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Inhomogeneity of ion correlation widely exists in many physicochemical, soft matter, and biological
systems. Here, we apply the modified Gaussian renormalized fluctuation theory to study the classic
example of the vapor-liquid interface of ionic fluids. The ion correlation is decomposed into a short-range
contribution associated with the local electrostatic environment and a long-range contribution accounting
for the spatially varying ionic strength and dielectric permittivity. For symmetric salt, both the coexistence
curve and the interfacial tension predicted by our theory are in quantitative agreement with simulation data
reported in the literature. Furthermore, we provide the first theoretical prediction of interfacial structure for
asymmetric salt, highlighting the importance of capturing local charge separation.
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One outstanding challenge in the physical chemistry of
charged systems is to capture the inhomogeneity in
electrostatic correlation resulting from spatially varying
ionic strength or dielectric permittivity. A solution to this
problem is critical to explain many important phenomena
such as salt concentration and specific ion effect on the
surface tension [1,2], stability of colloidal and protein
solutions [3–5], electrokinetic flow in nanodevices [6,7],
ion transport in energy storage materials [8], and interfacial
properties of charged macromolecules [9–11].
A classic example where the spatially varying ion

correlation plays the dominant role is the vapor-liquid
interface in ionic fluids. Since the pioneering experimental
work by Buback and Franck [12], it has been well
recognized that ionic salts exhibit two-phase coexistence
below a certain critical temperature [13,14]. Analogous to
vapor-liquid phase equilibrium in real gases, ionic salts
dissolved in a solvent can also undergo phase separation
into a high-ion-density “liquid” and a low-density “vapor”
phase because of ion correlations. This coexistence has also
been predicted by theories, and molecular simulations,
where both the phase boundary and criticality have been
reasonably captured [15–19]. Despite the progress in
explaining the bulk thermodynamics, the interfacial behav-
ior remains less addressed to our knowledge. Bresme and
co-workers [20–22] performed molecular simulations to
study the interface of ionic fluids, including the density
profile and surface tension. However, it is difficult to apply
simulation methods away from the critical temperature due
to the very low density of the vapor phase. On the theory
side, two main methods have been invoked to model this
vapor-liquid interface: nonlocal density functional theory
[23–25] and the square-gradient theory [26–28]. These
approaches describe the ion correlation in the inhomo-
geneous interfacial region using a functional form based on

the bulk correlation function. In the density functional
theory, the choice of the density to evaluate the local
correlation is ad hoc [23,29], which prevents its generali-
zation to different systems, whereas in the square-gradient
approach, truncating the expansion of the free energy at the
square-gradient level limits the applicability of this method
only to systems where the concentration deviation from the
bulk is small. The theory, thus, cannot be used to describe
interfaces away from the critical point. Furthermore, none
of the existing theories have been applied to systems where
the cations and anions are not symmetric, in terms of either
valency or ionic size. The asymmetry leads to an interphase
electrostatic potential (Galvani potential) and local charge
separation across the interface [16,21], which increases the
complexity of both the physics and numerical solution.
This gap in our understanding is a serious issue considering
how ubiquitously asymmetric electrolytes exist. Therefore,
a self-consistent and nonperturbative theory to describe the
electrostatics at the vapor-liquid interface is necessary.
To accurately quantify the inhomogeneity of ion corre-

lation is a great challenge majorly for the following two
reasons. First, the correlation function needs to be resolved
at two very different length scales, one associated with ion
size (short range) and the other with the interfacial thick-
ness (long range). Second, the ionic cloud is highly
anisotropic on the two sides of the interface due to the
huge difference in ion concentration between the two bulk
phases. These two features have not been correctly captured
in previous theoretical work because of the mathematical
approximations involved. If only the local correlation is
included, such as the WKB approximation widely used in
double-layer theories [30–33], it is, in fact. impossible to
generate a continuous interfacial profile. In this Letter, we
apply a modified Gaussian renormalized fluctuation
theory [34–36] to study the vapor-liquid interface for both
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symmetric and asymmetric ionic salts. A decomposition
method is developed to decouple the short-range and long-
range contributions in electrostatic correlation. Theoretical
predictions are compared with simulation results from the
literature.
We consider a system of an ionic salt with cations of

valency qþ and anions of valency q− dissolved in a solvent
with dielectric function εðrÞ. To accurately describe charge
interaction, we assume that the ionic charge has a finite
spread given by distribution function h�ðr − r0Þ for an ion
centered at r0. We also include the excluded volumes of
ions and solvent molecules. The modified Gaussian renor-
malized fluctuation theory developed in our previous work
[36] is used to model the bulk thermodynamics and the
associated interface. This theory is based on a nonpertur-
bative calculation of partition function using the Gibbs
variational principle. In the absence of external fixed
charge, the theory yields the following set of self-consistent
equations for electrostatic potential ψ , ion concentration
c�, self-energy u�, and correlation function G:

−∇:½ϵðrÞ∇ψðrÞ� ¼ qþcþðrÞ − q−c−ðrÞ; ð1Þ

c�ðrÞ ¼
eμ�

v�
exp½∓ q�ψðrÞ − u�ðrÞ − v�ηðrÞ�; ð2Þ

u�ðrÞ ¼
q2�
2

Z
dr0dr00h�ðr0; rÞGðr0; r00Þh�ðr00; rÞ; ð3Þ

−∇r:½ϵðrÞ∇rGðr; r0Þ� þ 2IðrÞGðr; r0Þ ¼ δðr − r0Þ; ð4Þ

where 2IðrÞ ¼ ϵðrÞκ2ðrÞ ¼ cþðrÞq2þ þ c−ðrÞq2−, μ� are
chemical potentials, and v� are molecular volumes of
the ions. ϵðrÞ ¼ kTε0εðrÞ=e2 is the scaled permittivity
with ε0 as the vacuum permittivity and e as the elementary
charge. ηðrÞ is the field accounting for the excluded volume
effect, which can be expressed in terms of concentrations
based on the incompressibility condition. The details of the
theory are provided in Supplemental Material [37].
In the homogeneous bulk, where concentrations are

uniform and ϵðrÞ is a constant as ϵb, the correlation
function Gb has a Debye-Hückel-style analytical form
given by

Gbðr0; r00Þ ¼
e−κbjr0−r00j

4πϵbjr0 − r00j : ð5Þ

For mathematical convenience, we consider h� to be
Gaussian, which leads to the following expression for
the self-energy u�;b:

u�;b ¼
q2�
8πϵb

�
1

a�
− κb exp

�ða�κbÞ2
π

�
erfc

�
a�κbffiffiffi

π
p

��
; ð6Þ

where a� is the radius of the ions associated with volume
v�. The first term on the rhs of Eq. (6) is the Born energy,

and the second term is the contribution from the ion
correlation. By combining Eq. (2) with Eq. (6), chemical
potentials can be expressed in terms of bulk concentration
and electrostatic potential. The coexistence curve and the
Galvani potential ΔψG can, thus, be obtained by equalizing
the chemical potentials and the grand free energy in the two
bulk phases (see Sec. II in Supplemental Material [37]).
To solve for the inhomogeneous interfacial region,

spatially varying self-energy u�ðrÞ, needs to be calculated.
However, a full numerical solution for self-energy will
require discretizing Eq. (4) at two length scales, one
belonging to the ion size and the other to the interfacial
width. This duality makes the exact numerical solution too
expensive to be practically tractable. To overcome this
barrier, the correlation function is decomposed into a short-
range contribution Gs and a long-range contribution Gl as

Gðr0; r00Þ ¼ Gsðr0; r00Þ þGlðr0; r00Þ: ð7Þ

Gs is defined using the local dielectric permittivity ϵðrÞ and
local ionic strength IðrÞ as

−ϵðrÞ∇2
r0Gsðr0; r00Þ þ 2IðrÞGsðr0; r00Þ ¼ δðr0; r00Þ; ð8Þ

which has an analytical solution similar to Eq. (5):

Gsðr0; r00Þ ¼
e−κðrÞjr0−r00j

4πϵðrÞjr0 − r00j : ð9Þ

Using the above expression of Gs, the short-range compo-
nent of the self-energy can be evaluated (i.e., u�;s ¼
ðq2�=2Þ

R
r0;r00 h�Gsh�) to have the same functional form

as Eq. (6) except that κb and ϵb are replaced by κðrÞ and
ϵðrÞ, respectively [Eq. (24) in Supplemental Material [37] ].
Next, the long-range contribution Gl can be obtained by
subtracting Eq. (7) from Eq. (4), which yields

−∇r0 :½ϵðr0Þ∇r0Glðr0; r00Þ� þ 2Iðr0ÞGlðr0; r00Þ ¼ Sðr0; r00Þ;
ð10Þ

where the nonlocal source term S is

Sðr0; r00Þ ¼ ∇r0 :½ϵðr0Þ − ϵðr00Þ�∇r0Gsðr0; r00Þ
− 2½Iðr0Þ − Iðr00Þ�Gsðr0; r00Þ:

It can be clearly seen from the above source term that Gl
accounts for all the nonlocal electrostatic effects associated
with the spatially varying ionic strength and dielectric
permittivity, where the local values Iðr00Þ and ϵðr00Þ are
taken as the reference. S becomes zero as r0 approaches r00,
which indicates that Gl does not include any local con-
tribution and is also free of the divergence problem.
To rationalize the aforementioned decomposition, it is

important to look at the physical meaning of self-energy.
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u�ðrÞ is essentially the work needed to gather the con-
stituting charges of the test ion from infinity to position r in
the presence of a given electrostatic environment. This
Letter depends on the charge spread of the ion h� as shown
in Eq. (3). The charge spread on the ion will be crucial to
only the electrostatic forces originating in the close
neighborhood of the test ion. In contrast, the electrostatic
effects acting from far away are insensitive to the details of
the charge distribution; equivalently, the test ion can be
taken as a point charge, h�ðr − r0Þ ¼ δ�ðr − r0Þ. The
nature of our decomposition of G is such that Gs accounts
for only the local electrostatic environment, whereas all the
long-range electrostatic effects are attributed to Gl. For
most electrolyte solutions, ion radius is the smallest length
scale in the system, while the long-range effects generally
have characteristic length scales much larger than ion size.
Therefore, Eq. (3) can be simplified by taking the same
point limit of Gl as

u�ðrÞ ¼ u�;sðrÞ þ
q2�
2
Glðr; rÞ: ð11Þ

Through the decomposition of G, we have successfully
decoupled the short-range and long-range components of
the electrostatic correlation. By taking the point-charge
limit in Eq. (11), now we need only to discretize Eq. (10) at
a single length scale associated with the interfacial width,
thus significantly reducing the numerical complexity. In the
case of the planar geometry, such as the vapor-liquid
interface, the problem is further simplified by performing
a two-dimensional Fourier transform on Gl in the plane
parallel to the interface [38]. The details of the transform
and the numerical scheme are presented in Sec. III in
Supplemental Material [37]. The decomposition of G intro-
duced in the current Letter has a similar physical basis as the
Ewald summation commonly used in computing electro-
static interactions in molecular simulations [39,40].
In the current Letter, we study the effect of inhomo-

geneous ion correlation on the structure and properties of
the vapor-liquid interface for the case of constant dielectric
permittivity, independent of the concentration. A constant ε
also facilitates the quantitative comparison with molecular
simulations performed using the primitive model. We start
with the bulk thermodynamics of symmetric salt, where
qþ ¼ q− ¼ 2 and aþ ¼ a− ¼ a. Figure 1 plots the phase
diagram of the vapor-liquid equilibrium in terms of reduced
temperature T=Tc, where Tc is the critical temperature. By
accounting for the finite charge spread on the ion, our
theory predicts a much broader coexistence envelope
compared to the point-charge Debye-Hückel (DH) theory
and is in quantitative agreement with three independent sets
of simulation data [18,20,41]. In the homogeneous bulk,
the self-energy contains only the short-range component
u�;s, which depends on the details of the ion. Our results
highlight the necessity of including the finite charge spread

to accurately capture the short-range correlation. The short-
range correlation, thus, also becomes a prerequisite to
modeling the correlations in the interface. It should be
noted that, in Fig. 1, the comparison is made at the same
distance from the critical point. It is well recognized that
fluctuation theories at the Gaussian level cannot accurately
capture the critical point, a feature that is possible to be
reproduced only through renormalization-group calcula-
tions [14,15].
By resolving the correlation function at both short and

long ranges, we can calculate the interfacial ion concen-
tration profile between the two coexisting bulk phases. The
concentration profiles for different values of T=Tc are
shown in Fig. 2(a). The profiles are shifted to have the same
position of the Gibbs dividing surface (GDS). Including the
long-range correlation effect is essential for capturing the
continuous change in concentration from vapor to liquid.
This diffused interface cannot even be created by theories
that include only the local correlation. The importance of
the long-range effect is also illustrated by the interfacial
width on the two sides of the GDS, as shown in the inset in
Fig. 2(a). As the critical temperature is approached, the
interfacial width on both sides increases and eventually
diverges at the critical concentration, which is consistent
with the divergence of the correlation length at the critical
point as predicted by Lee and Fisher [28]. Furthermore, the
concentration dependence of the interfacial width on vapor
side δv is counterintuitive. As the concentration in the vapor
phase increases, its bulk correlation length (analogous to
the Debye screening length) decreases, which is expected
to shorten δv. The increase of δv predicted by our theory is a
result of the long-range correlation effect from the bulk

FIG. 1. Phase diagram of liquid-vapor coexistence in symmet-
ric ionic fluids plotted using reduced temperature (T=Tc) and
scaled total concentration of ions cð2aÞ3. The lines represent
theoretical predictions in comparison with the simulation data
from González-Melchor, Alejandre, and Bresme [20] (circles),
Orkoulas and Panagiotopoulos [42] (squares), and Caillol,
Levesque, and Weis [41] (triangles).
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liquid phase to the vapor side. The two sides of the interface
interfere with each other due to this long-range effect.
Our theory also quantitatively captures the interfacial

properties of the vapor-liquid interface. Figure 2(b) shows
remarkable agreement of interfacial tension between our
calculations and the simulation results from González-
Melchor, Bresme, and Alejandre [22]. The quantitative
agreement of both the phase coexistence curve and the
interfacial tension for a wide range of temperatures vali-
dates the ability of our theory to accurately model interfaces
with large interfacial inhomogeneities. For the same vapor-
liquid interface, nonlocal density functional approaches
have been found to overestimate interfacial tension values
by a factor of 3 [23]. Our method is also superior to the
square gradient theory-based approaches, which are valid
only close to the critical temperature. The nonperturbative

nature of our method allows us to capture inhomogeneous
correlation beyond the square gradient level and, thus,
guarantees its applicability to a variety of interfacial
systems with steep concentration gradients.
The modified Poisson-Boltzmann form of our equations

enables us to conveniently include electrostatic potential
and ion correlations in a unified framework. For the case of
asymmetric salts, where cation and anion have different
valencies or ion sizes, the difference in their self-energies
leads to local charge separation and an electrostatic
potential profile across the interface. Here, we provide
the first theoretical prediction of interfacial structure for a
2∶1 salt. Figure 3(a) shows the Galvani potential ΔψG
predicted by our theory, in good agreement with the
simulation results reported in the literature [21]. The
electrostatic potential profile and the net charge distribution

(a) (b)

FIG. 2. Interfacial structure and properties for a symmetric salt, ϵ ¼ 80. (a) Ion concentration c� ¼ cð2aÞ3 profiles for different T=Tc
with a vertical dashed line denoting the Gibbs dividing surface. The inset plots the interfacial width on the vapor (dashed) and liquid side
(solid) of the interface against the ion concentration in the corresponding bulk (c�b). (b) Nondimensional surface tension γ� ¼
γ4πεð2aÞ3=ðqþq−e2Þ as a function of the reduced temperature T=Tc predicted by our theory in comparison with simulations of
González-Melchor, Bresme, and Alejandre [22].

(a) (b) (c)

FIG. 3. Interfacial structure for a 2∶1 asymmetric salt. (a) Theoretical predictions of Galvani potential ΔψG in comparison with
simulation data from Ref. [21]. (b) Electrostatic potential profile ψðzÞ (solid lines) and net charge distribution ρðzÞ (dashed lines). The
vertical dotted line denotes the point of zero charge. (c) Cation (solid) and anion (dashed) concentration profiles, c� ¼ cð2aÞ3. The insets
enlarge the double-layer structure on the two sides of the interface; ion concentrations are plotted relative to their respective bulk values.
T=Tc ¼ 0.76 and ϵ ¼ 80 for (b) and (c).
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are plotted in Fig. 3(b). As the potential changes from 0 in
the vapor phase to a finite value in the liquid phase, its
curvature and, hence, the net charge are forced to change
sign at some intermediate point. Net positive and negative
charges accumulate on the liquid and vapor sides, respec-
tively. The two sides of the interface behave as charged
objects with equal and opposite charges, essentially acting
as double layers to each other. This dual double-layer
structure can be more clearly seen in the ion distribution in
Fig. 3(c). On the vapor side, the net charge is negative, and
the electrostatic potential and ion distribution are similar to
electrolyte solutions in contact with a positively charged
surface. The left inset shows the depletion of cations
compared to the bulk value, whereas anions are enriched.
On the other hand, local excess of cations over anions can
be seen in the right inset, as expected for a double layer next
to a negatively charged surface. Similar self-energy-
induced charge separation can also be observed in other
interfaces, such as two immiscible fluids [43,44] or micro-
phase separated block copolymers [10,45].
In Fig. 3(c), it is worth noting that concentrations of both

cations and anions on the liquid side are larger than their
corresponding bulk values. This prediction can be explained
by the strong correlation effect in the liquid phase. Similar
counterintuitive enrichment of cations is not expected on the
vapor side due to its low ion densities. The cooperative
enrichment of both counterions and coions is critical to
explaining the phenomena of charge inversion in electrical
double layers [36]. The overaccumulation of multivalent
counterions next to the charged surface is stabilized by the
presence of an excess amount of coions.
In conclusion, the modified Gaussian renormalized

fluctuation theory and the decomposition method devel-
oped in this Letter represent essential improvements over
existing methods to model the vapor-liquid interface. The
correlation function is decoupled into a short-range con-
tribution associated with the local electrostatic environment
and a long-range contribution accounting for the spatially
varying ionic strength and dielectric permittivity. For most
electrical double layers, the double-layer length scale is
much larger than the ion size due to the long-range nature
of Coulombic interactions. This allows us to separate the
two length scales. The nonperturbative and self-consistent
nature of the theory allows the description of bulk thermo-
dynamics and interface in a wide range of temperatures. A
finite charge spread on the ion is necessary to accurately
describe the short-range correlation and, hence, the vapor-
liquid coexistence curve. Including the long-range corre-
lation effect is essential for generating a continuous
concentration profile across the interface. The resulting
interfacial tension predicted by our theory is in quantitative
agreement with simulation data for symmetric salts. We
also provide the first theoretical prediction of the interface
for an asymmetric salt, where the difference in ion
correlation between cations and anions leads to an

electrostatic potential profile and local charge separation
on both the vapor and liquid sides of the interface. The ion
distribution profiles on each side of the interface resemble
an electrical double layer next to a charged surface.
Because of high ion densities in the double layer on the
liquid side, a cooperative enrichment of both counterions
and coions is predicted. Finally, our theory is derived using
a field-theoretical approach, which makes it straightforward
to incorporate into other field-theoretical formulations,
such as self-consistent field theory for polymers or
Poisson-Nernst-Planck equation for electrokinetic flows.
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