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Coupled cluster theory is a general and systematic electronic structure method, but in particular the highly
accurate “gold standard” coupled cluster singles, doubles and perturbative triples, CCSD(T), can only be
applied to small systems. To overcome this limitation, we introduce a framework to transfer CCSD(T)
accuracy of finite molecular clusters to extended condensed phase systems using a high-dimensional neural
network potential. This approach, which is automated, allows one to perform high-quality coupled cluster
molecular dynamics, CCMD, as we demonstrate for liquid water including nuclear quantum effects. The
machine learning strategy is very efficient, generic, can be systematically improved, and is applicable to a
variety of complex systems.
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The coupled cluster (CC) method has been introduced
long ago by Coester and Kümmel, dubbed “expðSÞmethod”
at that time, to systematically tackle the many-body fermion
problem in nuclear physics in a diagram-free framework
that is both general and systematically improvable [1,2].
Later, the CC method has been proven to be a true game
changer by granting access to highly accurate properties of
small molecules and finite clusters [3]. Importantly, CC is a
size-consistent theory (being termwise size extensive) and,
thus, yields consistent results for systems containing differ-
ent numbers of atoms. By this virtue, even truncated CC
expansions allow one to accurately describe—in principle—
not only molecules but also condensed phase systems,
contrary to other electronic structure methods such as
truncated configuration interaction (CI) which accumulate
size-consistency errors for increasingly large systems. In
fact, in recent years, periodic CC methods have been shown
to provide highly accurate total energies of solids [4–9],
albeit they are feasible only in the static (“single-point”)
limit and using small periodic supercells. Still, specifically
the CCSD(T) method [3] has been demonstrated to yield
cohesive energies of real solids surpassing an accuracy of
about 0.03 eV (or 1 kcal=mol) [5].
Unfortunately, the computational cost of such CCSD(T)

calculations of condensed phase systems, which explodes as
a function of system size, essentially prohibits their practical
use. What is missing is a generic, systematically improv-
able, and efficient CC-based approach that allows one to
include finite temperatures and realistic structural models
in conjunction with time-evolution and structural dynamics
in fully atomistic simulations. These are mandatory ingre-
dients to meaningfully describe condensed phase systems,
notably liquids, in the framework of molecular dynamics.

Here, we introduce such an approach, coupled cluster
molecular dynamics (CCMD), and demonstrate its accuracy
by computing key structural and dynamical properties of
water at ambient conditions in outstanding agreement with
experimental benchmark data.
Our approach is based on two ingredients. The first one is

recent progress in CC methodology offering new avenues
toward achieving “gold standard” quality total energy
calculations of rather large yet finite molecular systems,
in particular the near-linear scaling, domain-based local pair
natural orbital CCSD(T), DLPNO-CCSD(T), technique
[10,11]. This static method can be applied to finite molecu-
lar systems as large as those that are typically used to study
liquid water using “on-the-fly” ab initio molecular dynam-
ics (AIMD) simulations [12]. We recognize that these recent
advances in quantum chemistry opened the door toward
generating big data sets for large molecular systems that
could be combined with modern machine learning (ML)
potentials [13–22], which provide the second component of
our framework.
Nowadays, ML potentials allow one to reach a simulation

quality that was hitherto simply inaccessible for condensed
phase systems such as liquid water. Indeed, rather efficient
density functional theory (DFT) for periodic condensed
systems has been used in the first MD simulations of
flexible liquid water relying exclusively on a ML potential
[23,24], employing a high-dimensional neural network
potential (HDNNP) [18,25–27] in that case. Numerous
other successful flavors of such ML strategies based on
DFT reference data have been introduced over the years to
most efficiently simulate large periodic systems, notably
water, some of them even making use of ML to introduce
one- and two-body corrections to DFT [28,29]. Accuracy,
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however, remains an issue in these cases as DFT-specific
limitations are inherited [30].
For isolated molecular systems, on the other hand, it has

already been demonstrated by us and others that highly
accurate CCSD(T)-grade interaction potentials can be
devised in a generic and automated active-learning frame-
work upon introducing tailor-made ML strategies [31–38].
Yet, transferring CCSD(T) accuracy in a general and
systematic manner to extended condensed phase simula-
tions—liquid water being a prominent example—still
remains an outstanding challenge.
In this Letter, we show how modern CCSD(T) theory of

finite systems intertwined with advanced ML techniques
allows one to carry out highly accurate computer simu-
lations of condensed phase systems based on a generic
and automated procedure that is applied on demand to
the specific system of interest. Our active-learning ML
procedure is demonstrated to parametrize a very accurate
HDNNP which enables very efficient path integral
coupled cluster molecular dynamics of water at ambient
thermodynamic conditions, serving here merely as a
particularly challenging yet exemplary target system that
could be exchanged by others. Thus, our strategy is to
directly generate a HDNNP that is tailor made for a
specific application—rather than aiming to develop a
general-purpose force field for water that is broadly
transferable. In the same spirit, the approach could be
applied in follow-up work to other condensed phase
systems. The computational effort to simulate HDNNP
bulk water at CCSD(T) accuracy is close to that of
sophisticated many-body force fields—thus many orders
of magnitude faster than on-the-fly ab initio simulations.
In this context, we stress that our primary aim here is not to
introduce a CCSD(T)-quality water potential as such, but
rather to introduce a general computational approach that
allows one to efficiently generate on demand very accurate
potentials for the simulation of extended condensed phase
systems, such as molecular liquids among many others,
using exclusively finite-system data. Moreover, CCMD is
ideally suited to use commodity single-node platforms in
view of benign memory (RAM) and compute (CPU and
GPU) requirements both at the training and simulation
stage. Importantly, our data-driven active-learning CCMD
approach is general since (i) the underlying electronic
structure theory can be systematically improved, e.g.,
toward including strong correlation effects, and since (ii) it
can be applied beyond ambient bulk water to many other
types of condensed phase systems.
Key ideas and basic concept.—Current advances in

computationally efficient correlated quantum chemistry
allow for very accurate routine calculations of large (yet
finite and static) molecular systems of ever increasing
complexity [11]. In particular, the near-linear scaling
DLPNO-CCSD(T) technique [10] (as available in the
ORCA package [39]) can be applied to large molecular

systems, such as finite water clusters consisting of up to
about 100 molecules. It yields very high accuracy given that
DLPNO-CCSD(T) has been shown to recover more than
99.9% of the full CCSD(T) correlation energy [11]. Indeed,
our own validations of DLPNO-CCSD(T) against the
WATER27 data set yield an average error as low as about
0.004 eV (≈0.1 kcal=mol) compared to these best bench-
mark data [see Supplemental Material (SM), Sec.
S-I.A [40] ]. Note that this is one order of magnitude lower
than what is broadly called “chemical accuracy,” namely
1 kcal=mol (≈0.04 eV). Within the same near-linear scaling
spirit, the less accurate but computationally much more
efficient DLPNO-MP2 method [84], which offers efficient
analytical gradients [85], is also available. This suggests the
idea of using MP2 energies and forces to construct an MP2-
grade HDNNP of the system of interest at not much cost.
This interimMP2-HDNNP provides the basis for an upgrade
to CCSD(T) accuracy, using only energies for training, in the
spirit of Δ-learning as explained in SM, Sec. S-III [40].
Machine learning strategy.—A HDNNP topology with

two hidden layers containing 30 nodes each for both
elements together with well-established atom-centered sym-
metry functions [26] is used throughout within the frame of
the committee-NNP method [86,87] using eight committee
members as detailed in SM, Sec. S-II.B [40]. Note that such
HDNNPs provide analytical gradients and thus forces,
implying that they are ideally suited to be used within
MD. Having in mind the description of extended condensed
phase systems subject to periodic boundary conditions,
whereas the DLPNO-CCSD(T) calculations strictly require
finite clusters, the long-range electrostatic as well as the
short-range repulsive interactions between the atoms have
been approximately parametrized and removed from the
cluster energies before training the HDNNP as outlined in
SM, Sec. S-II.A [40].
Another issue to tackle is the fact that is it not feasible to

perform periodic CC simulations of the condensed phase
target system inorder to generate and improve theHDNNP, as
customarily done when parametrizing ML potentials to DFT
since DFT-based AIMD is easily accessible for reasonable
systems sizes [12]. To solve this dilemma, our procedure gets
only seeded by running standard periodic AIMD of liquid
water using DFT to sample training configurations by
extracting finite clusters containing 64watermolecules using
farthest point sampling [88]. Similarly, we add early onDFT-
based path integral configurations in order to include those
crucial structural deformations in the training set that come
from nuclear quantum effects where classically forbidden
regions on the many-body potential energy surface are
accessed. Moreover, the efficient DLPNO-MP2 method is
initially used to parametrize some interim MP2-HDNNP
based on these clusters while making use of consistent MP2
energies and forces [85]. The DLPNO-CCSD(T) training set
configurations are selected initially using again farthest point
sampling based on both, classical, and quantum nuclear
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trajectories. Importantly, since any DFT-based sampling of
training set configurations imposes an undesired structural
bias, we switch from DFT-based sampling to using a
preliminary HDNNP once it allows for numerically stable
path integral simulations. Finally, the CCSD(T) accuracy of
the HDNNP gets consolidated in the spirit of Δ-learning
using active learning based on atomic committee force
disagreement [87] of pruned path integral configurations,
thus fully including the quantum nature of the nuclei directly
at the CCSD(T) reference level. After validation, this
systematic procedure generates the final CCSD(T)-
HDNNP that is used to compute all observables while
including nuclear quantum effects via dynamical path
integral simulations [89]. Overall, our generic approach to
CCMD simulations at CCSD(T) accuracy is schematically
visualized in SM, Fig. S-4 [40] for a general condensed phase
system. Clearly, all its key ingredients, i.e., the sampling
of initial reference structures, the generation of the first
interim MP2-HDNNP and its improvement using additional

CCSD(T) energies, as well as the optimization of the final
CCSD(T)-HDNNP, all based on active learning techniques,
allow for a high level of automation which can be transferred
to other condensed phase systems. As is well-known also in
case of largely automatedML strategies, this always requires
system-specific adjustments, concerning in the present case,
e.g., the symmetry functions, the size of the finite clusters
or when to start adding the computationally demanding
CCSD(T) energies to improve upon MP2 accuracy. Toward
enhancing automation, it could be interfaced in follow-up
work with existing workflow software and protocols to
generate ML-potentials on demand (such as e.g., DeePMD
[90], the performance of which has actually been demon-
strated for DFT-based water, to mention but one example out
of many). The details on our multilevel active-learning
strategy, as devised to be able to cope with computationally
demanding static CCSD(T) reference calculations of finite
water clusters to describe the dynamics of bulk liquid water,
are described in SM, Sec. S-III [40].
Simulation methods.—We employed the RubNNet4MD

package [91] to generate the CCSD(T)-HDNNP and the
HDNNP-interface [31,92] within the CP2k suite [93] using
its path integral module [92] to perform CCMD simulations
in the framework of ring polymer molecular dynamics
(RPMD) [89] to include nuclear quantum effects on both,
structural and dynamical observables. Our simulations of
liquid water were carried out at 298 K using 128 H2O
molecules and 32 Trotter replica. All reported properties
have been obtained as averages from 50 independent
CCMD RPMD runs of length 100 ps each adding up to
a total statistics of 5 ns. The computational details are
compiled in SM, Sec. S-IV [40].
Properties of liquid water from CCMD.—In order to

judge the quality of these path integral CCMD simulations of
liquid water at ambient conditions, our general strategy is to
compare fundamental structural as well as dynamical quan-
tum observables directly to properties that can be experi-
mentally measured in a rather faithful manner. The structure
of coupled cluster water as given by the three radial
distribution functions (RDFs) depicted in Fig. 1 (and digitally
reported, see SM, Sec. S-IV.C [40]) compares favorably to
those obtained from the state-of-the-art analyses of neutron
scattering and x-ray diffraction experiments [94–96] along
with the intramolecular OH peak at roughly 1 Å obtained
fromO isotope substitutionneutron diffraction [97].Note that
the earlier benchmarkOORDFof ambientwater [96] features
an artificial nonzero intensity for r < 2.4 Å which is no
longer present in the RDFs of ambient water determined at
several temperatures close to ambient conditions which are
reported in [94]. As explained in SM, Sec. S-V.A [40], we use
the latter data [94] to generate a reference gOOðrÞ at 298.0 K
by temperature interpolation that provides the experimental
benchmark in Fig. 1(a). The agreement between the com-
puted and experimental RDFs concerns both the heights and
positions of the maxima and minima of the peaks, notably

(a)

(b)

(c)

FIG. 1. Radial distribution functions of water including nuclear
quantum effects from path integral CCMD simulations at 298 K
(red dashed lines) compared to x-ray diffraction (a) and neutron
scattering (b), (c) data (black solid lines) with their error bars
(gray-shaded areas) [94,95]; see SM, Sec. S-V.A [40] for details
on the presented OO RDF including information on the error
bars. Only the intramolecular OH peak in panel (b) at ≈1 Å (that
is also presented in its inset) is given by the ΔGOXðrÞ data in
Fig. 2(b) obtained from O isotope substitution neutron diffraction
[97] experiments at 300.6� 0.5 K (black solid line without error
bars, digitally extracted) which approximates gOHðrÞ as explained
therein, whereas the intermolecular OH and HH RDFs are from
[95]. The RDFs have been computed using a radial bin size of
0.01 Å as depicted and are not smoothened.
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including the much discussed [97] first peak of gOHðrÞ that
stems from the covalent OH bonds in liquid water, as well as
the far-ranging solvation shell modulations of liquid water
including a pronounced third shell as disclosed by the OO
RDF [96].
A fundamental dynamical process in liquids that can be

accurately measured is the translational diffusion of individ-
ual molecules, which is closely coupled to the H-bond
network dynamics in case of liquid water. The mean-square
displacement inFig. 2(a) shows a perfectly linear behavior on
the relevant timescale, see inset. Based on the underlying
trajectories, we compute the self-diffusion coefficient of
coupled cluster water to be 0.244� 0.002 Å2=ps, which is
close to the recommended experimental reference value of
0.23 Å2=ps at 298.15 K (see SM, Sec. S-V.B [40] for a
discussion of this experimental value); the finite-size
extrapolation of the computed observable is included and
the reported error bar estimate is obtained based on 50
independent RPMD path integral simulation trajectories as
detailed in SM, Sec. S-IV.D [40]. Thus, also the agreement
between CCMD and experiment for this important observ-
able that probes the structural dynamics of liquid water is
very convincing.
In addition to translational motion, the orientational

dynamics of water is another key dynamical process where
useful experimental data are available, see SM, Sec. S-V.C
[40]. Since the reorientational motion of the individual
water molecules in liquid water is predominantly due to
H-bond jump dynamics [98], it complements significantly
the analysis of translational motion in terms of the diffusion
coefficient, which is related to center-of-mass transport and

thus dominated by the migration of water molecules within
the fluctuating H-bond network coupled to the jump
dynamics. The orientational relaxation time of the OH
bond vector of coupled cluster water at 298 K turns out
to be τOH2 ¼ 2.992� 0.065 and 1.733� 0.029 ps when
obtained from fitting and integrating the underlying COH

2 ðtÞ
function, respectively; see SM, Sec. S-IV.D [40] for back-
ground and note that fitted relaxation times are larger than
those obtained from the integrals due to excluding the fast
short-time librational decay [98]. These values are in accord
with corresponding experimental reference values for ambi-
ent liquid water in the range of 1.71–1.96 ps according to
NMR relaxation and 2.5–3.0 ps from IR pump-probe
experiments as assessed in SM, Sec. S-V.C [40] based on
detailed references.
The situation concerning the orientational relaxation as

probed by the intramolecular HH vectors is more involved,
but a value of about 2.5 ps is favored in an authoritative
review, see SM, Sec. S-V.C [40]. We obtain τHH2 ¼ 3.315�
0.075 and 2.082� 0.037 ps for the fitted and integrated
relaxation times related to the HH bond vector, respectively.
Finally, the fitted and integrated molecular dipole relaxation
times of coupled cluster water turn out to be τμ2 ¼ 2.823�
0.121 and 1.326� 0.026 ps, respectively. Here, direct
comparison to experimental data is rather unclear but a
value of 1.9 ps has been reported some time back for the
orientational relaxation time of the dipole moment vector,
see SM, Sec. S-V.C [40] for reference. Given the intricate
nature of any one-to-one comparison of the computed
relaxation times to experimental data [98] as addressed in
SM, Sec. S-V.C [40], it is evident with reference to reliable
measurements that also the underlying reorientational proc-
esses of coupled cluster water at 298 K are close to those
that determine the structural dynamics of real liquid water.
Our CCMD results can also be directly compared to

elaborately parametrized and highly accurate water models
of the well-established truncated many-body expansion
(MBE) family [99], like the most recent many-body
CCSD(T) potential “q-AQUA” that includes up to four-
body interactions [100], which has been published after
submission of our manuscript; we refer the interested reader
to SM, Sec. S-VI [40] for detailed comparisons of structural
and dynamical properties of ambient water.
Status quo and perspectives.—We conclude that the

highly accurate “gold standard” electronic structure method
CCSD(T), applied so far to small molecules or simple
solids in the static limit, has been extended to the
condensed phase by intertwining it with very generally
applicable machine learning techniques. The resulting
coupled cluster molecular dynamics approach, CCMD,
allows for finite-temperature simulations of dynamically
disordered extended systems, notably molecular liquids, at
CCSD(T) accuracy. Yet, the computational cost corre-
sponds roughly to advanced force fields and, thus, is many
orders of magnitude below that of respective on-the-fly

(a)

(b)

FIG. 2. Mean-square displacement (a) and COH
2 orientational

correlation function (b) of water including nuclear quantum
effects from path integral CCMD simulations at 298 K. The
insets magnify the long (a) and short (b) time behavior from zero
up to 50 and 0.5 ps, respectively. The functions have been
computed using a time interval of 1 fs as depicted and are not
smoothened.
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ab initio simulations. A first proof-of-principle application
to liquid water at ambient conditions demonstrates that
CCMD, including nuclear quantum effects via path inte-
grals, provides very accurate structural and dynamical
properties close to the experimental benchmarks. The
devised active-learning ML strategy is general, automated,
and scalable to large extended systems. It can be system-
atically improved and applied to condensed matter other
than water, thereby providing systematic access to con-
densed phase simulations at CCSD(T) accuracy. Finally,
combining the CCMD approach with our current progress
toward computing response properties, such as infrared
spectra based on dipole time-correlation functions using
similar ML approaches at CCSD(T) accuracy, looks very
promising.
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