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Nonlinear responses are actively studied as probes of topology and band geometric properties of solids.
Here, we show that second harmonic generation serves as a probe of the Berry curvature, quantum metric,
and quantum geometric connection. We generalize the theory of second harmonic generation to include
Fermi surface effects in metallic systems, and finite scattering timescale. In doped materials the Fermi
surface and Fermi sea cause all second harmonic terms to exhibit resonances, and we identify two novel
contributions to the second harmonic signal: a double resonance due to the Fermi surface and a higher-
order pole due to the Fermi sea. We discuss experimental observation in the monolayer of time reversal
symmetric Weyl semimetal WTe2 and the parity-time reversal symmetric topological antiferromagnet
CuMnAs.
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The quantum geometric properties of the electron wave
function give rise to a multitude of electronic transport
effects [1–13]. In optical phenomena the Berry phase plays
a fundamental role in photogalvanic responses [14,15],
circular photogalvanic effect [16,17], and in other nonlinear
optical responses [18–22]. The Berry curvature dipole and
the quantum metric are likewise key in determining non-
linear optical responses [20,23–35]. Fundamental interest
in the band geometric properties of quantum materials has
been responsible for the recent resurgence of nonlinear
phenomena, driving basic discoveries. Prominent examples
include nonreciprocal currents [36–40], Hall effects in
time-reversal invariant systems [41–46], and using non-
linear susceptibilities to probe details of the crystallo-
graphic orientation, band structure, and grain boundaries
[47,48]. However, the interplay between band geometric
quantities that gives rise to the photogalvanic effect, second
harmonic (SH) response [25,49–56] as well as higher
harmonic generation [57–60], is not fully understood
[34,61–80]. In fact, the theory of SH generation itself
has two key shortcomings: (i) missing terms which arise
in the presence of a finite Fermi surface in metallic or
semimetallic systems, (ii) missing terms which arise in
the presence of disorder. Additionally, the theory of SH
generation in parity-time reversal symmetric systems is
relatively less explored.
Motivated by these, we generalize the theory of SH

generation [24,25] to include the effect of finite Fermi
surface in metallic systems and the effect of disorder. Our
central result is encapsulated in Figs. 1 and 2, showing

the SH response in the monolayer of the time reversal
symmetric Weyl semimetal WTe2 and the parity-time
reversal symmetric topological antiferromagnet CuMnAs,
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FIG. 1. (a) Band dispersion for monolayer WTe2 [from Eq. (6)].
We have set the tilt A ¼ 0, gap parameters δ ¼ −0.25, D ¼ 0.1
in eV and the other parameters to be B ¼ 1.0 eVÅ−2,
vy ¼ 1 eVÅ−1. (b) The momentum space distribution of Ωxy

cv

(top) and the symplectic connection Γ̃yxx
cv (bottom), where cv

denotes conduction and valence band. Frequency dependence of
the different contributions to the (c) real and (d) imaginary parts of
the conductivity σyxx. The conductivities are expressed in units
of σ0 ¼ 10−5 nAm=V2. We have set μ ¼ 0.2 eV, τ ¼ 1 ps and
temperature T ¼ 12 K.
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represented here by the Hall signal. Remarkably, the SH
response exhibits two extrema: one in the vicinity of the
chemical potential μ and one in the vicinity of 2μ. These
result from the interplay of five distinct contributions
related to the quantum geometric properties of the wave
function (see Table I), which are all resonant. The strongest
contributions to the peaks stem from Fermi surface terms
we denote as anomalous and doubly resonant, as well as a

higher-order pole term from the Fermi sea. The latter two,
whose existence was previously unknown, are always
opposite in sign, in a striking analogy to the anomalous
Hall effect in magnetic materials [81].
These findings can be understood in terms of a system-

atic quantum geometrical classification, which we achieve
by formulating the theory of SH generation within the
quantum kinetic framework. We show that the SH current is
primarily determined by four geometrical quantities, the
Berry curvature (Ω), the quantum metric (G), the metric
connection (Γ), and the symplectic connection (Γ̃). The
former two are the real and imaginary parts of the quantum
geometric tensor (Q ¼ G − iΩ=2) while the latter two
define the quantum geometric connection (C ¼ Γ − iΓ̃),
respectively [17,19]. By an appropriate choice of material,
the extrema in the SH response probe either the Berry
curvature or the elusive quantum metric [83]. In time
reversal (T ) symmetric systems, such as monolayer
WTe2, the shift contribution depends only on Γ̃, while
the other four contributions rely only on Ω. In contrast, in
parity-time reversal symmetric (PT ) systems, such as
CuMnAs, the SH shift contribution is determined by Γ,
while all other geometric contributions are determined
by G. We show that the SH injection current vanishes in
T -symmetric systems, while all the current components are
finite in PT -symmetric systems. Although we focus on
topological materials, the conclusions hold generally for
insulators and metals.
The quantum kinetic equation for the density matrix

ρðk; tÞ in the crystal momentum representation is

∂ρðk; tÞ
∂t

þ i
ℏ
½Hðk; tÞ; ρðk; tÞ� þ 1

τ
½ρðk; tÞ − ρð0Þðk; tÞ� ¼ 0:

ð1Þ

(a)

(c) (d)

(b)

FIG. 2. (a) Band dispersion for PT -symmetric CuMnAs
[Eq. (7)]. Here, we set the hopping t ¼ 0.08 eV and t̃ ¼ 1 eV.
The other parameters are αR ¼ 0.8, αD ¼ 0, and hAF ¼
ð0; 0; 0.85Þ eV. (b) The momentum space distribution of Gxy

cv

(top) and the metric connection Γyxx
cv (bottom). Frequency

dependence of the different contributions in the (c) real and
(d) imaginary parts of the SH conductivity σyxx. The conductiv-
ities are expressed in units of σ0 ¼ 10−5 nAm=V2, while
μ ¼ 0.2 eV, τ ¼ 1 ps, and temperature T ¼ 12 K.

TABLE I. Different terms leading to second harmonic (2ω) current in response to a harmonic electromagnetic field [see Eq. (5)]. The

SH conductivity is given by the relation, jð2Þa ð2ωÞ ¼ P
bc σabcð2ωÞEbðωÞEcðωÞ and the SH conductivities are defined to be symmetric

under the exchange of the last two indices. This is achieved via the relation, σabc ¼ σacb ¼ −1=ð2πÞdðe3=ℏ2Þ R ddk½Iabc þ Iacb�=2. We
define the quantum metric as Gcb

mp ¼ fRc
pm;Rb

mpg=2, the Berry curvature as Ωcb
mp ¼ i½Rc

pm;Rb
mp� [21], and the metric connection (Γ)

and symplectic connection (Γ̃) terms as Ra
pmDb

mpRc
mp ¼ Γabc

mp − iΓ̃abc
mp , where Db

mp ¼ ∂b − iðRb
mm −Rb

ppÞ. Corresponding to each
SH current component, there is also a photogalvanic (dc) counterpart, which can be obtained via the substitution g2ωmp → gω¼0

mp and
g2ω0 → gω¼0

0 (see Table S1 in SM [82]).

Current Integrand Geometrical quantity T PT Physical origin

Drude ID
abc ¼ gω0 g

2ω
0

P
mð1=ℏÞð∂εm=∂kaÞð∂2fð0Þm =∂kb∂kcÞ None 0 ≠ 0 Nonequilibrium distribution

function
Injection I Inj

abc ¼ −g2ω0
P

pm gωmpð∂ωmp=∂kaÞðGbc
mp − iΩbc

mp=2ÞFmp
Ω, G Ω G Velocity injection

along current
Shift ISh

abc ¼
P

pm ωmpg2ωmpgωmpðΓabc
mp − iΓ̃abc

mp ÞFmp Γ̃, Γ Γ̃ Γ Shift of the wave packet
Anomalous IAn

abc ¼ gω0
P

pm ωmpg2ωmpðGab
mp − iΩab

mp=2Þð∂Fmp=∂kcÞ Ω, G Ω G Fermi surface
DR IDR

abc ¼
P

pm ωmpgωmpg2ωmpðGac
mp − iΩac

mp=2Þð∂Fmp=∂kbÞ Ω, G Ω G Fermi surface
HOP IHOP

abc ¼ P
pm ωmpg2ωmpðGac

mp − iΩac
mp=2Þð∂gωmp=∂kbÞFmp Ω, G Ω G Velocity injection

along field
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Here, Hðk; tÞ ¼ H0ðkÞ þ er · EðtÞ is the full Hamiltonian
of the clean system, with H0 being the unperturbed band
Hamiltonian. The last term represents the light-matter
interaction in the length gauge with “−e” being the
electronic charge. The external time dependent homo-
geneous electric field is given by EðtÞ ¼ E0e−iωt, with
E0 ¼ fEx

0; E
y
0; E

z
0g being the electric field strength and ω

being the frequency. To simplify the analytical calculations
we approximate the scattering term by ρ=τ. The relaxation
time τ accounts generically for impurity and phonon
scattering, as well as recombination, and is assumed to
be constant.
The nonlinear dynamics of the charge carriers can be

explored by expanding the density matrix perturbatively in
powers of the electric field, ρðk; tÞ ¼ ρð0Þðk; tÞ þ ρð1Þðk; tÞþ
ρð2Þðk; tÞ þ � � �, where ρðNÞðk; tÞ ∝ ðEb

0ÞN . Expressing the
density matrix in terms of the eigenstates of the unperturbed
Hamiltonian, H0jupk i ¼ εp;kjupk i, the kinetic equation for
theNth order term in the density matrix, ρðNÞðk; tÞ≡ ρðNÞ, is
given by

∂ρðNÞ
mp

∂t
þ i
ℏ
½H0; ρðNÞ�mp þ

ρðNÞ
mp

τ
¼ eEðtÞ

ℏ
· ½Dkρ

ðN−1Þ�mp: ð2Þ

Here, we define the covariant derivative as ½Dkρ�mp ¼
∂kρmp − i½Rk; ρ�mp, where RmpðkÞ ¼ ihumk j∂kupk i is the
momentum space band resolved Berry connection.
Up to linear order in the external field strength, the

solution of Eq. (2) yields ρð1Þmp ¼ P
c ρ̃

ð1;cÞ
mp Ec

0e
−iωt, where

ρ̃ð1;cÞmp ¼ e
ℏ
gωmp½∂cρð0Þmpδmp þ iRc

mpFmp�: ð3Þ

Here, we have defined Fmp ≡ fð0Þm − fð0Þp to be the differ-
ence between the occupation in bands p and m in

equilibrium. The occupation of the bands is given by fð0Þm ≡
ρð0Þmm ¼ ½1þ eβðεm;k−μÞ�−1 the Fermi-Dirac distribution func-
tion, where β ¼ 1=ðkBTÞ, kB is the Boltzmann constant, T
is the absolute temperature, and μ is the chemical potential.
The function gωmp ≡ ½1=τ − iðω − ωmpÞ�−1 with ℏωmp ¼
ðεm;k − εp;kÞ is related to the joint density of states
broadened by disorder, and gω0 ¼ ½1=τ − iω�−1. The details
of the calculations are given in Sec. S1 of Supplemental
Material (SM) [82]. In Eq. (3), the first term captures the

intraband contributions (ρð0Þmp ¼ 0 form ≠ p) which is finite
only in the presence of a finite Fermi surface (e.g., doped
semimetals and metals). The second term in Eq. (3)
captures interband transitions as Fmp ¼ 0 for m ¼ p.
Using the first order solution of the density matrix ρð1Þmp,

the second-order correction can be calculated to be

ρð2Þmp ¼ P
bc ρ̃

ð2;bcÞ
mp Eb

0E
c
0e

−i2ωt. Here,

ρ̃ð2;bcÞmp ¼ e2g2ωmp

ℏ2

�
∂bρ̃

ð1;cÞ
mp − i

X
n

�
Rmn

b ρ̃ð1;cÞnp −Rnp
b ρ̃ð1;cÞmn

��
;

ð4Þ

with the second term involving a sum over all the bands.
We highlight that even the intraband or diagonal terms

(m ¼ p) in ρð2Þmp have contributions arising from the inter-

band terms in ρð1Þmp (see Sec. S1 of SM [82]).
The time dependent current is calculated from the

definition, jðtÞ ¼ −eTr½v̂ρðtÞ�. In the eigenbasis of H0,
the velocity operator v̂a can be expressed as vapmðkÞ ¼
ℏ−1ðδpm∂kaεm;k þ iRa

pmℏωpmÞ. It includes the intraband
term in the form of the band velocity, and the interband
term dependent on the band resolved Berry connection
[84–86]. The current can also be expressed as a power
series of the electric field strength, jðtÞ ¼ P

N jðNÞ with
jðNÞ ∝ ðEb

0ÞN . The SH component of the current is given by

the 2ω component of jð2Þa ðtÞ.
Explicitly calculating the SH current for a d dimensional

system, we obtain

jð2Þa ðtÞ ¼ −
e3

ℏ2
e−i2ωt

X
bc

Eb
0E

c
0

Z
BZ

ddk
ð2πÞd Iabcðk;ωÞ; ð5Þ

where, Iabc ¼ ID
abc þ I Inj

abc þ ISh
abc þ IAn

abc þ IDR
abc þ IHOP

abc ,
and BZ denotes the Brillouin zone. Here, based on the
corresponding dc counterparts [21], we have denoted the
different SH contributions to the integrand as follows:
Drude (ID

abc), injection (I Inj
abc), shift (I

Sh
abc), and anomalous

(IAn
abc). In addition to these, we find two more contributions,

which we refer to as the double resonant (DR) (IDR
abc) and

higher-order pole (IHOP
abc ) contributions, explained below.

Both depend on the scattering time τ. Remarkably, their
contributions to the current are always opposite in sign.
Below, we explicitly show that the DR and HOP contri-
butions are at least as large as the other contributions.
The functional forms of all the contributions in the SH
(photogalvanic) current are tabulated in Table I (Table S1 of
SM [82]).
The DR current is a Fermi surface phenomenon, which

shows resonant features for ℏω ¼ μ and ℏω ¼ 2μ in a
particle-hole symmetric system. The double resonance
stems from the product of the joint density of states
(gωmpg2ωmp), reflecting the interplay of one-photon and
two-photon absorption processes. The gωmp factor denotes
the single photon process contributing in the first order
correction to the density matrix and it gives a peak at
ℏω ¼ 2μ, in systems with particle-hole symmetry. The
factor of g2ωmp is associated with two-photon absorption
where the photon frequencies are additive, and this leads to
a peak at 2ℏω ¼ 2μ. The HOP current, on the other hand, is
a Fermi sea phenomenon, its name originating from the
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second-order poles in ∂bgωmp. In addition to the second-
order pole, the ∂bgωmp term also gives rise to velocity
injection along the direction of the applied field, making the
HOP contribution similar in spirit to the injection current.
Among the three Fermi sea contributions, the injection
current depends on the velocity difference between the two
bands along the direction of current. The shift current is
determined by the shift vector representing the positional
shift of the carriers in real space, and the HOP current
depends on the velocity difference parallel to E.
Experimentally, the SH signal arising from the Fermi

surface and Fermi sea contributions can be distinguished by
tuning the Fermi level, particularly in 2D materials with
small band gap. In T -symmetric system, if the Fermi level
lies within the band gap then only the Fermi sea terms such
as the HOP and Sh contribute to the SH signal. These in
turn, can be distinguished by measuring the longitudinal
and Hall components, separately. The HOP term is present
only in the Hall component since it originates from the
band resolved Berry curvature, while the Sh term appears in
both the conductivities. In PT -symmetric system the HOP,
Sh, and Inj terms can be segregated by exploiting their
scattering time dependence. In the scenario, when the
Fermi level lies inside the band, the total SH response
near the Fermi level is mainly dictated by the dominant
resonant peaks, which are dominated by the An and DR
contributions. Here, the DR contribution is associated with
two resonant peaks while the An contribution has a
single peak.
The quantum kinetic approach can be combined with the

electronic band structure obtained from ab initio calcu-
lation, tight-binding models, or effective low energy k · p
Hamiltonian. This includes confined systems [87], mag-
netic materials, as well as systems with spin-orbit coupling
[88]. As an example of a T -symmetric system, we consider
a two band model of monolayer WTe2 [11,12],

H0ðkÞ ¼ Ak21þ ðBk2 þ δÞσz þ vykyσy þ Δσx: ð6Þ

Here, A gives tilt to the dispersion, vy is the velocity
component which gives rise to an anisotropic dispersion,
andΔ controls the band gap. TheH0 in Eq. (6) has a mirror
symmetry Mx, which enforces H0ðkx; kyÞ ¼ H0ð−kx; kyÞ.
The energy dispersion for this model is given by

εðkÞ ¼ Ak2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBk2 þ δÞ2 þ k2yv2y þ Δ2

q
. The corre-

sponding band structure is shown in Fig. 1(a) with the
corresponding geometric quantities, the Berry curvature,
and the metric connection, displayed in Fig. 1(b). Owing to
the combination of mirror symmetry and T symmetry in
Eq. (6), we have Ωxy

mpðkx; kyÞ ¼ Ωxy
mpðkx;−kyÞ. This makes

the BZ integrand for the SH components, IAn=DR=HOP
xyy an

odd function of ky, and consequently σAn=DR=HOPxyy ¼ 0.

However, the SH conductivity components σAn=DR=HOPyxx is

finite and these generate a Hall current jð2Þy ¼ σyxxE2
x. The

real and imaginary parts of the different terms in the SH
conductivity σyxx are shown in Figs. 1(c) and 1(d). The
double resonant peak of σDRyxx can be clearly seen in Fig. 1(c),
along with the significant σHOPyxx contribution. The numerical
value for the conductivities in our calculations are compa-
rable to the values recently reported for MoS2 [89].
In contrast to T -symmetric systems, in PT -symmetric

systems the SH generation (i) can have a finite Drude and
injection contributions, (ii) have quantum geometry
induced contributions which are determined solely by G
and Γ, and (iii) the G induced contributions can have
diagonal components of the form σaaa. An example of a
PT -symmetric material is CuMnAs, where the P and T
symmetries are individually not preserved [21]. These
systems generally show an antiferromagnetic ordering on
the two distinct sublattice sites along with a locally broken
inversion symmetry at the sublattice level (denoted below
by A and B). This also gives rise to a sublattice dependent
spin-orbit coupling. The corresponding Hamiltonian is
given by [21,90]

H0ðkÞ ¼
�
ϵ0ðkÞ þ hAðkÞ · σ VABðkÞ

VABðkÞ ϵ0ðkÞ þ hBðkÞ · σ

�
: ð7Þ

Here, we have defined ϵ0ðkÞ ¼ −tðcos kx þ cos kyÞ and
VABðkÞ ¼ −2t̃ cosðkx=2Þ cosðky=2Þ. The hopping between
orbitals of the same sublattice is quantified by t, while t̃
denotes hopping between orbitals on different sublattices.
The sublattice dependent spin-orbit coupling and the mag-
netization field is included in hBðkÞ ¼ −hAðkÞ, where
hAðkÞ ¼ fhxAF − αR sin ky þ αD sin ky; h

y
AF þ αR sin kxþ

αD sin kx; h
z
AFg. The energy eigenvalues are εðkÞ ¼

ϵ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
AB þ h2Ax þ h2Ay þ h2Az

q
. Finite ϵ0 breaks the par-

ticle-hole symmetry and since hAxð−kx;−kyÞ ≠ hAxðkx; kyÞ,
we have εð−kÞ ≠ εðkÞ.
The dispersion in the vicinity of one of the two band

edges is shown in Fig. 2(a), along with the quantum metric
(top) and the metric connection (bottom) in Fig. 2(b). We
find four components of the SH conductivity to be nonzero,
σxxy, σxyx, σyxx and σyyy with finite contributions from all
the terms in Table I. The real and imaginary parts of σyxx are
shown in Figs. 2(c) and 2(d). We find a finite contribution
from the injection current (orange curve) which was absent
in Fig. 1. Finite contributions from the DR and the HOP
terms, comparable to the other contributions, can also be
clearly seen. The resonant DR peaks deviate from ω ¼ μ
and ω ¼ 2μ, due to the absence of particle-hole symmetry
in PT -symmetric systems.
The quantum kinetic formulation enables us to construct

a systematic quantum geometric classification of the SH
response, shown in Table I. Apart from the Drude current,
which depends only on the band velocity, all the other
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components of the current in Table I depend on the
quantum geometric properties of the electron wave func-
tion. Except for the shift current, four of these originate
from the geometric quantity referred to as the quantum
geometric tensor Qbc

mp ¼ Rb
pmRc

mp ¼ Gbc
mp − ði=2ÞΩbc

mp
[13,91–93]. Here, the band resolved Berry curvature is
antisymmetric under the exchange of spatial coordinates,
Ωbc

mp ¼ −Ωcb
mp, while the quantum metric is symmetric,

Gbc
mp ¼ Gcb

mp. Note that in the injection current the Cartesian
indices of Ω and G are determined by the electric field
direction. However, in the other SH components, one of
the indices of Ω and G is determined by the direction of the
current. The anomalous part of the SHcurrent is related to the
Berry curvature and quantummetric. It is easily checked that
the photogalvanic counterpart (2ω → 0) of the anomalous
current can be expressed as a function of the Berry curvature
dipole [15]. For the shift current one can define a third
rank tensor, the quantum geometric connection Cabcmp ¼
Ra

pmDb
mpRc

mp with Db
mp ¼ ∂b − iðRb

mm −Rb
ppÞ, which is

symmetric under the interchange of the last two spatial
indices. It is decomposed into real and imaginary parts
Cabcmp ¼ Γabc

mp − iΓ̃abc
mp [35]. The symmetry properties of

the different contributions, in T -symmetric, and in
PT -symmetric systems are summarized in Table I and
discussed in detail in SM [82].
To conclude, we have generalized the theory SH gene-

ration to include Fermi surface effects in metallic systems
and the effect of disorder. We have shown that SH can act
as a probe of the Berry curvature, quantum metric, and
quantum geometric connection. Specifically, the SH can
probe the quantum metric in PT -symmetric systems. Our
calculations have unveiled two new SH phenomena, double
resonant and higher-order pole. We have provided an
exhaustive quantum geometric classification of the SH
and photogalvanic currents, paving the way for a full
quantum geometric description of nonlinear optics.
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