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Non-Abelian anyons are fractional excitations of gapped topological models believed to describe certain
topological superconductors or quantum Hall states. Here, we provide the first numerical evidence that they
emerge as independent entities also in gapless electronic models. Starting from a multi-impurity
multichannel chiral Kondo model, we introduce a novel mapping to a single-impurity model, amenable
to Wilson’s numerical renormalization group. We extract its spectral degeneracy structure and fractional
entropy, and calculate the F matrices, which encode the topological information regarding braiding of
anyons, directly from impurity spin-spin correlations. Impressive recent advances on realizing multi-
channel Kondo systems with chiral edges may thus bring anyons into reality sooner than expected.
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Introduction.—Non-Abelian anyons are exotic (quasi-)
particles which obey neither fermionic nor bosonic sta-
tistics, and lie at the heart of topological quantum comput-
ing [1,2]. They define an anyonic fusion space which can
only be transversed by their mutual exchange, or braiding,
thus providing topological protection for information
encoded in this space. An important class of non-
Abelian anyons are the SUð2Þk anyons, which are governed
by truncated SU(2) fusion rules [3]. Each such anyon (of
topological charge 1

2
) carries with it a quantum dimension of

dk ¼ 2 cos ½π=ð2þ kÞ�, which gives the degeneracy per
anyon in the thermodynamic limit. Prominent examples are
the Ising ðk ¼ 2; d2 ¼

ffiffiffi
2

p Þ and Fibonacci ½k ¼ 3; d3 ¼
ð1þ ffiffiffi

5
p Þ=2� anyons, predicted to arise, e.g., in the ν ¼ 5=2

and 12=5 fractional quantum Hall states, respectively [4,5],
and Majorana “fermions” (also k ¼ 2), which arise in a
variety of topological systems, e.g., pinned to vortices in
2D topological superconductors [6–8] or on the edges of
superconducting nanowires [9,10]. However, these quasi-
particles prove to be extremely elusive, with no clear
experimental evidence for their non-Abelian nature.
Another system governed by SUð2Þk fusion rules,

although not of a topological nature, is the k-channel
Kondo effect [11,12]. This was most clearly demonstrated
by Emery and Kivelson [13], who formulated the solution
of the two-channel Kondo effect in terms of Majorana ope-
rators. Importantly, this effect has already been observed in
tunable nanostructures, for both k ¼ 2 [14–18] and k ¼ 3
[19] channels. The Kondo effect occurs when a quantum
impurity, e.g., a spin-1

2
, is coupled antiferromagnetically to

(multiple) noninteracting spinfull fermionic bath(s), i.e.,
channel(s). For a single channel, at temperatures below the
Kondo temperature, the fermions in the bath screen the
impurity, which can be interpreted as the impurity binding a
fermion from the bath and forming a singlet with it. Going

to multiple channels, each channel independently contri-
butes a single screening fermion, but this leads to frus-
tration and fractionalization of the impurity degrees of
freedom. The fractionalized quasiparticle comes with a
zero-temperature entropy of log dk, corresponding to the
quantum dimension of a single SUð2Þk charge-1

2
anyon

[20]. Indeed, the low-energy physics of the k-channel
spin-s ≤ k

2
Kondo effect are captured by a conformal field

theory (CFT) in which a single SUð2Þk anyon with charge s
is fused onto the primary fields of (k-channel) free
fermions [21,22].
In order to discuss anyonic statistics, or braiding, we

require (i) multiple quasiparticles and (ii) a physically
accessible operator which acts on the anyonic fusion space.
The paradigmatic multichannel Kondo effect assumes a
dilute scenario, so that at temperatures above the Fermi
velocity over the interimpurity separation (vF=R), each
impurity is effectively coupled to a different bath, thus
satisfying (i) but breaking (ii), while for lower temper-
atures, the bath fermions mediate effective RKKY [23–25]
interactions between the impurities, thus resolving the
frustration and avoiding emergent fractionalized quasipar-
ticles. It was only recently realized that (i) and (ii) might be
reconciled, either by gapping out the bath via super-
conducting pairing [26] or preventing the generation of
interactions in the first place by employing chiral channels
[27]. In the latter, fermions (of all channel and spin species)
can propagate only in one direction, as on the edge of an
integer quantum Hall system, thus preventing backscatter-
ing and interference, the mechanisms behind effective
interactions. Intuitively, the first impurity encountered by
chiral fermions is unaware of the impurities to follow, thus
fractionalizing as in the single-impurity case. Repeating
this argument sequentially suggests a fractionalized quasi-
particle for each impurity. In Ref. [27] a multiple-impurity
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extension of the single-impurity multichannel Kondo CFT
fusion was introduced as an ansatz for the low-energy
behavior of such a system: for each spin-1

2
impurity

introduce an SUð2Þk anyon with “topological” charge 1
2
,

fuse these anyons to each other, defining a non-Abelian
fusion space, and then fuse the result onto the free-
fermionic primary fields (see examples in Sec. I of the
Supplemental Material [28]). In this ansatz, different fusion
outcomes (corresponding to different states in the fusion
space) leave signatures, e.g., on the spatial fermionic
correlation functions, which (in principle) can be measured
by interferometry, enabling measurement-only braiding
[29] of quasiparticles. However, in the CFT ansatz the
anyons were put in by hand.
In this Letter we independently test this conjecture,

employing a controlled, nonperturbative, numerically
exact method—Wilson’s numerical renormalization group
(NRG) [30], which enables zooming in on the low-energy
physics of quantum impurity problems. A key part of NRG
is mapping the bath onto a tight-binding (Wilson) chain, but
this is incompatible with chirality, as any notion of
direction in a (nearest-neighbor) tight-binding chain can
be absorbed by gauge transformations. However, chirality
is also the solution to the problem. As the distance between
the impurities typically enters through interference effects,
which are now forbidden, we argue that it does not affect
universal properties. This is supported by the results in
Ref. [31], in which we numerically account for the distance,
as well as by the Bethe-ansatz solution for the Kondo
problem [32]. We thus have the freedom to take the distance
between the impurities to be arbitrarily small, as long as we
retain the notion of chirality and the ordering of the
impurities. We do this by first introducing “buffer sites”
between the impurities and the bulk chiral channels, and
only then taking the interimpurity distance to zero. This
results in a large effective impurity coupled to a trivial bath,
which can readily be plugged into NRG. We then numeri-
cally demonstrate that the low-energy behavior of the
system indeed corresponds to an SUð2Þk charge-1

2
anyon

for each impurity, and that the fusion outcome of pairs of
such anyons can be probed by measuring interimpurity spin
correlations.
Model and method.—We start with M spin-1

2
impurities

with spin operator Sm where m ∈ f1;…;Mg, and a bath of
right-moving free fermions

Hchiral ¼
X
ασ

Z
dxψ†

ασðxÞð−ivF∂xÞψασðxÞ; ð1Þ

with Fermi velocity vF, spin σ ∈ f↑;↓g, and channel
α ∈ f1;…; kg. One can directly couple the impurities to
the bath at locations fRmg by writing the HamiltonianP

m JSm · sðRmÞ þHchiral, with J > 0 the Kondo coupling
and sðxÞ≡P

ασ ψ
†
ασðxÞσσσ0ψασ0 ðxÞ the bath spin at location

x. We treat such a model in Ref. [31] by introducing M

coupled effective k-channel baths, but this comes with a
very high computational price tag, due to the exponential
scaling of NRG with the number of channels. Instead, here
we employ a mapping which captures the chirality with a
single k-channel bath. We first separate the impurities from
the bath, as illustrated in Fig. 1(a), by introducing buffer
“dangling” fermionic sites coupled to the bath at locations
fRmg, and then couple the impurities to these dangling
sites, arriving at

Htotal ¼ J
X
m

Sm · sm þHdang þHchiral; ð2Þ

Hdang ¼ t̃0
X
mασ

½d†mασψασðRmÞ þ ψ†
ασðRmÞdmασ�; ð3Þ

where dmασ and sm ≡P
ασ d

†
mασσσσ0dmασ0 are the dangling-

site fermionic and spin operators, respectively, J > 0 is the
Kondo coupling, and t̃0 together with the Fermi velocity
define a soft cutoff Γ≡ t̃20=2vF.
Initially we treat the dangling sites together with the

chiral channels as the noninteracting bath to which the
impurities are coupled. As typical of Kondo problems,
the bath dependence of impurity quantities enters (to all
orders in the Kondo-coupling J) only through the (retarded)
Green function of the bath at the sites coupled to the
impurities, i.e., the dangling sites, when these are de-
coupled from the impurities:

gR
dangðωÞ ¼ ½ω1 − h − ΣRðωÞ�−1; ð4Þ

with 1 theM ×M identity matrix, h ¼ 0 the single-particle
Hamiltonian acting on the dangling sites, and

ΣR
mm0 ðωÞ ¼ −2iΓΘðRm0 − RmÞeiωðRm0−RmÞ=vF ; ð5Þ

the retarded self-energy due to the coupling of the dangling
sites to the chiral channels, where ΘðxÞ is the Heaviside
step function [taking Θð0Þ ¼ 1

2
]. A clear signature of

chirality (assuming right movers) is that any retarded
quantity at location r due to an event at r0 > r vanishes.
And indeed, all elements below the diagonal of ΣRðωÞ are
zero, as a result of which the same holds for gR

dangðωÞ. Thus,
importantly, the introduction of the dangling sites retains

(a) (b)

FIG. 1. (a) The impurities are Kondo-coupled to “buffer”
dangling sites, which in turn quadratically couple to the chiral
channels, and are considered part of the noninteracting bath.
(b) Taking the distance between these sites to zero leads to an
effective chiral model, in which the dangling sites together with
the impurities form a large effective impurity.
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chirality. The obtained model is formally equivalent to one
without dangling sites in the Γ → ∞ limit, whereas for
finite Γ we have merely modified the bath density of states
to a Lorentzian of width Γ at each dangling site, which
should not affect the universal low-energy properties.
Assuming J < Γ, we can define the Kondo temperature
as TK ¼ Γe−πΓ=J.
We now take the limitωðRM − R1Þ=vF → 0, correspond-

ing to low temperatures or long wavelengths. This limit is
taken after the infinite bandwidth limit of Eq. (1), and is not
impaired by the soft cutoff Γ. ΣRðωÞ loses its frequency
dependence, but not its chirality, and can be written as

ΣR
mm0 → −iΓ

n
2 m0 > m
1 m0 ¼ m
0 m0 < m

≡ heff
mm0 − iΓ; ð6Þ

with heff a Hermitian matrix. Thus, heff can be interpreted
as an effective (single-particle) Hamiltonian coupling all
dangling sites to each other via imaginary hopping ampli-
tudes, while −iΓ describes a single trivial bath coupled
equally to all dangling sites, i.e.,

Heff
dang ¼

X
ασ

X
m>m0

it0mm0 ½d†mασdm0ασ − d†m0ασdmασ�

þ
ffiffiffiffiffi
M

p
t̃0
X
mασ

½d†mασψασð0Þ þ ψ†
ασð0Þdmασ�; ð7Þ

with t0mm0 ¼ Γ. Replacing Hdang in Eq. (2) with Heff
dang, we

arrive at the model depicted in Fig. 1(b).
Let us review what we have achieved. The obtained

model is still chiral (for the very specific choice of t0mm0),
and reproduces the bath Green function in the low temper-
ature limit. But now we can interpret the impurities together
with the dangling sites as a large effective impurity, coupled
to an effective bath (described only by Hchiral) at a single
location, so that its chirality is no longer important. The
resulting structure also hints at first fusing all the impurities
together, and then fusing onto a single (multichannel) bath,
as in the CFT ansatz of Ref. [27]. The obtained model is
amendable to standard NRG, although one still needs to
account for the multiple channels. In order to reduce the
computational cost, we exploit the different symmetries of
the model (charge, spin, channel), using the QSPACE tensor
network library, which treats Abelian and non-Abelian
symmetries on equal footing [33–35]. For implementation
details see Sec. III in the Supplemental Material [28] and
Refs. [36–39] therein. In order to apply NRG, we introduce
an artificial sharp high-energy cutoff D ≫ Γ; J to the bath
density of states. This cutoff, and to a lesser extent the NRG
discretization and truncation, mimic the effect of the bulk
bands (Landau levels), setting a finite bandwidth for the
chiral edge mode, and mediating effective nonchiral RKKY
interactions between the impurities. The latter are expected
to decay exponentially with both the bulk gap and the
interimpurity distance [40–42], and are thus eliminated by

numerically tuning each t0mm0 slightly away from Γ to
reinstate chirality (see Sec. IV D in the Supplemental
Material [28]).
Results.—We apply NRG to the effective Hamiltonian

for two channels with up to three impurities, and for three
channels with up to two impurities. In Fig. 2 we plot the
impurity entropy Simp, defined as the difference between the
entropy of the full system and that of the fermionic bath
(dangling sitesþ chiral channels) in the absence of the
impurities, which quantifies the effective degree of freedom
deff each impurity introduces. We find that deff is inde-
pendent of the number of impurities M, so that Simp=M ¼
logdeffðk; TÞ follows the universal single-impurity curve,
matching the limit of infinitely separated impurities, and
thus supporting our argument that in a chiral system the
interimpurity distance is not important. At high temper-
atures each impurity is effectively a free spin, contributing a
deff ¼ 2 degree of freedom. Going below the Kondo
temperature while assuming the thermodynamic limit for
the bath, each impurity contributes a fractional degree of
freedom deff ¼ dk corresponding exactly to an SUð2Þk
anyon. These results are well known in the single-impurity
scenario [20], but the scaling to multiple impurities,
implying an anyon for each impurity, is quite remarkable.
This is very different from the paradigmatic multi-impurity
multichannel scenario, where the initially similar entropy
curves break for temperatures below ∼vF=R due to
coherent backscattering which generates effective RKKY
interactions. In order to probe anyonic statistics we need
coherence, and indeed in our case we are already in the
regime of T ≪ vF=R → ∞, but now due to chirality,
backscattering is forbidden, and the anyons survive.

FIG. 2. Impurity entropy per impurity for two channels (red)
with 1–3 impurities, and three channels (blue) with 1–2 impu-
rities, taking 2J ¼ Γ ¼ D=8. At high temperatures the impurity
spins are free, each contributing an entropy of log 2. At low
temperatures each impurity contributes a fractional entropy
corresponding to the quantum dimension of Ising [SUð2Þ2]
or Fibonacci [SUð2Þ3] anyons for two or three channels,
respectively.

PHYSICAL REVIEW LETTERS 129, 227703 (2022)

227703-3



The curves in Fig. 2 were obtained for the specific choice
of the dangling-site hopping amplitudes t0mm0 which renders
the system chiral. We can characterize this point by
artificially tuning away from it, and demonstrate that at
the chiral point, the low-energy theory is exactly that of the
CFT ansatz of Ref. [27]. This is best observed in the finite-
size spectrum obtained by NRG, but as its analysis is quite
technical, we defer it to Sec. II in the Supplemental
Material [28]. Instead, here we discuss more intuitive
quantities.
For two impurities, with either two or three channels, we

find that the effective system undergoes a quantum phase
transition from a Kondo-screened spin-1 impurity when the
single parameter t012 is below some critical value to a spin-0
“Kondo” effect above it, similar to the two-impurity
Kondo-RKKY phase transition [43]. The two phases can
be identified by their low-energy spectra (see Sec. II in the
Supplemental Material [28]), with the transition observed,
e.g., in the interimpurity spin correlator hS1 · S2iT→0, which
flips sign from positive (tripletlike) to negative (singlet-
like), as shown in Fig. 3(a). Tuning away from criticality
and projecting the operator S1 · S2 down to the low-energy
subspace, we find it is a constant (equal to hS1 · S2iT→0),
and thus commutes with the low-energy Hamiltonian. This
is consistent with our characterization of the two phases,
but is not trivial, as S1 · S2 does not commute with the full
Hamiltonian, and hence the definite spin states (singlet and
triplet) mix low- and high-energy states. The critical t012 is
exactly the hopping amplitude required for the system to be
chiral (it indeed converges to Γ forD ≫ Γ; J; see Fig. S4(a)
in the Supplemental Material [28]). The projected S1 · S2

also commutes with the low-energy Hamiltonian at this
point, but now has two eigenvalues, positive and negative.
Projecting onto the subspace corresponding to the negative
(positive) eigenvalue takes us back to the spin-0 (spin-1)
Kondo phase. Thus, at the chiral point, the low-energy

Hamiltonian is the direct sum of the low-energy
Hamiltonians of the spin-0 and spin-1 Kondo effects.
Remembering these can be obtained by fusing an
SUð2Þk charge-0 or 1 anyon to the k-channel bath, we
see that in the chiral case we fuse two charge-1

2
anyons to

the bath

0 × Bathþ 1 × Bath ¼ ð0þ 1Þ × Bath ¼ 1

2
×
1

2
× Bath;

in perfect agreement with the CFT ansatz of Ref. [27]. As a
byproduct we have also demonstrated that a (low-energy)
measurement of the spin correlator S1 · S2 actually mea-
sures the fusion outcome of the two anyons. We note that
this relation between the fusion channel and the spin
correlator was also recently demonstrated analytically in
the limits of k ¼ 2 and large-k channels [44].
This suggests we can extract the anyonic F matrix,

which fully characterizes the non-Abelian part of the
anyonic theory [3], from measurements of different pair-
wise spin correlators, as depicted in Fig. 3(b). We explicitly
demonstrate this for three impurities and two channels. We
now tune two parameters: the nearest-neighbor t012 ¼ t023
(equal by symmetry) and next-nearest-neighbor t013
hopping amplitudes. For general values the effective
low-energy Hamiltonian is that of a single spin-1

2
two-

channel Kondo (2CK) effect, H2CK. However, at a single
critical point, corresponding to the system being chiral, we
get a twofold degeneracy (for each energy eigenstate) on
top of this 2CK effect. We can thus write the low-energy
Hamiltonian as a direct sum of two 2CK low-energy
Hamiltonians H2CK ⊕ H2CK, each given by CFT by fusing
a charge-1

2
anyon to the bath

�
1

2
þ 1

2

�
×Bath¼ 1

2
× ð0þ 1Þ×Bath¼ 1

2
×
1

2
×
1

2
×Bath

This is equivalent to fusing three charge-1
2
anyons to the

bath, again in perfect agreement with the CFT ansatz of
Ref. [27]. We see that the degeneracy is associated to a
decoupled fusion space, and can write the low-energy
Hamiltonian as an outer product H2CK ⊗ 12×2, acting on
the “energy space” and (trivially) on the fusion space.
Projecting the three pairwise spin correlators S1 · S2,

S2 · S3, and S1 · S3 down to the low-energy subspace, we
find all three commute with the low-energy Hamiltonian,
and act nontrivially only on the fusion space. Thus, for each
pair of impurities m, m0 the projected Sm · Sm0 can be
written as 12CK ⊗ smm0 , where 12CK is the identity matrix in
the “energy space” and smm0 is a 2 × 2 Hermitian matrix.
Diagonalizing smm0 we find that it (and thus Sm · Sm0) has
one negative (singletlike) and one positive (tripletlike)
eigenvalue, with eigenstates j0mm0 i and j1mm0 i, respectively.
The different correlators do not commute with each other,

(a) (b)

FIG. 3. (a) Quantum phase transition for two impurities with
two (red) and three (blue) channels as a function of the dangling-
site hopping amplitude t012, taking 2J ¼ Γ ¼ D=8. Correlations
for the bare singlet and triplet are indicated by dashed lines.
(b) Extraction of the F matrix from interimpurity spin correlators
in a three-impurity system.

PHYSICAL REVIEW LETTERS 129, 227703 (2022)

227703-4



and so define different bases for the fusion space, related by
the basis transformation

F¼
�h012j023i h012j123i
h112j023i h112j123i

�
¼ 1ffiffiffi

2
p

�
1.003 0.997

0.997 −1.003

�
: ð8Þ

For concreteness we have restricted ourselves to the
relation between the eigenbases of S1 · S2 and S2 · S3,
and presented the numerically extracted values in this case.
We note that this result displays dependence on the ratio
J=Γ, which we discuss in Sec. IV of the Supplemental
Material [28]. Interpreting the eigenstates of the spin
correlator Sm · Sm0 as states with definite fusion outcomes
of anyons m and m0 (as in the two-impurity case), Eq. (8)
exactly defines the F matrix, which matches 1ffiffi

2
p ð1

1
1
−1Þ

corresponding to SUð2Þ2 anyons.
Conclusions.—We have numerically demonstrated that

multiple Kondo impurities coupled to k chiral channels
(i) host multiple SUð2Þk non-Abelian anyons (one per
impurity), highlighted by the fractional entropy contribu-
tion per impurity, and (ii) the emergence of a decoupled
fusion space, which can be probed by low-energy mea-
surements of the interimpurity spin correlators, explicitly
extracting the F matrix of SUð2Þ2 anyons. The anyons can
now be braided by a measurement-only protocol [29],
which teleports them using only measurements of pairwise
topological charge (fusion channel). One can envision
implementing this protocol, e.g., by a low-energy scattering
experiment, directly demonstrating the non-Abelian nature
of the anyons in the system.
Experiments consisting of a single impurity coupled to

two and three integer quantum Hall edge states (i.e., chiral
channels) have already been carried out [18,19], with clear
signatures of the fractionalized degrees of freedom [45–48].
Extending these experiments to multiple impurities with all
spin and channel species propagating between the impu-
rities is a challenge. Testing if more realistic setups, in
which only some of the species connect the impurities
while the remainder are local to each impurity, also support
non-Abelian anyons, and what physical observables probe
their fusion space, is quite straightforward for the method
presented, and is left for future work. Note that due to the
absence of a (topological) gap, we expect information
encoded in the fusion space to decohere as a power law of
T=TK , in contrast to the exponential suppression in the
presence of a gap. Still, based on the success of
Refs. [18,19], the path to observing non-Abelian anyons
might be shorter in these systems.
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