shear bands (usually experimentally encountered in atomic
and molecular glasses). The other one is ductile yielding,
for which the sample deforms rather homogeneously via a
series of local and mesoscopic plastic events that prevent
catastrophic failure (usually experimentally encountered
in soft materials like colloids and pastes). It has been
established that a given material may show brittle or ductile
yielding depending on the preparation history of the sample
[3,6–8]. In particular, a well-annealed, hence stable, glass
sample shows brittle yielding, whereas a poorly annealed,
less stable, glass sample exhibits ductile yielding. Note that
in the materials science and engineering communities the
yield point is traditionally defined as the end of the purely
elastic branch and the onset of plastic behavior. However,
because several molecular simulations and elastoplastic
model (EPM) studies (see, e.g., [9–11]) demonstrated that a
purely elastic branch does not exist in sheared amorphous
solids as plasticity appears for any infinitesimal deforma-
tion in the thermodynamic limit, the statistical physics
community usually adopts a different definition of yielding.
Recent theoretical studies suggest that brittle yielding

corresponds to a nonequilibrium first-order transition (or
spinodal [12–17]), associated with a macroscopic discon-
tinuous stress drop at a given strain value, whereas ductile
yielding corresponds to a continuous stress-strain curve,
corresponding to a progressive plastic softening of the
material. In athermal quasistatic (AQS) conditions [18], it

was observed that these two distinct behaviors are sepa-
rated by a critical value of the stability (or the disorder)
[19–21]. It was then proposed that the brittle-to-ductile
transition is a novel nonequilibrium phase transition,
similar to that of an athermally driven random-field
Ising model [22,23]. Further understanding the transfor-
mation from brittle to ductile yielding appears as a major
challenge in many fields, from materials science to stat-
istical physics [24–35].
The above scenario has been challenged in Refs. [36–38].

In particular, Ref. [36] argues that in AQS condition and
provided the samples are large enough, yielding always takes
place in a brittle manner. This should happen irrespectively
of the stability or disorder of the samples, except for the
putative infinitely disordered sample, thereby implying that
the brittle-to-ductile transition does not exist in the thermo-
dynamic limit. Large-scale molecular simulations [38] seem
to give some support to the statements ofRefs. [36,37]. Yet, it
remains hard to conclude due to the limited system sizes
accessible in molecular simulations and the very small
number of samples involved.
In this Letter, in order to overcome this difficulty and

obtain conclusive results, we perform a thorough numerical
analysis of the brittle-to-ductile transition in EPMs [1,39].
These mesoscopic models have already been successfully
applied to describe several aspects of the rheology of
amorphous materials, in particular the yielding transition
[37,40]. Their coarse-grained lattice nature enables us to
access very large system sizes and a large number of
samples, allowing for a careful finite-size scaling analysis
of the critical point. Our main result is direct numerical
evidence for the existence of a finite-disorder critical point
separating brittle and ductile behavior.
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The type of EPM we focus on provides a simple scalar
description of the AQS dynamics [41–43] and corresponds
to a cellular automaton on two-dimensional (2D) and three-
dimensional (3D) cubic lattices. In particular, we consider
incompressible, homogenous, and isotropic materials under
a simple shear deformation protocol and we focus on a
single shear-stress component that we denote σ [39]. (This
is an approximate treatment which ignores the other stress
components.) The model describes the evolution of coarse-
grained local stresses σi in the presence of an external
strain γ. Whenever one such stress goes above a stability
threshold, the site yields, and the resulting stress drop is
propagated through the sample via a long-range Eshelby-
like propagator [44]. The initial stability of the solid, which
in real systems depends on the annealing protocol, is
quantified by a parameter R associated with the width of
the initial stress distribution (and therefore characterizing
the strength of the disorder). We vary the system size over a
wide range of linear box lengths,L ¼ 256–4096 for 2D and
L ¼ 48–164 (with a few samples at L ¼ 200) for 3D.
Details concerning the simulated model and the numerical
simulations are presented in the Supplemental Material
(SM) [45]. We have checked that variations of the model
corresponding to different ways of accounting for the initial
stability and the force balance lead to the same results
(see SM [45]).
We first show that the model displays the same behavior

as that found in numerical simulations of particle systems
[3,19,20], with in particular the signature of a brittle-to-
ductile transition accompanied by substantial finite-size
effects [37,38]. In consequence, it provides a suitable
framework to address the issues discussed above. In
Fig. 1, we present stress-versus-strain curves for a 3D
system with L ¼ 200 for two values of the disorder
strength, R ¼ 0.3 and R ¼ 0.8. The former clearly shows
brittle yielding characterized by a discontinuous stress drop

and the appearance of a shear band (top inset), while the
latter displays ductile yielding characterized by a continu-
ous monotonic stress growth and homogeneously distrib-
uted plastic events (bottom inset). Brittle and ductile
yieldings are thus qualitatively distinct, and their occur-
rence depends on the disorder strength R. The present
results are in line with previous numerical observations in
two-dimensional EPMs [40,42,55].
Our second goal is to identify the putative critical

point separating brittle and ductile yielding. In previous
studies [19,20,28], the maximum stress drop, hΔσmaxi ¼
hmaxγfΔσðγÞgi where ΔσðγÞ is the stress drop due to
irreversible events at the strain γ, was used as an order
parameter to detect the transition. Here, h� � �i denotes an
average over many independent realizations (or samples),
and the maximum is computed for each sample and then
averaged over samples. We have found that for EPMs a
more efficient order parameter is obtained from the fraction
of sites along a single line in 2D or plane in 3D that have
yielded at least once up to the strain γ. We consider the
maximum of this fraction over all horizontal and vertical
lines (2D) or planes (3D) and we call this quantity nðγÞ. By
construction it is an increasing function of γ. It shows a
discontinuous jump of order O(1) when σðγÞ shows a
discontinuous drop of order O(1) and it increases contin-
uously when σðγÞ shows a continuous ductile behavior (see
below). Therefore, nðγÞ essentially contains the same
information as σðγÞ for distinguishing brittle and ductile
yielding behavior. We then define a new order parameter,
Δnmax ¼ maxγfΔnðγÞg, where ΔnðγÞ is the jump of nðγÞ
that takes place in the AQS dynamics from γ to γ þ Δγ in a
given sample. We have observed that Δnmax better quan-
tifies the abrupt emergence of a system-spanning shear
band and, as a result, detects the critical point in EPMs
more accurately than Δσmax (see the detailed discussion in
SM [45]).
As seen in Figs. 2(a) and 2(b), the average order parameter

hΔnmaxi is small and essentially constant at high disorder
strength R and it starts to rapidly grow below some finite
value of R. Moreover, as L increases both in 2D and in 3D,
the increase of hΔnmaxi with decreasing R becomes steeper
while the flat part becomes smaller, suggesting the presence
of a critical point. Figures 2(c) and 2(d) show the variance of
Δnmax, which corresponds to the associated “disconnected
susceptibility,” χdis ¼ NVarðΔnmaxÞ, defined in analogy
with an AQS driven random-field Ising model [19,21]. (It
provides crisper, but similar, results than the “connected
susceptibility” χcon ¼ −∂hΔnmaxi=∂γ [19,20].) The discon-
nected susceptibility is strongly peaked and the peak
becomes sharper and higher with increasing L, suggesting
a divergence at some critical point. Essentially the same
trend is observed forΔσmax (see SM [45]), in agreementwith
the results of molecular simulations [19].
To firmly establish the existence of the critical point,

we have performed a detailed finite-size scaling analysis.
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FIG. 1. Stress versus strain curves in the 3D elastoplastic model
illustrating the brittle (R ¼ 0.3) and the ductile (R ¼ 0.8) cases.
The linear box length is L ¼ 200. Three independent samples are
presented. Insets: Real-space configurations at γ ¼ 0.6 in the two
cases. The color bar corresponds to the number of local plastic
events.
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Weuse here the same scaling ansatz as that of theAQSdriven
random-field Ising model, χdisðr; LÞ ∼ Lγ̄=νΨðrL1=νÞ, where
RcðLÞ locates the maximum value of χdis, r ¼ ½R −
RcðLÞ�=R is the reduced disorder strength, Ψð·Þ is a scaling
function, and with γ̄ and ν some critical exponents.
According to this ansatz, the maximum over r of
χdisðr; LÞ should diverge as Lγ̄=ν and its full width at half
maximum should vanish as L−1=ν. The corresponding plots
obtained from the data in Figs. 2(c) and 2(d) are shown in
Fig. 3.We observe a good power-law behavior, and by fitting
these curves we obtain γ̄=ν ¼ 1.86� 0.02 and ν ¼ 3.0�
0.3 in 2D, and γ̄=ν ¼ 2.66� 0.04 and ν ¼ 2.5� 0.2 in 3D,

where the errors are derived from the fit. We also show in
Fig. 4 the scaling collapse of the disconnected susceptibility,
in which the parameters γ̄, ν, and RcðLÞ are adjusted to
provide the best visual collapse of the curves for the different
values of L. The displayed collapses are for γ̄=ν ≈ 1.82
and ν ≈ 2.9 in 2D, and γ̄=ν ≈ 2.61 and ν ≈ 2.2 in 3D, values
that are consistent with those determined by the fitting
procedure. Work is now in progress to determine whether
these critical exponents are in the same universality class as
an AQS driven random-field Ising model with Eshelby-like
interactions [56].
Figures 2–4 provide very strong evidence for a critical

behavior around RcðLÞ with an estimate for the associated
exponents γ̄ and ν in 2D and 3D. However, the critical
disorder RcðLÞ slightly shifts to larger R as L increases, as
seen from Fig. 2. Understanding the fate of the critical
disorder RcðLÞ in the thermodynamic limit is therefore a
key issue. References [19,20] proposed that RcðL → ∞Þ
stays finite in the thermodynamic limit, whereas Refs. [36–
38] argued that RcðL → ∞Þ → ∞. Note that in this second
scenario there is no ductile phase for large enough system
size, i.e., all systems are brittle in the thermodynamic limit
(except in the singular infinite-disorder limit). We stress
that the existence of a finite-disorder brittle-to-ductile
critical point in the thermodynamic limit is a separate
issue from the persistence of an overshoot in the average
stress-versus-strain curve for large ductile systems, which
was the main concern of Ref. [37]. We show below that by
disentangling these two problems one can obtain conclu-
sive evidence in favor of the existence of the critical point in
the thermodynamic limit.
We display in Fig. 5(a) the stress-versus-strain curves of

typical 3D samples at fixed R for several values of L. We
set R ¼ 0.40 (> RcðLÞ), which belongs to the putative
ductile yielding regime as determined from the above
finite-size scaling analysis. The plots focus on the stress
values around the overshoot. For a fixed R, the stress drop
tends to become sharper with increasing L, showing the
same trend as found in Refs. [36–38]. Instead, as shown in
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FIG. 2. Evidence for a critical point in 2D and 3D EPMs.
Upper: average value of the order parameter hΔnmaxi as a
function of R for several system sizes in 2D (a) and 3D (b).
Lower: variance of Δnmax multiplied by N ¼ LD, where D is the
spatial dimensions, i.e., disconnected susceptibility, in 2D (c) and
3D (d).

103

104

105

106

104 105 106 107

(a)

2D
3D

10-2

10-1

104 105 106 107

(b)

2D
3D

FIG. 3. Log-log plot of the maximum (a) and the full width at
half maximum (b) of the disconnected susceptibility associated
with the order parameter Δnmax as a function of N ¼ LD for both
2D (blue) and 3D (red). The straight black lines have slopes 0.9 in
(a) and −0.15 in (b).
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FIG. 4. Scaling plot of the disconnected susceptibility versus
reduced disorder r ¼ ½R − RcðLÞ�=R for the data in Fig. 2 in 2D
(a) and 3D (b) EPMs. A good collapse is obtained for γ̄=ν ≈ 1.82
and ν ≈ 2.9 in 2D and γ̄=ν ≈ 2.61 and ν ≈ 2.2 in 3D.
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Fig. 5(b), for a fixed L (here, L ¼ 128) a clear evolution
between distinct yielding patterns is observed as R is
decreased, from a purely monotonic increase of the stress
to a continuous overshoot and then to a discontinuous drop.
To characterize the asymptotic behavior when L → ∞, we
locate for each given system size L the value of R at which
the overshoot first appears (coming from large R) in the
average stress-versus-strain curves and we denote it by
RoðLÞ (see SM [45] for details). We display Ro, together
with the critical disorder Rc, for 2D and 3D in Fig. 6. To
facilitate the comparison between 2D and 3D we plot Ro

and Rc as a function of the number of sites N ¼ LD. We
find that Ro is essentially independent of N in both cases
while Rc increases very slowly with N. As we explain in
more detail below, this is direct evidence for the existence
of a ductile phase over a finite range of disorder strength in
the thermodynamic limit.
The values of RoðNÞ and RcðNÞ define three distinct

yielding regimes in the ðN;RÞ plane, as schematically
illustrated by the insets in Fig. 6. The region R > RoðNÞ

corresponds to a monotonic increase of the average stress,
with no overshoot. The region R < RcðNÞ corresponds to a
discontinuous stress drop at yielding. The regime RcðNÞ <
R < RoðNÞ corresponds to a continuous average stress
curve with a mild overshoot. By construction, RcðNÞ has to
remain below RoðNÞ, which then gives an upper bound on
the critical disorder. The fact that RoðNÞ is essentially
independent of N thus provides strong evidence that RcðNÞ
converges to a finite value for large N and that a finite-
disorder brittle-to-ductile critical point persists in the
thermodynamic limit. The fate of the overshoot as N →
∞ is instead unclear and depends on whether RcðNÞ
converges to Roð∞Þ or to Rcð∞Þ < Roð∞Þ in the thermo-
dynamic limit. In the former case the overshoot disappears
at the critical point whereas a regime of ductile yielding
with an overshoot exists in the latter case. We show in
Fig. 6 the best fits to RcðNÞ ¼ Rcð∞Þ − a=Nb with Rcð∞Þ,
a, and b free parameters. We find that Rcð∞Þ is finite in 2D
and 3D. In the critical scaling picture and assuming that 2D
and 3D are below the upper critical dimension, the
parameter b is related to the (correlation length) exponent
ν through 1=ν ¼ Db. The fits then yield ν ≈ 3.57 in 2D and
ν ≈ 2.22 in 3D, values which, given the large uncertainties,
are consistent with the previous determinations given
above.
Strictly speaking, we cannot exclude an alternative

scenario in which RoðNÞ would start to increase with N
above some size N� which is out of reach of present-day
simulations and would ultimately diverge in the thermo-
dynamic limit together withRcðNÞ. However, in view of the
absence of any observable N dependence of RoðNÞ in the
accessible range, which spans three decades in 2D, and of
the lack of any sound theoretical argument supporting
the existence of a critical size N�, this possibility seems
extremely unlikely.
In conclusion, we have performed extensive numerical

simulations of athermally driven elastoplastic models in
two and three dimensions. Thanks to the simple coarse-
grained, lattice-based, nature of the modeling, we have
been able to simulate substantially larger system sizes and
larger number of samples than in molecular simulations,
allowing us to perform a thorough finite-size scaling
analysis. We have obtained clear evidence for the existence
of a critical point separating brittle from ductile yielding in
2D and 3D and we have provided estimates for two
associated critical exponents. Our results establish, at least
for the studied elastoplastic models, that criticality persists
in the thermodynamic limit and takes place for a finite value
of the disorder characterizing the samples (and correspond-
ing to a given initial stability of the solid), as suggested in
Refs. [19,20]. The alternative scenario [36,38] according to
which the critical point either takes place at infinite disorder
or disappears because the disorder cannot go beyond some
upper bound is not plausible in view of our results from
elastoplastic modeling. It is nonetheless still unclear if the
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FIG. 5. Stress-versus-strain curves for 3D samples at fixed
disorder strength R ¼ 0.40 for several system sizes (a) and at
fixed system size L ¼ 128 for different values of R (b). Insets:
The corresponding nðγÞ curves.
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fits yield ν ≈ 3.57 in 2D and ν ≈ 2.22 in 3D. Insets: The
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overshoot in the average stress-versus-strain curve disap-
pears in the thermodynamic limit for the ductile regime, as
advocated in Ref. [37]. If it does, the critical point would
occur exactly when the overshoot associated with brittle
yielding disappears and then gives way to a monotonic
(albeit singular at criticality) average stress-strain curve.
The other possibility is that the critical point takes place at a
value of the disorder for which a smooth overshoot is still
present. The latter case implies that disorder, which is not
accounted for in the linear instability argument of Ref. [37],
is able to pin the propagation of the instability, thereby
allowing for the presence of a smooth overshoot. It is hard
to go beyond the present study in terms of numerical
simulations. Thus, progress is now needed on the theo-
retical front.
Finally, we point out that the presence of a finite-disorder

critical point is not restricted to the specific rheological
setting considered in this Letter. Recently, the AQS cyclic
shear protocol has been actively studied, in relation to other
nonequilibrium phase transition phenomena such as
absorbing-state phase transitions. This protocol also leads
to a transition from ductile to brittle-like behavior, as a
function of the disorder or stability of the initial glass
samples, as shown in molecular simulations [27,28],
simulated EPMs [55,57], as well as a mean-field EPM
[58]. A detailed characterization of the critical point under
cyclic shear and the determination of the associated
exponents would be an interesting subject for future
research.
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