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We investigate the standard and dual Bondi-Metzner-Sachs (BMS) supertranslation generators on a
black hole horizon and draw some conclusions about black hole physics. Recently, it has been shown that
in addition to conventional BMS supertranslation symmetries, there exists an additional infinite set of
magnetic asymptotic symmetries, dual BMS supertranslations, again parametrized by a function on the
two-sphere. We show that the Dirac bracket between these generators exhibits an anomalous central term
when one parameter function exhibits a singularity in the complex stereographical coordinates on the
sphere. In order to preserve general coordinate invariance, we demonstrate that this central term can be
removed by postulating a holographic gravitational Chern-Simons theory on the horizon. This indicates
that for an anomaly-free theory of quantum gravity in the presence of a black hole, one should include a
boundary theory on the horizon.
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Introduction.—The recent interest in asymptotic sym-
metries [1,2] is motivated in large part by the applications
to black hole physics. The asymptotic symmetries of
particular interest in this Letter are the Bondi-Metzner-
Sachs (BMS) supertranslations and the dual supertransla-
tions. While the supertranslations are associated with a
certain class of diffeomorphisms, parametrized by a func-
tion on a two-sphere, no such association is known for the
dual ones. However, in Refs. [3,4], it was noted that the
dual symmetries are contained in a complexification of
the usual supertranslation. The action of the complexified
charge on phase space was also investigated there, indicat-
ing that this situation is completely analogous to what
happens in electromagnetism [5]. This analogy with
electromagnetism is further explored in this Letter by
considering the algebra of the dual and standard super-
translation charges (magnetic and electric charges in
electromagnetism) for a parameter function with singular-
ities in terms of complex stereographical coordinates on the
sphere. There are several physical motivations for consid-
ering singular parameter functions. In electromagnetism,
Dirac-string-like configurations in the bulk correspond to
singular gauge transformations, and thus in gravity it is

natural to expect that singular supertranslations correspond
to the gravitational analog of such configurations.
Moreover, singular supertranslations arise naturally in
the BMS algebra of supertranslation and superrotation
charges [6]. While a proper understanding of BMS super-
rotations is a subject of ongoing research, considering
singularities in the supertranslation parameter would be one
of the first steps in this direction. Singular gauge trans-
formations in electromagnetism were considered in [7,8],
and it was found that the algebra of the electric and
magnetic charges at null infinity contained a central term.
Since asymptotic symmetry charges map one physical
configuration to another, one expects the charge algebra
to be closed. Thus, a central term appearing in the algebra
signals the existence of an anomaly.
In this Letter, we consider pure gravity without matter

and show that an analogous central term arises in the
algebra of standard and dual supertranslation charges at
the future black hole horizon even if there are no bulk
Newman-Unti-Tamburino charges. We further find that
this anomaly in the charge algebra may be canceled by
including a holographic Chern-Simons theory on the
horizon of the black hole. We give an outline discussion
of the electromagnetic case first and construct the Chern-
Simons theory here as well, so as to bring out the analogies
and differences between the two theories. We find the
Chern-Simons theory for electromagnetism to have gauge
group Uð1Þ ⊗ Uð1Þ, in agreement with a similar result
on future null infinity in [8]. For the case of gravitation,
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we find the Chern-Simons theory to have gauge group
SLð2;CÞ on the horizon. The implications of this for a
quantum theory of gravity, in particular, the relevance of
the states of the Chern-Simons theory to black hole physics,
is beyond the scope of this Letter but will be treated
elsewhere.
In the “BMS transformations” section that follows, we

review the analog of both the standard and dual super-
translations on the black hole horizon in Bondi gauge.
In the “Horizon charges” section that follows that, we
introduce the charges associated with the diffeomorphism
symmetries. In parallel, we also discuss the dual (magnetic)
counterpart of the diffeomorphism symmetries. Then, in the
“Charge algebra” section, we continue the discussion of
charges and allow for the possibility that there could be
singularities in the supertranslations. We examine in detail
the case of the supertranslation generator having a simple
pole when expressed in the usual complex coordinates on
the two-sphere of the horizon and show that the algebra of
electric (standard) and magnetic (dual) supertranslation
charges is anomalous. The central charge is explicitly
calculated here. Next, in the “Electromagnetism” section,
we examine electromagnetic soft hair on the black hole
horizon and show that in this case, also, there is an anomaly
in the charge algebra when one has both electric and
magnetic transformations. We show that this anomaly can
be canceled by supposing that the horizon has a Chern-
Simons theory living on it. Following that, in the
“Gravitational Chern-Simons theory” section, we repeat this
analysis for the gravitational case and find that the Chern-
Simons theory that does the job here was formulated earlier
in [9]. We conclude with a brief discussion of our results.
BMS transformations.—We begin by reviewing the

notion of supertranslations on the future horizon of the
Schwarzschild black hole. The Schwarzschild metric in
terms of the advanced Eddington-Finkelstein coordinate v
and the stereographic coordinates zA (A ¼ 1, 2) that para-
metrize a unit two-sphere with metric γAB are given by

ds2 ¼ gabdxadxb

¼ −
�
1 −

2M
r

�
dv2 þ 2dvdrþ r2γABdzAdzB: ð1Þ

We will work in the Bondi gauge, where grr ¼ 0, grA ¼ 0,
∂r detðgAB=r2Þ ¼ 0 where gAB is the metric on the two-
sphere. The diffeomorphisms that respect the Bondi gauge
conditions are generated by the vector field [1,2]

ξa∂a ¼ X∂v −
1

2
ðrDAXA þD2XÞ∂r þ

�
XA þ 1

r
DAX

�
∂A;

ð2Þ

whereDA is the covariant derivative with respect to γAB and
the A;B;… indices are raised and lowered using the metric

on the unit two-sphere γAB. Supertranslations are generated
by X ¼ f and XA ¼ 0, while superrotations are generated
by X ¼ ðu=2ÞDAYA, XA ¼ YA. Here, f parametrizes the
diffeomorphism on a two-sphere (either at null infinity or
the horizon). In this Letter, we will be interested in the
charge associated with supertranslations and the related
dual supertranslations.
The dual gravitational charges are given by twisted

fields [4,10] defined through the Levi-Civita tensor ϵAB
on the two-sphere. Unlike the supertranslation charge, they
do not generate diffeomorphisms and may be derived, as
recently shown in [11,12], by introducing the topological
Holst term to the Einstein action. The most convenient way
to view the dual symmetries is through a complexification
of supertranslation charge [4]. It was shown in this last
reference that the complexified charge acts on the phase
space in a manner consistent with what one would expect
for the analogous case of electric and magnetic charges in
electromagnetism [5]. Specifically, the complex charge on
future null infinity is given by [4]

Qþ
f ¼ −

1

16π

Z
S
dΩð−4fmB þ fD2

zCzz þDz̄fDz̄Cz̄ z̄Þ; ð3Þ

where S is the two-sphere at future null infinity, rCAB ¼
δgAB, δgAB is the variation of the metric gAB, and mB the
Bondi mass aspect. They further find that its action on
phase space may be represented by

fQþ
f ; Czzðu; z; z̄Þg ¼ f∂uCzz ð4Þ

fQþ
f ; Cz̄ z̄ðu; z; z̄Þg ¼ f∂uCz̄ z̄ − 2D2

z̄f: ð5Þ

Thus, Qþ
f generates time translation on the mode Czz and a

supertranslation on the other modeCz̄ z̄ in complete analogy
with the electromagnetic case discussed in [5].
Horizon charges.—Let us now construct charges that

generate the standard and dual BMS supertranslations
on the horizon. Consider a spacelike hypersurface Σ that
extends from a section of Iþ to a section of Hþ. A charge
QΣ

f associated to Σ then splits into two parts,

QΣ
f ¼ QHþ

f þQIþ
f ; ð6Þ

whereQHþ
f is defined on a section on the future horizonHþ

and QIþ
f is defined on a section on the future null

infinity Iþ. We refer to the horizon contribution QHþ
f as

the horizon charge.
The horizon charge can be written as an integral on Hþ

so long as the contribution from the future boundary Hþ
þ

vanishes. In this Letter, we take the viewpoint that the black
hole ultimately evaporates, and hence this contribution is
negligible. If a horizon has a future end point, in classical
general relativity this point must be singular. Following
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common practice, we assume that this is not an issue
and that the quantum theory will ultimately resolve this
problem. The horizon charge can therefore be written either
as a three-dimensional integral of a total v derivative over
Hþ, or a two-dimensional integral over Hþ

−.
To each vector field ξ that does not vanish on Σ, there

exists a diffeomorphism (electric) horizon charge QHþ
f

associated to the diffeomorphism generated by ξ, as well
as a dual (magnetic) horizon charge Q̃Hþ

f that originates
from the Holst action [11]. Variations of such charges can
be computed using the covariant phase space formalism in
the first-order formulation of gravity [11,12]. Taking the
vector field ξ to be the supertranslation generator [Eq. (2)],
we obtain the standard and dual supertranslation horizon
charges

=δQHþ
f ¼ 1

16πM

Z
Hþ

dv d2Θ
ffiffiffi
γ

p
fðΘÞDADBσAB; ð7Þ

=δQ̃Hþ
f ¼ −1

32πM

Z
∂Hþ

d2Θ
ffiffiffi
γ

p ðDBfÞϵACDAhBC; ð8Þ

where hAB ¼ δgAB is the variation of the metric, and σAB ¼
1
2
∂vhAB is its conjugate momentum. It is possible that these

variations are nonintegrable, and we emphasize this point
with the notation =δ, in contrast to integrable variations
denoted by δ.
Charge algebra.—In this section, we demonstrate that

the Dirac bracket algebra between the standard and dual
supertranslation charges on the horizon exhibits a central
term when the parameter function exhibits a singularity. To
demonstrate this, let us consider a supertranslation with a
pole fðz; z̄Þ ¼ ð1=ðz − wÞÞ and a dual supertranslation with
a smooth function f0. (We work with a simple pole for
explicit computation, but a similar line of argument can be
carried out for other functions with singularities, such as
logarithms.) Then, the dual charge for smooth f0 becomes
integrable =δQ̃Hþ

f0 ¼ δQ̃Hþ
f0 , but the supertranslation charge

acquires a nonintegrable piece,

=δQHþ
f¼ 1

z−w
¼δQHþ

f¼ 1
z−w

−
1

4M

Z
∞

−∞
dvDz½D2−1�−1DBDAσAB

����
z¼w

:

ð9Þ

It is straightforward to check that the nonintegrable piece
has vanishing Dirac brackets with all charges, and therefore
can be ignored for our computation of brackets. Natural
definitions of the integrable variations are given by

δQHþ
f ≡ 1

16πM

Z
Hþ

dv d2Θ
ffiffiffi
γ

p ðDBDAfÞσAB; ð10Þ

δQ̃Hþ
f0 ≡ −1

32πM

Z
Hþ

−

d2Θ
ffiffiffi
γ

p ðDBDAf0ÞϵAChBC: ð11Þ

It is worth noting that δQ̃Hþ
f is related to δQHþ

f by the
twisting hAB → ϵA

ChCB [4,10,13]. These variations are
first-order perturbations around the Schwarzschild back-
ground. Thus, one can imagine that a full (integrated)
charge Q has the expansion

Q ¼ Q0 þ δQþOðh2Þ: ð12Þ

Here, Q0 is the charge evaluated on the Schwarzschild
metric, which is a constant and hence does not carry
degrees of freedom. This implies that at leading order in h,
the Dirac bracket between the full charges QHþ

f and Q̃Hþ
f0 is

fQHþ
f ; Q̃Hþ

f0 g ¼ fδQHþ
f ; δQ̃Hþ

f0 g þOðhÞ: ð13Þ

Since both δQHþ
f and δQ̃Hþ

f0 are linear in hAB and σAB,
respectively, their Dirac bracket is a constant. This implies
that the bracket fδQHþ

f ; δQ̃Hþ
f0 g contains information about

the central term of the full charge algebra. By straightfor-
ward computation, one finds that

fδQHþ
f¼ 1

z−w
; δQ̃Hþ

f0 g ¼ −i
4
ðDzD2

zf0Þ
����
z¼w

: ð14Þ

One observes the appearance of a central term in the
algebra.
Electromagnetism.—In the previous section, we have

shown that the presence of a singularity in the super-
translation parameter function leads to a central term in the
charge algebra. In this section, we review similar results for
electromagnetism, and show that such central term can be
removed by adding a Chern-Simons theory on the horizon.
We refer the reader to [7,8] for related discussions on Iþ.
In electromagnetism, the asymptotic symmetries are the

electric and magnetic large gauge transformations. The soft
horizon charges are given by the expressions

QHþ
ψ ¼

Z
Hþ

dψ ∧ �F; Q̃Hþ
σ ¼

Z
Hþ

dσ ∧ F; ð15Þ

where ψ ¼ ψðz; z̄Þ and σ ¼ σðz; z̄Þ are functions on the
sphere. It is straightforward to see that they satisfy the
algebra

fQHþ
ψ ; Q̃Hþ

σ g ¼
Z
∂Hþ

dψ ∧ dσ; ð16Þ

fQHþ
ψ ;QHþ

σ g ¼ 0; fQ̃Hþ
ψ ; Q̃Hþ

σ g ¼ 0: ð17Þ

One observes that singularities in ψ (or σ) lead to central
terms in the algebra.
Central terms in a symmetry algebra imply the existence

of anomalies. One way to remove such a term is to add a
boundary theory on Hþ that has an asymptotic charge
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algebra with a central term canceling it. For this purpose, let
us consider a Uð1Þ ⊗ Uð1Þ Chern-Simons theory on Hþ,

S ¼
Z
Hþ

a ∧ dã; ð18Þ

where a and ã are the electric and magnetic U(1) gauge
fields. Under an electric large gauge transformation (LGT),
δa ¼ dϕ and δã ¼ 0, and under a magnetic one δa ¼ 0 and
δã ¼ dϕ̃. They are generated by the charges

δQϕ ¼ −
Z
∂Hþ

dϕ ∧ δã; ð19Þ

δQ̃ϕ ¼
Z
∂Hþ

δa ∧ dϕ; ð20Þ

respectively. The charge algebra is

fQϕ; Q̃φg ¼ −
Z
∂Hþ

dϕ ∧ dφ; ð21Þ

fQϕ;Qφg ¼ fQ̃ϕ; Q̃φg ¼ 0: ð22Þ

Therefore, one finds the algebra to be exactly parallel to
that of standard and dual LGT charges on the horizon.
This tells us that by putting a Uð1Þ ⊗ Uð1Þ Chern-Simons
theory on the horizon, we can get rid of the central term in
the standard and dual LGT algebra.
Gravitational Chern-Simons theory.—In this section, we

will follow Witten’s approach to gravity in three dimen-
sions [9] and consider a gravitational Chern-Simons theory
on the horizon. The algebra of the charges in this theory is
calculated and the parameters chosen such that the central
term here cancels the one found in the “Charge algebra”
section. In three dimensions, we use i; j;… for spacetime
indices and a; b;… for tangent space. The action is given in
the canonical form by

ICS ¼
k
4π

Z
tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ð23Þ

Equations of motion fix the gauge group to be
G ¼ SLð2;CÞ. The gauge field decomposes as
Ai ¼ eai Pa þ ωa

i Ja, where the generators Pa and Ja satisfy
the commutators

½Ja; Jb� ¼ ϵabcJc; ½Ja;Pb� ¼ ϵabcPc; ½Pa;Pb� ¼ λϵabcJc;

ð24Þ

where the Cartan metric ηab ¼ diagð−þþÞ is used to
lower and raise tangent space indices, and λ ¼ −ð1=4M2Þ
is a negative constant. As the names suggest, Witten found
that this Chern-Simons theory is equivalent to a first-order

Einstein theory after identifying eai and ωa
i as the vielbein

and the spin connection.
There exist two Killing forms and therefore one can write

two actions in terms of ea and ωa. The first Killing form is
hJa; Pbi ¼ ηab, with all other components vanishing. It
leads to the electric action

Ielectric ¼
k
2π

Z
Hþ

2ea ∧ dωa þ ϵabcea ∧ ωa ∧ ωc

þ 1

3
λϵabcea ∧ eb ∧ ec: ð25Þ

The second Killing form has nonvanishing components
hJa; Jbi ¼ ηab, hPa; Pbi ¼ ληab, and it leads to the mag-
netic action

Imagnetic ¼
k̃
π

Z
Hþ

ωa ∧ dωa þ
1

3
ϵabcω

a ∧ ωb ∧ ωc

þ λea ∧ dea þ λϵabcω
a ∧ eb ∧ ec: ð26Þ

k̃ is arbitrary here but we will see later that it can be
expressed in terms of k by demanding that the complexified
charges form a closed algebra in the absence of singularities
in the function parametrizing the diffeomorphisms.
Drawing analogy to four-dimensional gravity, the electric
action corresponds to the Einstein-Hilbert action whereas
the magnetic action corresponds to the Holst action [11].
As in four dimensions, we take the electric action to be our
gravitational Chern-Simons theory, and use the magnetic
action only to derive the dual charge.
There are two types of gauge transformations, one

labeled by a tangent-space vector ρa and the other by a
second vector τa. The fields transform as δeai ¼ −∂iρa −
ϵabcωibρc and δωa

i ¼ −λϵabceibρc under ρ, and δeai ¼
−ϵabceibτc and δωa

i ¼ −∂iτa − ϵabcωibτc under τ. The τ
transformations correspond to Lorentz transformations
on the tangent space, whereas the ρ transformations
correspond to diffeomorphisms ρa ¼ {vea generated by
the spacetime vector field v up to a compensating
Lorentz transformation.
Using the covariant phase space formalism, one finds the

electric and magnetic charges associated with the gauge
transformations to be [14]

QE
ρ;τ ¼ −

k
π

Z
∂Σ
τaea þ ρaω

a; ð27Þ

QM
ρ;τ ¼ −

2k̃
π

Z
∂Σ
τaω

a þ λρaea: ð28Þ

The domain of integration ∂Σ is the collection of closed
loops around the singularities. (This implies that the charges
vanish for smooth parameter functions. However, we are
interested in the variation of these charges under the action of
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another charge with singularities, which may not be zero.)
Having computed the magnetic charge, we dispose of the
magnetic action and work solely with the electric action. The
symplectic structure of the electric theory dictates that
the only nonvanishing Dirac bracket of the theory is

feaz ðz; z̄Þ; wb
z̄ ðz0; z̄0Þg ¼ −

iπ
k
ηabδ2ðz − z0Þ; ð29Þ

where z; z̄ are stereographic coordinates of the unit two-
sphere. Using the brackets, one finds the following algebra
of electric and magnetic charges [14]:

fQE
τ;ρ; QE

τ0;ρ0 g ¼ QE
τ00;ρ00 −

k
π

Z
∂Σ
ðρadτ0a þ τadρ0aÞ; ð30Þ

fQE
τ;ρ; QM

τ0;ρ0g ¼ QM
τ00;ρ00 −

2k̃
π

Z
∂Σ
ðτadτ0a þ λρadρ0aÞ; ð31Þ

fQM
τ;ρ; QM

τ0;ρ0g ¼ 4λ
k̃2

k2
QE

τ00;ρ00 −
4λk̃2

πk

Z
∂Σ
ðρadτ0a þ τadρ0aÞ:

ð32Þ

The composition is given by τ00a ¼ ϵabcðτ0bτc þ λρ0bρcÞ and
ρ00a ¼ ϵabcðτ0bρc − τbρ

0
cÞ. We demand that the central term

of this algebra cancels the central term observed in the
supertranslation algebra on the Schwarzschild horizon that
we computed for f ¼ ð1=ðz − wÞÞ. Since supertranslation
is a diffeomorphism, it acts as a gauge transformation
ρa ¼ ιvea on the horizon Chern-Simons theory with
v ¼ f∂v þ ð1=2MÞDAf∂A, up to a Lorentz transformation.
We define the compensating Lorentz transformation of
supertranslation to be

τ0 ¼ ðD2 þ 2Þf
8ð2k̃Þ1=2 ; τ1 ¼ i

ffiffiffi
λ

p
ρ2; τ2 ¼ −i

ffiffiffi
λ

p
ρ1: ð33Þ

Note that all components are real since λ is negative. Then
algebra of charges with f ¼ ð1=ðz − wÞÞ becomes

fQE
τ;ρ; QE

τ0;ρ0g ¼ QE
τ00;ρ00 ; ð34Þ

fQE
τ;ρ; QM

τ0;ρ0 g ¼ QM
τ00;ρ00 þ

i
4
ðDzD2

zf0Þ
����
z¼w

; ð35Þ

fQM
τ;ρ; QM

τ0;ρ0 g ¼ 4λ
k̃2

k2
QE

τ00;ρ00 : ð36Þ

The central term obtained here is exactly of the form to
cancel the one obtained in the “Charge algebra” section.
Note that f0 in the above is an arbitrary smooth function.
It corresponds to the function g introduced in the “Charge
algebra” section.

One can find the relation between k and k̃ by considering
the complexified charge Qτ;ρ ¼ QE

τ;ρ þ iQM
τ;ρ. Demanding

that the charges Qτ;ρ form a closed algebra in the absence
of singularities in the parameters fixes k̃ in terms of k to
be k̃2 ¼ −ðk2=4λÞ ¼ k2M2. The algebra of complexified
charge with a pole f ¼ ð1=ðz − wÞÞ reads

fQτ;ρ;Qτ0;ρ0g ¼ Q2τ00;2ρ00 þ
1

2
ðDzD2

zf0Þ
����
z¼w

: ð37Þ

Discussions.—We have explored the consequences of
allowing the function parametrizing standard and dual
supertranslations on the black hole horizon to have singu-
larities. The chief outcome is that the algebra of charges
develops a central term. What is novel is that we then
showed that this anomaly can be cancelled by postulating a
holographic Chern-Simons theory on the horizon. It was
noted that both the gravitational case and the electromag-
netic one are analogous in this regard. It is fortunate that
the Chern-Simons is a topological theory as it is metric
independent. There are two nice properties that follow. The
first is that since the horizon is a null surface, the metric is
degenerate there. One cannot invert the metric. Had the
theory been metric dependent, as most are, it would have
been impossible to formulate a theory that is restricted to
the null surface. The second also follows from being metric
independent. The energy-momentum tensor of a theory is
given by varying the action with respect to the metric.
Therefore, in the Chern-Simons case, the energy-momentum
tensor vanishes and the holographic theory does not disturb
the black hole geometry.
While we have shown that an SLð2;CÞ Chern-Simons

theory cancels the central term, we have not shown that this
is the unique theory capable of this cancellation. There may
exist other (arguably more obscure) topological field
theories that could accomplish this. If they exist, then it
would be very interesting to see explicit examples of such
theories, as they would share properties that are inherent to
the structure of the black hole horizon.
It is worth noting that, in the complexified Chern-Simons

theory that incorporates both the electric and magnetic
actions, the level k̃ of the magnetic action becomes
quantized [15,16]. For us this is not relevant, since our
Chern-Simons theory is just that of the electric action; the
magnetic action is only used to compute the dual charge.
The addition of a holographic Chern-Simons theory on

the horizon in conjunction with the soft hair makes the
structure at the horizon much more complex. The impli-
cations for the nature of black hole microstates will be
explored in a future publication.
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