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The two-dimensional Wigner crystal (WC) occurs in the strongly interacting regime (rs ≫ 1) of the two-
dimensional electron gas (2DEG). The magnetism of a pure WC is determined by tunneling processes that
induce multispin ring-exchange interactions, resulting in fully polarized ferromagnetism for large enough
rs. Recently, Hossain et al. [Proc. Natl. Acad. Sci. U.S.A. 117, 32244 (2020)] reported the occurrence of a
fully polarized ferromagnetic insulator at rs ≳ 35 in an AlAs quantum well, but at temperatures orders of
magnitude larger than the predicted exchange energies for the pure WC. Here, we analyze the large rs
dynamics of an interstitial defect in the WC, and show that it produces local ferromagnetism with much
higher energy scales. Three hopping processes are dominant, which favor a large, fully polarized
ferromagnetic polaron. Based on the above results, we speculate concerning the phenomenology of the
magnetism near the metal-insulator transition of the 2DEG.
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The two-dimensional electron gas (2DEG) has proven to
be a rich platform for studying strongly correlated phases of
matter, despite its deceptively simple Hamiltonian

H ¼
X
i

p⃗2
i

2m
þ
X
i<j

e2

4πϵ

1

jr⃗i − r⃗jj
: ð1Þ

The important dimensionless parameter in the problem is
the ratio rs of the typical interaction and kinetic energies;
rs ¼ 1=ðaB

ffiffiffiffiffiffi
πn

p Þ, where n is the electron density and aB ¼
4πϵℏ2=me2 is the effective Bohr radius. The electrons
form an unpolarized Fermi liquid (FL) when rs is small,
whereas a Wigner crystal (WC) phase occurs when
rs > rwc ≈ 31� 1 [1–4]. Recently, experiments on “ultra-
clean” AlAs quantum wells reported the appearance
of a fully polarized ferromagnetic insulating phase when
rs ≳ 35 [5–7], where the WC physics may play a key role.
Ferromagnetic tendencies near the metal-insulator transi-
tion have also been seen in a variety of other 2DEG systems
[8,9]. In this paper we explore a new mechanism of
ferromagnetism in the large-rs regime.
There have been many previous theoretical studies of the

magnetism of the WC [10–14]. Deep within the WC phase
(in the rs → ∞ limit), a semiclassical instanton method
allows an asymptotically exact calculation of various
multispin ring exchange energies Jwc. The result of these
calculations is that the WC (and hence the 2DEG) is fully
spin polarized in the rs → ∞ limit [10–12]. This result has
been corroborated by a path integral Monte Carlo calcu-
lation [13]. Therefore it is tempting to say that the observed
fully polarized ferromagnetic insulator is the ferromagnetic
WC. However, we will see that such a mechanism provides
a minuscule energy scale (i.e., temperature scale T�) for the

ferromagnetism, which is much below those accessed in
the experiments. Moreover, the theoretical studies suggest
[10–14] that the dominant exchange interactions are
actually antiferromagnetic in the experimentally relevant
range of rs ∼ 40 of the 2DEG.
We instead propose a new mechanism for ferromagnet-

ism at large rs, induced by interstitial defects centered at
triangular plaquettes of the WC [15–17]. (This idea was
inspired by a related, but distinct, earlier proposal by
Spivak and collaborators [18,19] of ferromagnetism pro-
duced by interfacial fluctuations between a WC and a FL.)
The presence of interstitials generates additional exchange
(Ja) and hopping (ta) processes, which we calculate using
the semiclassical instanton method. See Fig. 1 for a
summary of the results. Three hopping processes turn
out to have (exponentially) large energy scales compared
to any exchange energy of the defect-free WC. We prove
that a single interstitial fully polarizes a large region of the
WC (i.e., produces a large ferromagnetic polaron), and
argue that a dilute concentration of interstitials will lead to a
fully polarized ferromagnetic ground state. Moreover, the
characteristic temperature scale of the ferromagnet is
T� ∼ νint · t, where 0 ≤ νint ≤ 1 is the filling of interstitial
sites and t is an appropriate sum of hopping energies ta. At
the values of rs pertinent to the experiments, T� is in the
experimentally relevant range, even for a low concentration
of interstitials.
In order to discuss the possible experimental relevance of

these results, we must consider circumstances that can give
rise to a finite density of interstitials. On the phenomeno-
logical level, near the metal-insulator transition, it is likely
that the 2DEG sample forms a spatially inhomogeneous
mixture of regions that exhibit local WC order (with lower
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than average electron density) coexisting with puddles of
FL (with higher density). This can arise as a consequence of
disorder [21,22] and/or could reflect the electronic micro-
emulsion phases expected when macroscopic phase sepa-
ration is frustrated by long-range interactions [23–26].
Consequently, a finite density of extra electrons would
be induced at the boundaries of WC regions due to their
contact with higher-density FL regions. The lowest energy
WC defect that can accommodate an extra electron is
known to be the triangle-centered interstitial [15–17].

Semiclassical derivation of the effective Hamiltonian.—
For orientation, we start by recapitulating the semiclassical
theory of magnetism in the WC. In the rs → ∞ limit, the
Coulomb interaction dominates, and the electrons form a
WC [1] with all spin states degenerate. The kinetic energy
lifts this degeneracy by inducing quantum tunneling proc-
esses among WC sites. The effective spin Hamiltonian can
be written as a sum over ring exchange terms:

Hwc
eff ¼

X
a

ð−1ÞnaJaðP̂a þ P̂−1
a Þ: ð2Þ

Here, a ¼ ði1; i2;…; inaÞ labels a ring exchange process
involving na sites, i1 → i2 → … → ina → i1, and P̂a is the
corresponding na-particle cyclic permutation operator. P̂a
can, in turn, be expressed as a product of two-particle
exchange operators, each of which can bewritten in terms of
spin operators as P̂ði;jÞ ¼ 2ðS⃗i · S⃗j þ 1

4
Þ. All exchange cou-

plings Ja are positive; the signs ð−1Þna are fixed by
antisymmetry of the many-body wave function, which
implies that exchanges involving an even (odd) number
of electrons are antiferromagnetic (ferromagnetic) [27]. The
exchange energies Ja can be calculated using the semi-
classical instanton method, which is asymptotically exact in
the rs → ∞ limit:

Ja ¼ ℏω0

� ffiffiffiffi
rs

p
Sa

2π

�
1=2

Aa exp½− ffiffiffiffi
rs

p
Sa�: ð3Þ

Here, ℏ
ffiffiffiffi
rs

p
Sa is the classical Euclidean action along the

minimal action path that implements the particle exchange
labelled by a, Sa is the “dimensionless action,” which is
independent of rs, and ℏω0=2 ¼ 1.6274=r3=2s is the zero-
point phonon energy (per particle) of the defect-free WC in
units of the effective Rydberg energy Ry ¼ e2=8πϵaB
[15,28]. Aa is the dimensionless fluctuation determinant
[29,30], which captures the Gaussian fluctuations around
the semiclassical paths, and is generally of order 1. Including
all rs dependencies, Ja ¼ Oðr−5=4s e−

ffiffiffi
rs

p
SaÞ. To simplify

notation, we often suppress the full indices a in the sub-
scripts of Ja and Sa, and instead label these by na—if there
are multiple processes involving the same number of
particles, we distinguish them with primes (e.g., S4;wc and
S04;wc, etc.).
In Fig. 1(a), we illustrate the six most important exchange

processes for the pure WC and quote the dimensionless
actions calculated in Ref. [14]. Although the dimensionless
actions for all these processes are quite comparable, the
(ferromagnetic) three-particle ring exchange process has the
smallest action and hence determines the magnetism in the
rs → ∞ limit [10–12,14]. The characteristic temperature
scale for ferromagnetism, T�, is set by J3; evaluating Eq. (3)
at rs ≈ 40 with the parameters of AlAs and the fluctuation
determinant, A3 ¼ 2.19, calculated in Ref. [14], we find
T� ∼ 0.003 K. This is 2 orders of magnitude smaller

FIG. 1. Schematic of various exchange and hopping processes
along with the corresponding dimensionless actions Sa: (a) Ex-
change processes in the pure WC. (b) New exchange processes in
the WC induced by a triangle-centered interstitial. (c) Hopping
processes in the WC induced by the interstitial. In panels (b) and
(c), dots surrounded by a circle denote initially occupied
interstitial sites, while open circles denote final interstitial sites
which are initially vacant. The dimensionless actions in panel (a)
are quoted from Ref. [14]. Panels (b) and (c) show the main
results of this paper, calculated with a system of size 10 × 12þ 1
starting from the relaxed triangle-centered interstitial configura-
tion (see the main text and the Supplemental Material [20] for
details). The corresponding values for the exchange couplings,
Ja, and the hopping matrix elements, ta, are then computed using
Eq. (3) and its analog.
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than the temperature at which the experiments are done
(T ≳ 0.3 K) [5].
In the presence of a triangle-centered interstitial in the

WC, new tunneling processes are introduced [Figs. 1(b)
and 1(c)]. The semiclassical expression (3) can be used to
calculate both exchange interactions involving an intersti-
tial, Ja, and interstitial hopping processes, ta (where again
a labels a particular process). The dimensionless action Sa
is calculated numerically by minimizing the Euclidean
action ℏ

ffiffiffiffi
rs

p
S ¼ RXf

Xi
dX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV − E0Þ

p
on a supercell con-

taining 10 × 12þ 1 electrons (including the interstitial)
with periodic boundary conditions. Here, V is the Coulomb
interaction, E0 is the energy cost of introducing one
interstitial in the WC, and Xi and Xf are the initial and
the final relaxed interstitial configurations, respectively. We
discretize the tunneling path to 7 intermediate configura-
tions and allow up to 30 electrons to adjust their positions
during the minimization. For exchange processes, all the
remaining electrons are fixed at their initial positions,
whereas for hopping processes, they move in linearly
interpolating paths connecting the initial and the final
positions. For minimization, we used the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm
[31]. Coulomb interactions are treated with the standard
Ewald method. See Supplemental Material [20] for more
details of the calculations.
Figure 1(b) schematically shows various multiparticle

exchange processes that involve an interstitial (circled),
along with the corresponding dimensionless actions Sa;ex.
Interstitial hopping processes are shown schematically in
Fig. 1(c), along with the dimensionless actions Sa;hop.
Among these, one cooperative hopping term, t2, clearly
dominates, as its action, S2;hop ¼ 0.032, is more than an
order of magnitude smaller than most others. (Recall thatffiffiffiffi
rs

p
Sa appears in the exponent of the expressions for Ja or

ta) However, the t2 term does not connect all the WC sites
in the presence of one interstitial, so by itself, it cannot fully

lift the ground state spin degeneracy (see Fig. S2 of the
Supplemental Material [20]). The next dominant terms are
t1 and t02 [corresponding to S1;hop and S02;hop in Fig. 1(c)].
Together with t2, these terms fully determine the magnet-
ism of the WC in the presence of a small density of
interstitials. We visualize the tunneling paths corresponding
to these three processes, along with one exchange process,
in Fig. 2. Keeping these three dominant terms results in an
effective Hamiltonian:

Heff ¼ −t2
X

ðn;j;n0Þ
∈ðt2 pathÞ

X
σ;σ0¼↑;↓

c†n;σ0f
†
j;σfj;σ0cn0;σ

− t02
X

ðn;j;n0Þ
∈ðt0

2
pathÞ

X
σ;σ0¼↑;↓

c†n;σ0f
†
j;σfj;σ0cn0;σ

− t1
X
hn;n0i

X
σ¼↑;↓

c†n;σcn0;σ þ ½U ¼ ∞�: ð4Þ

Here, f†jσ is the creation operator of localized electrons that

live on the triangular lattice sites j, and c†n;σ is the creation
operator of itinerant electrons that live on the triangular
plaquette centers n. The last U ¼ ∞ condition precludes
any doubly occupied sites. One can check explicitly that all
these ta’s are positive.
The remaining tunneling terms that we have omitted

from Heff , including the exchange terms Ja, are exponen-
tially smaller than those we have kept. We have also
omitted direct (elastic) interactions between interstitials
which are small only in proportion to powers of 1=rs. These
are negligible both because we are interested in the
situation with a dilute concentration of interstitials, and
because they turn out to be small in the experimentally
relevant range of rs [32].
A single interstitial.—In the presence of one interstitial in

the WC, we prove the following theorem—reminiscent of

FIG. 2. Visualization of multiparticle tunneling trajectories involving a (relaxed) triangle-centered interstitial: (a)–(c) The three
dominant interstitial hopping processes. (d) The most important exchange process involving an interstitial. The corresponding
dimensionless actions are (a) S1;hop ¼ 0.138, (b) S2;hop ¼ 0.032, (c) S02;hop ¼ 0.141, and (d) S2;ex ¼ 0.536, as shown in Fig. 1. The colors
indicate seven intermediate configurations, indexed by k, along with the initial and the final configuration.
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the proof of Nagaoka ferromagnetism in the U ¼ ∞
Hubbard model—using the Perron-Frobenius theorem
[27,33,34]:
Theorem.—The ground state of Heff in any finite system

in the presence of a single interstitial (i.e., for ν ¼
N−1P

j;σ f
†
j;σfj;σ ¼ 1 and

P
n;σ c

†
n;σcn;σ ¼ 1, where N is

the number of WC sites j) is the fully polarized ferro-
magnet; it is unique up to global spin rotations.
Proof.—Heff commutes with the total spin operator S⃗total,

so its spectrum consists of degenerate multiplets with
definite S2total. We show that the ground state multiplet
has maximal S2total. We restrict attention to the sector of
Hilbert space with Sztotal ¼ 0 for N þ 1 even and Sztotal ¼ 1

2

forN þ 1 odd, since these lowest jSztotalj sectors contain one
representative state from each multiplet. We define basis
states

jn; τ; fσgi≡ c†n;τf
†
1;σ1

� � � f†N;σN
j0i; ð5Þ

where n is the position of the interstitial electron, τ is its
spin, and the σj’s specify the spins of the WC sites, which
we number in an arbitrary manner from j ¼ 1 to N. All the
basis states in Eq. (5) can be reached from any starting state
by repeated application of the hopping operators in Heff
[Eq. (4)]—we say that the hoppings satisfy the “connec-
tivity condition” [35].
We now consider matrix elements of Heff in this basis: It

is easy to see that any state that has a nonzero matrix
element with jn; τ; fσgi must be of the form

jn0; σj; fσ1;…; σj−1; τ; σjþ1;…; σNgi or jn0; τ; fσgi:

Moreover, it is a simple algebra to show that

hn0; σj; fσ1;…; σj−1; τ; σjþ1;…; σNgjHeff jn; τ; fσgi
¼ −t2 or − t02; ð6Þ

and

hn0; τ; fσgjHeff jn; τ; fσgi ¼ −t1; ð7Þ

depending on which of the three hopping terms connect the
two states. Since Heff satisfies the connectivity condition
and all matrix elements are nonpositive, the Perron-
Frobenius theorem implies that the ground state is unique
and is a superposition of all the basis states jn; τ; fσgi with
positive coefficients. This state is necessarily a maximal
spin state, i.e., has total spin Stotal ¼ ðN þ 1Þ=2. ▪
Note that, in the Sztotal ¼ ðN þ 1Þ=2 sector, Heff is a

noninteracting Hamiltonian, whose ground state is the state
where the interstitial electron is in a Bloch state with k⃗ ¼ 0⃗;
the state we have found in the minimal jSztotalj sector is thus
related to this state by repeated applications of the global
spin-lowering operator.

Phase diagram.—Although the exchange terms omitted
in Eq. (4) are exponentially smaller than those we have
kept, the former terms can be important when considering
the thermodynamic limit, N → ∞. In particular, whenever
the bulk exchange couplings Ja favor anything other than
the ferromagnetic state, a single interstitial can only polar-
ize a finite number of WC sites to become a ferromagnetic
polaron [36]. (Note that a Monte Carlo study found that for
the pure WC, antiferromagnetic correlations are favored for
rs ≲ 175 [13].) The size of the ferromagnetic polaron is
determined by the competition between the energy gain to
delocalize the interstitial within a region of radius R,
t · ða=RÞ2, and the energy cost, J · ðR=aÞ2, to destroy the
antiferromagnetism there, where J is an appropriate sum of
the microscopic antiferromagnetic exchange interactions,
and a is a lattice constant of the WC. Minimizing the free
energy, we obtain the size of the ferromagnetic polaron:

R2
polar ∼ a2

ffiffiffiffiffiffiffi
t=J

p
∼ a2 exp

�
1

2

ffiffiffiffi
rs

p
αpolar

�
; ð8Þ

where t is an appropriate sum of t2, t02, and t1. (When
t > T > J, J is substituted by T in the estimate of the
polaron size.) By comparing the results for Ja and ta
summarized in Fig. 1, it is to be expected that αpolar ≈ 1.
The properties of Heff with a finite filling of interstitials,

νint > 0, are nontrivial, and the complexity is increased if
we include the effect of antiferromagnetic interactions,
J > 0. However, for t=J ≫ 1, certain general features of
the phase diagram can be inferred by analogy with the
behavior of the ordinary Hubbard model at large U=t in the
presence of a dilute concentration of holes [19,36–39]: It is
likely that at T ¼ 0, for a range of dopings νint ∈ ð0; νcÞ,
there is two-phase coexistence between an insulating
antiferromagnetic phase and a half-metallic ferromagnetic
phase, with νc ∼ a2=R2

polar. The fully polarized ferromag-
netic phase then likely appears for a range of fillings,
νint > νc. Furthermore, the temperature scale for the onset
of ferromagnetism can be estimated to be proportional to
the Fermi energy, T� ∼ νint · t.
Quantitative considerations in AlAs.—To flesh out the

general discussion, we evaluate various quantities with the
parameters relevant to AlAs (ϵ ¼ 10 ϵ0 and m ¼ 0.46 me,
where ϵ0 is the vacuum permittivity and me is the electron
mass) in the insulating phase close to the metal-insulator
transition, i.e., with rs ≈ 40. The zero-point phonon energy
in the presence of an interstitial is ℏω0=2 ¼ 1.034=r3=2s in
units of the effective Rydberg energy, Ry ¼ 731 K [15].
Using the same value for the fluctuation determinant as for
J3 of the pure WC, A3 ¼ 2.19, Eq. (3) gives t2 ∼ 1.9,
t02 ∼ 2, t1 ∼ 2 K, and hence t ∼ t2 þ t02 þ t1 ∼ 6 K, a much
higher energy scale than that of the pure WC for which
J ∼ 0.003 K. (The latter is in the same ball park as
estimates of J from the path integral Monte Carlo
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calculation [13].) This means that for νint ≈ νc, the temper-
ature scale for ferromagnetism is T� ∼

ffiffiffiffiffi
Jt

p
∼ 0.1 K.

Phenomenological considerations.—While our calcula-
tions show that an interstitial in a WC generates a large
ferromagnetic polaron, the relevance of this observation to
any experimental system turns on other considerations. The
existence of a finite concentration of interstitials is surely
not a universal feature of a WC phase; in any scenario we
have analyzed, their density is found to depend on assumed
microscopic details.
Let us first consider the scenario in which a small density

of interstitials is introduced from nearby coexisting (higher-
density) Fermi-liquid (FL) regions, as discussed earlier. If
the interstitial density is sufficiently large, and if the WC
regions percolate throughout the sample, it can result in a
ferromagnetic phase in which the WC regions are fully
polarized. Given that the FL at large rs has a large
ferromagnetic susceptibility, it is also possible to imagine
circumstances in which the FL puddles, as well, are driven
ferromagnetic by their interactions with the ferromagnetic
WC. We propose that such a picture may apply to the fully
polarized insulating phase found in AlAs quantum
wells [5].
We can also imagine cases in which interstitials are

induced by extrinsic sources even in the absence of FL
regions: e.g., due to a slowly varying disorder potential and/
or a weak commensurate locking of the WC to the potential
from the underlying semiconductor (especially when this
period is large, as in a Moiré system). We note that, in
contrast to the AlAs system, a fully polarized insulating
phase is not observed in a recent experiment on another
2DEG in a MgZnO=ZnO heterostructure [40]. What
material-specific aspect of these systems is responsible
for this dichotomy is presently unclear. These are all issues
we hope to address in future work.
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