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Polycatenanes, macrochains of topologically interlocked rings with unique physical properties have
recently gained considerable interest in supramolecular chemistry, biology, and soft matter.Most of thework
has been, so far, focused on linear chains and on their variety of conformational properties compared to
standard polymers. Herewe go beyond the linear case and show that, by circularizing suchmacrochains, one
can exploit the topology of the local interlockings to store twist in the system, significantly altering its metric
and local properties. Moreover, by properly defining the twist (Tw) and writhe (Wr) of these macrorings we
show the validity of a relation equivalent to the Călugăreanu-White-Fuller theorem TwþWr ¼ const,
originally proved for ribbonlike structures such as double stranded DNA. Our results suggest that circular
polycatenanes with storable and tunable twist can form a new category of highly designable multiscale
structures with potential applications in supramolecular chemistry and material science.
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Topologically constrained polymers have recently
attracted considerable attention in physics, chemistry,
and biology [1]. Examples are nanoengineered mechan-
ically interlocked molecules such as rotaxanes, catenanes,
and molecular knots [2,3], melts of rings [4], and olympic
gels [5–7] such as the natural occurring kinetoplast DNA
[8–11]. Steady advancements in chemical synthesis tech-
niques [12–14], modeling, and simulations [15,16] have
recently offered a framework to design systems of inter-
locked rings with controllable properties [13,14,17,18] and
versatile applications [19–21]. Examples range from cat-
alyzers and nanomachines [22–26] to candidates for novel
smart materials and artificial muscles [27].
Novel experimental techniques allow one to synthesize

high-weight polycatenanes, called mechanically inter-
locked polymers (MIPs), namely long chains composed
by n elementary rings held together only by topological
interlocking (Hopf links) [13,14,28]. In particular, in
Ref. [13] metal supramolecular polymers were used to
obtain MIPs composed of up to n ¼ 130 rings, while
in Ref. [14] a novel self-assembly technique was proposed
in which supramolecular rings were grown to form a
catenane of up to 22 units [14]. These studies have
prompted the question of how the configurational

properties of MIPs differ from their standard polymeric
counterparts whose elementary units are held together by
covalent bonds [29–32].
Interestingly, the possibility of synthesizing cyclic poly-

catenanes [13] brings up the question of how and to which
extent the imposed circular constraint affects the geometry
and physics of these structures. For instance, circularized
polycatenanes might assume supercoiled configurations as
in double stranded DNA (dsDNA), changing their elastic
and dynamical properties, and their responsiveness to
external stimuli.
Here we show that properly designed circular polycate-

nanes of semirigid rings [3,13,14] can store a supramolecular
twist that affects their equilibrium properties. Since they are
geometrically more complex than ribbonlike structures, we
provide a strategy to measure the topologically stored twist
and extend the notion of twist and writhe of a ribbon to the
present context.With thismeasurewe show that by tuning the
stored twist and the number of rings n one can control the
average extension of the polycatenanes as well as their local
properties such as the relative orientation of the rings.
Moreover, we provide evidence that a relation equivalent
to theCălugăreanu-White-Fuller (CWF) theorem for ribbons
[33–37] also holds for circular polycatenanes.
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Topological characterization.—From a physical point of
view, one can naturally store twist in a circular chain of
rings (a circular polycatenane, or “ring-o-rings”) by fixing
one of the two end rings of an open polycatenane, twisting
the other one by a given number of half turns, and linking
the two rings to circularize the chain. Each added half turn
results in a different topology. These systems are also
known as twisted n-link chains. In mathematics, physical
rings are replaced by unknotted circles so that different
topologies can simply be distinguished by including a
given integer number of half turns in one circle, while all
the others lie in a minimal-twist configuration, e.g., one
orthogonal to the next if n is even [38,39]. This elegant
approach, however, cannot be applied when dealing with
physical rings as the number of half turns is limited by
their self-avoidance and rigidity. In the following, we
provide an alternative definition suitable for the case of
semirigid rings.
Let us consider a circular poly[n]-catenane made of

n ¼ 2k planar, oriented rings, whose normals are assigned
following the right-hand rule (see also Ref. [39]). For
simplicity, we limit ourselves to topologies that admit a
planar configuration in which the centers of the rings are
placed on the vertices of a regular n-gon on the xy plane,
with consecutive rings lying on planes forming alternating
angles of þδ=2;−δ=2 with the xy plane (δ is the angle
required to satisfy excluded volume of the rings), and with
normals pointing in the z > 0 direction; see Fig. 1(a). In
this reference configuration (rconf) we can rotate each ring
around the catenane backbone so that it lies orthogonally to
its immediate neighbors along the chain. This topology
coincides with a minimally twisted n-links chain [38], and
we call it a 0-twist ring-o-rings.
Since the rings are oriented, we can compute the total

linking number as Lktot ¼
P

n
i¼1 Lki;iþ1, where Lki;iþ1

is the linking number between two consecutive rings
calculated according to the standard convention for the
sign of crossings, and Lkn;nþ1 ¼ Lkn;1 (see Fig. 1 and the
Supplemental Material [40]). Clearly Lktot ¼ 0, as each
ring contributes a þ1 and a −1 link with its neighbors.
Starting from the 0-twist rconf, we construct different

topologies by switching the crossings between consecutive
pairs of rings in such a way to change the sign of their Hopf
links. The total linking number of the catenane can be
controlled by focusing on either even or odd rings. Here,
we consider the k even rings. Each of them contributes to
Lktot by an amount Lkring ∈ f−2; 0;þ2g depending on
the sign of the Hopf links it forms with its neighbors. In
Figs. 1(a)–1(c) these rings are colored in yellow, blue, and
red respectively, while odd rings are colored in gray. For
instance, in rconf the nth ring is blue and forms a þ1 Hopf
link with ring 1 and a −1 Hopf link with ring n − 1. If we
detach ring n from n − 1 and join them together again in
such a way that they form a þ1 Hopf link, a new
configuration rconf 0 is obtained with total linking number

Lktot ¼ þ2 [see red ring in Fig. 1(b)]. Clearly rconf and
rconf 0 are topologically inequivalent, because they have
different values of Lktot and the latter is a topological
invariant. A yellow ring may be obtained analogously
transforming the þ1 Hopf link made by rings 1 and n
into a −1Hopf link. The resulting new configuration rconf00
has Lktot ¼ −2.
The change of a ring from blue to red or yellow entails a

change of twist. For example, the passage from blue to red
can also be implemented by detaching ring n from ring 1,
rotating it by an angle π − δ around the backbone, and then
rotating ring 1 by an angle δ to link it back to ring n; see
Fig. 1(c). If the original orientation of the ring is kept fixed,
this operation contributes a ΔTw0 ¼ 1

2
(half turn) to the

initial twist. When defining the normal to point toward

FIG. 1. (a) 0-Twist reference configuration. In the center, we
show the twist angles between consecutive normals. The dots
inside the rings indicate that all their normals point in the direction
z > 0. (b) The circular polycatenane resulting from detaching ring
n from ring n − 1 and closing it switching crossings. (c) The same
configuration can be obtained by detaching ring n from ring 1 and
flipping it by half a turn before closing the catenane again. The x
indicates that the normal of ring n now points below the plane.
(d) A circular polycatenane obtained after four clockwise flips of
the nth ring, followed by two counterclockwise flips. As explained
in the text, all reference configurations can also be obtained by
switching the links on even rings, allowing us to calculate the
topological invariant ntw ¼ nþ − n−. The configuration (d) is
equivalent to a catenanewithnþ ¼ 2 red rings and no yellow rings,
as explained in the SupplementalMaterial [40]. (e) The stiffness of
the rings allows us to map them on their centers Ri and normal
vectors N̂i. Notice how the vectors N̂i need not to be perpendicular
to the backbone vectors Ti.
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z > 0, we obtain Lk ¼ þ2. Equivalently, transforming a
blue ring into a yellow one contributes ΔTw0 ¼ − 1

2
.

Starting from rconf and applying recursively the above
procedure on the set of rings 2l, l ¼ 1;…; k, one can store
in the system a total initial twist Tw0 ¼ 1

2
ðnþ − n−Þ, where

nþ and n− are respectively the number of red and yellow
rings, ranging in the interval −k ≤ nþ;− ≤ k. By making
an analogy with Ising systems, one can show that
ntw ≡ nþ − n− is the only quantity controlling the topology
of the system; see the Supplemental Material [40].
Simulated systems.—The polycatenanes are composed

of n ¼ f20; 40; 60; 80; 100; 200; 300g elementary rings,
with ntw=n ¼ f0; 0.1; 0.2; 0.3; 0.4; 0.5g. Note that this
choice of ntw corresponds to Tw0 being an integer.
Each ring is described by a standard bead-spring model

with m ¼ 48 beads of diameter σ, giving a thickness-to-
diameter ratio p ¼ σ=D ¼ 0.065; this is compatible with
typical polycatenanes obtained from metal-supramolecular
polymers [13]. Other values of p, more compatible with
either DNA minicircles [3] or supramolecular toroids [14]
have been investigated too. The connectivity of each
elementary ring is provided by a finitely extensible nonlinear
elastic (FENE) potential, and its nominal persistence length
is set to lp ¼ 2mσ. This level of rigidity prevents substantial
variations in local curvature [see Fig. 1(d)], and is compat-
ible with that of the rings used both in Ref. [13] and [14].
Finally, the excluded-volume interaction among the nm
beads is treated via a Weeks-Chandler-Andersen potential;
see the Supplemental Material [40] for more details.
The systems are evolved starting from their planar

configuration using an underdamped Langevin dynamics
integrated numerically with the LAMMPS package [41],
with default values for the mass, temperature, energy
coefficients, and damping time τd ¼ 10τLJ, where τLJ is
the characteristic simulation time (see the Supplemental
Material [40] for more details).
In Fig. 2 we report some typical equilibrium configura-

tions of circular polycatenanes forn¼20, 300 andntw=n¼0,
0.5: one can readily see that, for fixed n, configurations with
large ntw are more crumpled than untwisted ones (ntw ¼ 0).
Moreover, as n increases, twisted configurations start to
form curled substructures reminiscent of the plectonemes in
supercoiled DNA [42]. Although n is not very large,
branchedlike structures can be observed for n ¼ 300.
Observables.—To characterize the behavior of circular

polycatenanes and their relation to closed ribbons, we take
advantage of the semirigidity of the rings and coarse grain
the systems as follows:

Ri ¼
1

m

Xm

k¼1

rk; Ti ¼ Riþ1 −Ri; ð1Þ

Ni ¼
4

3m

X3m=4

k¼1

ðrkþm=4 −RiÞ × ðrk −RiÞ; ð2Þ

ν̂k ¼
N̂k − ðN̂k · TkÞTk

kN̂k − ðN̂k · TkÞTkk
ð3Þ

where rk is the position of the kth bead on ring i, Ri is its
center of mass, Ti the bond vector, N̂i ¼ Ni=jNij the
normal of ring i, and ν̂i is the normalized component of
N̂i orthogonal to T̃i; see Fig. 1(e). Keeping the analogy
with twisted ribbons, the beads are numbered so that in
rconf all normals points up in the 0-Twist ring-o-rings,
while each time a red ring is introduced, its normal and
those of successive rings are reversed to follow an equiv-
alent ribbon which is twisted by half turn for each added red
ring, so that Tw0 ¼ ðntw=2Þ.
We first look at the correlation of the ring-ring orienta-

tions, Cnðd; ntw=nÞ ¼ hð1=nÞPn
i¼1 jN̂i · N̂iþdji, where the

average is performed over all pairs of rings at distance d
taken from all configurations sampled at fixed ntw=n. Note
that Cnðd; ntw=nÞ neither depends on the rings’ orientation,
nor on the catenane size n. The results are reported in
Fig. 3(a) as ΔCnðd; ntwÞ ¼ Cnðd; ntw=nÞ − Cnðd; 0Þ, nor-
malized by Cnðd; 0Þ, with Cnðd; 0Þ shown in the inset. For
d ≥ 3, Cnðd; 0Þ is equal to 1=2, the average angle between
two random planes. Cnð1; 0Þ < 1=2 and Cnð2; 0Þ > 1=2
indicate that when ntw ¼ 0 the rings have alternated
orientations. Rings’ orientation in systems with larger
values of ntw=n decorrelate at distances d ≥ 5, indicating
a change in the local arrangement of the rings due to
torsion.
To check whether more global observables are affected

by the injected twist, we looked at the squared radius of
gyration of the backbone, R2

gðn; ntwÞ, computed using the

FIG. 2. Typical configurations for n ¼ 20; 300 rings with
ntw ¼ 0 (left column) and ntw ¼ 0.5n (right column). The latter
are visibly more crumpled. The scale of the snapshot is preserved
at fixed values of n. The color map highlights the sequence of
elementary rings along the backbone.
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coarse-grained coordinates Ri. All distances were mea-
sured in units of the ideal ring diameter D ¼ m=π. As
shown in Fig. 3(b), the stored twist significantly affects the
value of R2

gðn; ntwÞ: going from ntw ¼ 0 to ntw ¼ n=2 at
fixed n the polycatenanes become roughly twice as
compact. Furthermore, although the simulated systems
are not sufficiently long to draw conclusions on the
exponent of the expected scaling R2

g ∼ An2ν, the estimated
shapes of the curves in the extreme cases R2

gðn; 0Þ and
R2
gðn; n=2Þ suggest that a sufficiently large initial twist may

change the scaling of the gyration radius of the polycate-
nane from the self avoiding walk class ν ¼ 0.587297ð7Þ
[43] to the branched polymer one with excluded volume
ν ¼ 0.5 [44,45]. This crossover has been, for instance,
observed in very long and supercoiled dsDNA rings [42] as
well as in concentrated solutions of polymer rings [46,47]
or rings in the presence of obstacles [48].
The fact that circular polycatenanes take on configura-

tions which resemble supercoiled DNA (see also the snap-
shots reported in Fig. 2 for n ¼ 300) can be further tested by
looking at the n dependence of the absolute value of the
writhe of the backbone jWrjðn; ntwÞ. Thewrithe is defined as
the number of signed crossings of the backbone averaged
over all projections, and captures the amount of coiling of a
closed curve on itself [35,36,49,50]. The exact formula is
reported in the Supplemental Material [40]. The behavior of
jWrjðn; ntwÞ is reported in Fig. 3(c) for different values of

ntw. The difference in the scaling behavior of jWrjðn; ntwÞ
for relaxed and torsionally stressed polycatenanes is evident.
For the former case, jWrjðn; 0Þ ∼ n1=2, as expected by
rigorous and numerical results on unconstrained random
polygons [51,52]. On the other hand, as soon as a finite
density of initial twist is trapped along the circular poly-
catenanes, jWrjðn; ntw > 0Þ ∼ BðntwÞn. This transition
from the sublinear to linear regime is a genuine feature of
circular polycatenanes that cannot be observed in standard
models of linear unstructured polymer chains unless they are
either strongly confined [53–55] or collapsed into globular
shapes by effective attractive interactions [56].
We now test whether the CWF theorem proved for

smooth circular ribbonlike structures such as dsDNA rings
[33–37] holds in some form for circular polycatenanes. We
recall that for a closed ribbon the theorem states that
the linking number between its two boundaries satisfies
the conservation law Lk ¼ TwþWr, where Tw is the total
twist of the ribbon while the writhe Wr measures the
amount of coiling of the ribbon centerline (see the
Supplemental Material [40] for more details).
Unfortunately, circular polycatenanes cannot easily be

mapped into smooth ribbons, as each of their elementary
rings has a significant orientational freedom [see Fig. 3(a)].
Nonetheless, since the rings are sufficiently rigid, we can
map the macroring onto a ribbon whose boundaries are
given by the curve joining the center of masses Ri and the
curve joining the tips of the vectors ν̂i [see Fig. 1(e) and
Eq. (3)]. We can thus measure Tw and Wr for circular
polycatenanes, and check whether the relation TwþWr ¼
constant holds (see the Supplemental Material [40] and
Ref. [49] for details).
For each configuration we find indeed that

TwþWr ∈ Z. We verified this by taking the fractional
part of TwþWr, and found the relation to hold up to a
factor of order 10−9, with a standard deviation of 10−12,
compatible with the fact that the rings are not perfectly
rigid. Furthermore, we notice that hTwþWri ¼ αntw=2
[see Fig. 3(d)], where the factor α < 1 comes from the fact
that the twist angle between two consecutive normals is
defined in ½−π; π�, and our coarse graining is equivalent to a
piecewise ribbon in which two successive normals can be
twisted by an angle larger than jπj (see the Supplemental
Material [40] for details). This is equivalent to saying that
Tw mod ð1Þ þWr ¼ ntw=2. The fact that Tw is defined
mod(1) is a known aspect of the original Călugăreanu
theorem which can be dispensed away for smooth ribbons,
but might be present in general [36] (see Ref. [57]).
Finally, we investigate how the configurational proper-

ties of circular polycatenanes depend on the thickness-to-
diameter ratio, p ¼ σ=D, of the elementary rings. This has
been done for n ¼ 20, ntw ¼ 0, 10, and p ¼ 0.022, 0.065,
0.087. The result TwþWr ∈ Z holds for all p.
Furthermore we notice that, for the range of p values
commonly used in self-assembled polycatenanes, the

(a) (b)

(c) (d)

FIG. 3. (a) ΔCnðd; ntw=nÞ=Cnðd; 0Þ as a function of the index
distance d along the backbone, for six different values of ntw=n.
(b) Squared radius of gyration as a function of n and ntw=n. Rg is
in units of D ¼ m=π. (c) Scaling of the absolute value of the
writhe jWrj with n, for different values of ntw=n. (d) hTwþWri
for different values of ntw and n. Results for n ¼ 20 include
different aspect ratios p. The error bars correspond to the standard
deviation of the reported values.
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effective compression of the system is apparent and persists
over about 1 order of magnitude, with ðRg=DÞ2ðntw=n ¼
0Þ ranging between 1.52� 0.30 for p ¼ 0.022 to 1.67�
0.33 for p ¼ 0.087, while for ntw=n ¼ 0.5 ðRg=DÞ2 is
consistently smaller, ranging from 1.05� 0.20 for p ¼
0.022 to 1.07� 0.16 for p ¼ 0.087, giving a a compression
factor of about 50% (see the Supplemental Material [40]).
In conclusion, we demonstrated how circularized poly-

catenanes (ring-o-rings) can store a controllable amount of
twist, that radically affects their equilibrium properties. We
identified a topological parameter ntw which quantifies the
amount of twist initially stored into the system, and showed
that it dictates both the relative orientationof nearest-neighbor
rings and the scaling of the mean extension Rg and writhe
jWrj. Arguably, ntw can be measured experimentally as long
as a planar configuration of a polycatenane is available, e.g.,
by atomic force microscope techniques [60].
Remarkably, our results show that the famous

Călugăreanu-White-Fuller relation for dsDNA and ribbons
holds also for circular polycatenanes up to a factor mod (1) in
the definition of the twist, Tw mod ð1Þ þWr ¼ const, inde-
pendently of the choice of normals of the elementary rings.
It is worth stressing that the above results remain valid

for circular polycatenanes in good solvent conditions and
over a wide range of ring thickness-to-diameter ratios, and
should be observable experimentally in systems such as
double-stranded DNA catenanes [61], synthetic polymeric
polycatenanes [13,14], and at much larger scales, macro-
scopic rings-o-rings in which thermal fluctuations are
replaced by randomized mechanical stimuli.
Finally, we believe that the model and findings presented

here could be of interest for further developments in
supramolecular chemistry and in the physics of soft
materials, particularly soft robotics [62,63]. Moreover, as
the Călugăreanu-White-Fuller relation links a local geo-
metrical property, the twist, to a global one, the writhe, we
believe that circular chains of topologically interlocked
rings could inspire future works not only in mathematics
and theoretical physics [35,36,64,65] but also, and most
prominently, in the field of highly responsive soft self-
assembled materials with tunable properties.
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