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The dihedral contact angles between interfaces in three-fluid-phase equilibria must be continuous
functions of the bulk thermodynamic fields. This general argument, which we propose, predicts a
nonwetting gap in the phase diagram, challenging the common belief in “critical-point wetting,” even for
short-range forces. A demonstration is provided by exact solution of a mean-field two-density functional
theory for three-phase equilibria near a tricritical point (TCP). Complete wetting is found in a tiny vicinity
of the TCP. Away from it, nonwetting prevails and no wetting transition takes place, not even when a
critical endpoint is approached. Far from the TCP, reentrant wetting may occur, with a different wetting
phase. These findings shed light on hitherto unexplained experiments on ternary H2O-oil-nonionic
amphiphile mixtures in which nonwetting continues to exist as one approaches either one of the two critical
endpoints.
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Wetting phenomena and in particular wetting phase
transitions have enjoyed much attention from physicists
and other scientists or engineers. The first theoretical
predictions and experimental observations of a phase
transition from a state of partial wetting (“nonwet”), in
which three phases are pairwise in contact at their mutual
interfaces and meet at a common contact line, to a state of
complete wetting (“wet”), in which one phase intrudes at
the interface between the other two, date from the late
1970s [1–3]. Not only first-order but also critical wetting
transitions (of second or higher order) may occur [4,5].
Numerous reviews have since been dedicated to the
development of this fascinating field, e.g., [6–11].
In 1977 Cahn predicted that complete wetting must be

expected upon approach of a critical point where two phases
become identical. This is termed “critical-point wetting”
(CPW) [1]. Subsequently, insight was gained into which
systems display CPW and which do not. For short-range
forces, CPW must take place when two coexisting phases
adsorbed at a wall with a nonzero “surface field” approach
bulk criticality, as found in [5,12] (surface phase transition
class C defined in [12]). For a vanishing surface field, CPW
is suppressed [13–15]. For long-range wall-fluid and/or
fluid-fluid forces, nonwetting gaps exist in whichCPWdoes
not occur, as predicted in [16,17] and recently demonstrated
in [12] (classes A, B, and D defined in [12]).
In this Letter, we ask whether CPW should be expected

when three coexisting fluid phases are treated on equal
footing instead of replacing one of them by an ad hoc
“wall” boundary condition. We consider molecular fluids
governed by van der Waals forces, or fluids with forces
of shorter range, such as plasmas and electrolytes [6] or
colloid-polymer mixtures [18]. CPW can be tested

approaching a critical endpoint (CEP) where two (out of
three) phases become identical and the resulting critical
phase coexists with the third, noncritical, phase. Especially
relevant is the vicinity of a tricritical point (TCP) at which
two CEP lines meet, in accord with Gibbs’ phase rule.
Pioneering experiments in this arena were carried out by
Widom et al. [19,20], and the experiment in [20] was
judged to be consistent with CPW [21]. However, in ternary
H2O-oil-nonionic amphiphile mixtures, nonwetting was
observed to persist [22].
To shed light on these issues, we consider a mixture with

three components and study three-phase equilibria with
coexisting phases α, β, and γ in mean-field density-
functional theory (DFT) with two spatially varying den-
sities ρ1 and ρ2. Two densities are necessary because, near a
TCP, in a single-density theory the “middle” phase always
wets the interface between the other two phases [23,24].
Gibbs’ phase rule dictates that two linear combinations
of pressure p, temperature T, and chemical potentials μi,
i ¼ 1, 2, 3, can be taken as independent field coordinates,
say s and t, in the two-dimensional three-phase coexistence
surface in thermodynamic space. This surface is bounded
by two CEP lines that meet tangentially (with a power 3=2)
at the TCP, located at s ¼ t ¼ 0, along an asymptote that
we take to be the t axis. We can use t ≥ 0 to measure the
“temperature distance” to the TCP, in the ðs; tÞ plane, and
use s to interpolate between two CEPs at fixed t [19,24,25].
Of chief interest here are fluids with short-range forces,

for which the single-density approximation with a wall
boundary condition always predicts CPW. The model we
employ is a square-gradient DFT akin to model T in [26],
in which the bulk free-energy density is a product of
three potential wells, centered about different points in the
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ðρ1; ρ2Þ plane, with bulk phase density pairs ðρν1; ρν2Þ, with
ν ¼ α, β, γ. In the theory of tricritical phenomena due to
Griffiths, an important constraint reflects the asymptotic
scaling properties of the three-phase region close to the
TCP [24,25]. Using linear combinations of the densities,
which we rename to be just our ρ1 and ρ2, the constraint on
the bulk densities, in each phase, takes the form

ρν2 ¼ −ðρν1Þ2: ð1Þ

The (dimensionless) interfacial free-energy density Ψ is
taken to be

Ψðρ1; ρ2Þ ¼
1

2

X
i¼1;2

�
dρi
dz

�
2

þ
Y

ν¼α;β;γ

X
i¼1;2

ðρi − ρνi Þ2: ð2Þ

This simple symmetric form has been chosen in the interest
of obtaining an exactly solvable DFT. Additional para-
meters may affect the (order and locus of the) wetting
transitions, as they do in [27], but the presence of a
nonwetting gap, for which we will give a general argument,
ought to be robust.
The bulk free-energy density is minimal and takes

equal values (chosen to be zero) in all three bulk phases.
The spatially varying densities ρ1ðzÞ and ρ2ðzÞ, with z the
coordinate perpendicular to the interface between any two
phases, characterize the structure of that interface. The
equilibrium (or “optimal”) densities minimize the excess
free-energy functional associated with the interface,

σ½ρ1; ρ2� ¼
Z

∞

−∞
dzΨðρ1; ρ2Þ; ð3Þ

subject to the boundary conditions that the interface
connects two (spatially homogeneous) bulk phases that
are a macroscopic distance apart. Therefore, we impose one
of the bulk phases, e.g., α, at z ¼ −∞ and the other, e.g., β,
at z ¼ ∞. The equilibrium interfacial tension σαβ is then the
value of σ½ρ1; ρ2� for the optimal density profiles.
The densities ρ1 for the three coexisting phases, calcu-

lated to be the zeroes of the third-degree polynomial
Pðρ1Þ ¼ ρ31 − 3tρ1 þ 2s, are ordered in the manner
ρα1ðs; tÞ ≤ ρβ1ðs; tÞ ≤ ργ1ðs; tÞ [24]. At fixed t, s can inter-
polate between two CEPs, one at αβ criticality
(st−3=2 ¼ −1) and one at βγ criticality (st−3=2 ¼ 1). The
results for s < 0 can be obtained from those for s > 0 by
interchanging phases α and γ, so we consider s ≥ 0 and
investigate the range 0 ≤ st−3=2 ≤ 1.
There are now two possibilities. Either the β phase does

not wet the αγ interface, in which case

σαγ < σαβ þ σβγ; nonwet; ð4Þ

or the β phase wets the αγ interface, and then

σαγ ¼ σαβ þ σβγ; wet; ð5Þ

the latter of which is sometimes referred to as “Antonov’s
rule” [24]. When β does not wet the αγ interface, it is
possible that γ wets the αβ interface (or that it does not).
We take a twofold approach. High-precision numerical

integration of the free-energy density is performed to obtain
the interfacial tensions. Also, recently conjectured simple
analytic forms of these interfacial tensions [28] are used to
calculate them exactly. The two methods provide indis-
tinguishable results, while the analytic calculation is by far
the simplest.
The analytic forms allow one to obtain a geometrical

representation of the wetting criterion. To elucidate this we
recall the analytic expression for, say, σαγ uncovered in
[28]. It is applicable to a three-phase triangle of arbitrary
geometry and valid for a nonwet interface,

σαγ ¼
ffiffiffi
2

p

6
p3l; ð6Þ

with p the Euclidean distance from α to γ and l the
Euclidean distance from β to the midpoint of the αγ line, in
the ðρ1; ρ2Þ plane. Note that p is the length of an edge, and
l that of the conjugate median, in the three-phase triangle.
We now construct the geometrical wetting criterion (see

Fig. 1). We translate, rotate, and uniformly rescale the
three-phase triangle, without affecting its shape, in the
ðρ1; ρ2Þ plane. After this, the α-phase point is fixed at
ðx; yÞ ¼ ð−1; 0Þ and the γ-phase point at ðx; yÞ ¼ ð1; 0Þ.
Next we express the wetting condition [Eq. (5)] in x and y,
using Eq. (6) for each interface, assuming a nonwet state
(none of the interfaces between any two phases is wet by

FIG. 1. Two representative three-phase triangles, after a coor-
dinate transformation from ðρ1; ρ2Þ to ðx; yÞ, together with the
two curves yðxÞ that correspond to the exact phase boundaries for
wetting of the αγ interface by the β phase. The curves feature
yð0Þ2 ¼ 2

ffiffiffi
3

p
− 3 and jdy=dxjx¼�1 ¼

ffiffiffi
3

p
. A (non)wet state

results if β is (outside) inside the domain bounded by the curves.
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the third phase). We find that supposing Antonov’s rule is
equivalent to drawing two curves yðxÞ that trace the
boundary of the domain of wet states. An involved
algebraic calculation, invoking Apollonius’ geometrical
theorem, shows that the curves satisfy

y2 ¼ x2 − 3þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 3x2 þ 3

p
: ð7Þ

A state in which the αγ interface is wet by β results if and
only if the β-phase point lies inside the domain bounded by
these curves. The boundary corresponds to the wetting
transition. A similar construction applies for wetting by α
or γ. Consequently, a necessary condition for wetting of
an interface between two phases by a third phase is that
the former two span the longest edge of the three-phase
triangle.
The global wetting phase diagram is displayed in

Fig. 2. Very close to the TCP, we find what can be
called “tricritical-point wetting”; e.g., for s ¼ 0 and
t < 2=

ffiffiffi
3

p
− 1 ¼ 0.1547…, β wets the αγ interface, in

accord with findings in [26]. The profiles ρ1ðzÞ and
ρ2ðzÞ, which connect α to γ in the ðρ1; ρ2Þ plane, pass
through β. There is no direct αγ contact, but a composite αγ
configuration is found that consists of an αβ interface, an
intruding bulk β phase, and a βγ interface.
Very close to the TCP a wetting transition phase

boundary is found, with midpoint ð0; 2= ffiffiffi
3

p
− 1Þ and

terminating on the CEP lines at “unbinding transition”
points u− (discussed later). For 2=

ffiffiffi
3

p
− 1 < t < t−u≡

ð7 − ffiffiffiffiffi
33

p Þ=8 ¼ 0.1569…, we obtain the locus t≡ tβwðsÞ
of transitions from nonwet to wet states. Their existence
was anticipated in [26].
States above this line are wet states near the TCP. States

below it feature pairwise direct interfacial contact between
α and β, α and γ, and β and γ. The three phases meet along a
contact line, such that, in a projection onto a plane
perpendicular to the line, the three interfaces display
dihedral contact angles named after the phase they subtend
[24], e.g., ν̂ is the angle for phase ν.
The dihedral angles are related to the interfacial tensions

geometrically through Neumann’s triangle [24]. The rel-
evant angle for describing (non)wetting by β is β̂, and it
satisfies

cos β̂ ¼ 1

2

�
σαγ
σαβ

σαγ
σβγ

−
σαβ
σβγ

−
σβγ
σαγ

�
: ð8Þ

We find that cos β̂ approaches unity proportionally to the
second power of the field distance to wetting,

�
cos β̂ − 1 ∝ ðt − twÞ2; for fixed s

cos β̂ − 1 ∝ ðs − swÞ2; for fixed t
; ð9Þ

with ðsw; twÞ a point on tβwðsÞ. This is characteristic of a
critical wetting transition of second order.
The physics changes drastically, when we move

away from the TCP, in the broad temperature range
t−u < t < tþu ≡ ð7þ ffiffiffiffiffi

33
p Þ=8 ¼ 1.5930…. All states are

nonwet. Even approaching a CEP, no wetting takes place.
For example, for t−u < t < 1=2 and in the limit st−3=2 → 1,
both σαγ − σαβ and σβγ vanish but their ratio, cos β̂, remains
finite and strictly below unity. So the αγ interface is not wet
by β. The asymptotic value of cos β̂ varies along the CEP
line (see Fig. 3). This persistence of nonwetting, or
equivalently, the absence of CPW, was missed in [26].

FIG. 2. Global wetting phase diagram near a TCP. Projected
onto the ðs; tÞ plane, the three-phase coexistence region is the
surface bounded by the two CEP lines, one for αβ criticality and
one for βγ criticality. Very close to the TCP a second-order
wetting phase boundary is found above which β wets the αγ
interface. Far from the TCP and close to the CEP lines, reentrant
second-order wetting phase boundaries appear, one for s < 0,
leading to wetting of the βγ interface by α, and one for s > 0,
leading to wetting of the αβ interface by γ. The wetting phase
boundaries terminate at four points denoted u−; uþ on the CEP
lines, leaving a large gap in t, t−u < t < tþu , in which only
nonwetting occurs. Also shown are the three (dotted) lines of
symmetry on each of which two interfacial tensions are equal.
The circular cartoons depict three-phase configurations: a nonwet
state for s ¼ 0 close to the TCP, the fully symmetric state at
ðs ¼ 0; t ¼ 1Þ, and three nonwetting states infinitesimally close
to the CEP line for βγ criticality. In the latter three, the βγ
interface, with vanishing tension, is diffuse (dotted line) and the
asymptotic value of cos β̂ along the CEP line is displayed
in Fig. 3.
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Farther away from the TCP, for t > tþu , the longest edge
of the three-phase triangle (Fig. 1) is no longer spanned by
α and γ and the necessary condition for wetting by β is no
longer met. Instead the longest edge may be spanned by α
and β in the vicinity of a CEP for βγ criticality. The wetting
phase then becomes the γ phase.
In the three-phase region with t > tþu and s > 0 there is a

locus t≡ tγwðsÞ of critical (second-order) wetting transi-
tions in which γ intrudes between α and β. The wetting
phase boundary terminates on the CEP line at uþ (see
Fig. 2). The relevant angle for describing (non)wetting by γ
is γ̂, and it satisfies Eq. (8) after a cyclic permutation of the
phase labels. So we find that CPW takes place in two
distinct regimes, separated by a nonwetting gap. Varying t,
from the TCP outward, one encounters CPW, nonwetting,
and “reentrant” CPW (Fig. 2).
The nonwetting gap contradicts Cahn’s theory and is at

variance with the wetting phase diagrams derived for wall-
fluid systems with short-range forces [1,5,12]. This
requires a novel explanation. First, notice the three (dotted)
lines of symmetry in Fig. 2, along each of which two
interfacial tensions are equal. These may act as “neutral
lines” with respect to wetting. For example, the line
σαβ ¼ σαγ excludes wetting by β or γ, since β̂ ¼ γ̂. Some
exactly calculated points on this line are ðs ¼ 0; t ¼ 1Þ,
(s¼ð1= ffiffiffi

3
p Þ3=2= ffiffiffi

2
p

;t¼1=
ffiffiffi
3

p
), and (s¼ð1=2Þ3=2;t¼1=2).

The latter is a common point of the neutral line and the CEP
line. It is characterized by α̂ ¼ 180° and, asymptotically,
β̂ ¼ γ̂ ¼ 90°. Next, we know that in the wet regimes the

asymptotic angle is β̂ ¼ 0 or β̂ ¼ 180°. If there were no
nonwetting gap, the asymptotic value of β̂ on the CEP
would have to jump discontinuously from 0° to 180° at the
neutral point, where, by symmetry, it is 90°.
A discontinuity of this caliber in a dihedral angle is

possible, and does exist, in the single-density theory with a
wall, when the surface field is varied through zero,
asymptotically close to the critical temperature Tc. This
is conspicuous in the wetting phase diagram in [5].
However, there are no surface fields or other boundary
effects that can cause discontinuities in observable dihedral
angles, when all three phases are treated on equal footing
and only bulk thermodynamic fields are varied within
the two-dimensional subspace of three-phase equilibria.
Consequently, all angles 0 < β̂ < 180° must be encoun-
tered in a continuous manner also when moving along,
and infinitesimally close to, the CEP line. This implies the
existence of a nonwetting gap.
This general argument is supported in detail by the exact

solution of the DFT. Upon approach of a CEP, the βγ
interface becomes diffuse as β and γ become one and the
same critical phase, named βγ. The angle α̂ approaches
180°, and α and βγ each fill a half-space. They are separated
by a planar noncritical interface, denoted by α; βγ. For
t−u < t < tþu , in the βγ half-space the diffuse βγ interface,
with vanishing interfacial tension, makes a nonzero contact
angle β̂ with the α; βγ interface. The diffuse interface is still
bound, or localized, at the noncritical interface in the limit
that the CEP is attained.
From the analytic expressions for the interfacial tensions

we calculate, using series expansion to third order in the
small distance ϵ ¼ 1 − st−3=2 from the CEP line, the
asymptotic contact angle β̂ along the CEP line. The exact
result, displayed in Fig. 3, is

cos β̂ ¼ ð2t − 1Þð1 − 31tþ 4t2Þ
½ð1þ tÞð1þ 4tÞ�3=2 ; for t−u < t < tþu : ð10Þ

The values t−u and tþu , which span the nonwetting gap,
are found by solving cos2 β̂ ¼ 1 [which leads to
tð1 − 7tþ 4t2Þ2 ¼ 0]. When t↓t−u , cos β̂ → 1. When
t↑tþu , cos β̂ → −1 and reentrant CPW is found.
Starting in the nonwetting gap and moving along, and

infinitesimally close to, either one of the two CEP lines, we
may encounter an interfacial phase transition in which the
diffuse interface unbinds from the planar noncritical inter-
face. These “diffuse-interface unbinding” transitions, at u�,
are critical and of second order, with

cos β̂ � 1 ∝ ðt − t�u Þ2; for st−3=2 ¼ 1−: ð11Þ

Our findings make it necessary to reinterpret the exper-
imental observation of a hitherto unexplained nonwetting
state, which continues to exist when either one of the two

FIG. 3. Infinitesimally close to the CEP line for βγ criticality,
the cosine of the asymptotic contact angle β̂ is a continuous
function of the bulk thermodynamic field t. Second-order diffuse-
interface unbinding occurs at t ¼ t−u ≡ ð7 − ffiffiffiffiffi

33
p Þ=8, where

β̂ ¼ 0, γ̂ ¼ 180°, and wetting by β terminates at a CEP, and
also at t ¼ tþu ≡ ð7þ ffiffiffiffiffi

33
p Þ=8, where β̂ ¼ 180°, γ̂ ¼ 0, and

wetting by γ terminates at a CEP. The three-phase configuration
for t ¼ 1=2, where a neutral line (see Fig. 2) terminates at a CEP,
is also shown.
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CEPs is approached in ternary H2O-oil-nonionic amphi-
phile mixtures at three-phase coexistence [22]. A drop of
the “middle” phase was observed not to spread but to form
a lens, with a contact angle close to 90°. It was thought that
this angle must approach exactly 90° close to the CEP
based on a scaling argument. Other values, 0 < β̂ < 180°,
were, unfortunately, not given attention because the authors
excluded the very case (x ¼ y in [22]) that is realized in the
nonwetting gap of our exactly solved two-density DFT.
In conclusion, for three-fluid-phase equilibria in systems

with a TCP that are not approximated by two-phase
equilibria at a wall, but described by a two-density DFT,
the global wetting phase diagram largely contradicts the
CPW scenario. A pronounced nonwetting gap is found in
an exactly solved DFT paradigm and, we argue, must also
generally be present, by virtue of thermodynamic continu-
ity of the dihedral angles as a function of bulk thermo-
dynamic field variables, in three-phase equilibria of fluids.
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