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We derive a nonperturbative, Lagrangian-level formulation of the double copy in two spacetime
dimensions. Our results elucidate the field theoretic underpinnings of the double copy in a broad class of
scalar theories which can include masses and higher-dimension operators. An immediate corollary is the
amplitudes-level double copy at all orders in perturbation theory. Applied to certain integrable models, the
double copy defines an isomorphism between Lax connections, Wilson lines, and infinite towers of
conserved currents. We also implement the double copy at the level of nonperturbative classical solutions,
both analytically and numerically, and present a generalization of the double copy map that includes a fixed
tower of higher-dimension corrections given by the Moyal algebra.
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Introduction.—Recent breakthroughs in scattering theory
have unveiled an extraordinary hidden structure lying do-
rmant within the fundamental laws of nature. The so-called
“double copy” [1–4] is amathematical formula, only proven
at tree level, that very simply relates perturbative scattering
amplitudes of gravitons in Einstein’s general relativity (GR)
to those of gluons in Yang-Mills theory (YM).
At a purely practical level, the double copy is an imme-

nsely efficient tool for recycling past results in gauge theory
to derive new ones for gravity. This approach has made fea-
sible many previously intractable calculations, for example,
those relevant to the finiteness of supergravity theories [5–
12] and more recently, post-Minkowskian computations for
black hole binary dynamics [13–16] which are directly rele-
vant to the LIGO experimental program [17,18] and are,
within the last three years, competing with the state of the
art.
At the conceptual level, the double copy remains deeply

mysterious. Its structure transcends gauge theory and gra-
vity and applies to a broad web of theories [3]. For
example, the exact same double copy also relates all
tree-level amplitudes of pions in the chiral limit to those
of certain hypothetical scalars known as Galileons, which
have been studied independently as viable theories of
cosmology and modified gravity.
In broad strokes, the double copy maps gauge theory to

gravity by first expressing every gauge theory amplitude as
a sum over cubic graphs,

An ¼
X
cubic

cini
di

; ð1Þ

where the ci are color factors (structure constants), the ni
are kinematic numerators, and the di are propagators [1–
3,19,20]. Color-kinematics duality states that there exists a
rearrangement of terms such that the kinematic numera-
tors obey the same Jacobi identities as the color factors.
Gravity—as the square or double copy of gauge theory—is
simply obtained by replacing each color factor with the
associated kinematic numerator, ci → ni.
The double copy is an established fact about flat space,

perturbative scattering amplitudes, but its generality is
far from understood. To what extent does it apply off-
shell [21–27]? To curved geometries [28–38]? Nonpertu-
rbatively? Finding answers to these questions could provide
a nonperturbative, background independent mapping
between gravity and far simpler quantum field theories.
In this Letter, we present a nonperturbative double

copy in two spacetime dimensions. This is the first off-
shell Lagrangian level formulation of the double copy for
interacting theories. [39]. Extending the proof of the double
copy from tree level to all loop orders has implica-
tions for the understanding of all double copy con-
structions. Our approach is inspired by a remarkable
isomorphism between the algebras of unitary transforma-
tions and diffeomorphisms [40],

lim
N→∞

UðNÞ ∼ DiffS1×S1 ; ð2Þ

and applies to an enormous class of scalar theories,
including masses and higher-dimension operators.
We apply this construction successively to map bi-

adjoint scalar (BAS) theory to Zakharov-Mikhailov (ZM)
theory [41] to the special Galileon (SG) [42–44], thus
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deriving the corresponding and more familiar amplitudes-
level double copy at all orders in perturbation theory. [45]
Since ZM theory is classically integrable, it furnishes a Lax
connection whose Wilson lines define an infinite tower of
conserved currents, all of which are shown to double copy
into corresponding objects in the SG. An extension of the
double copy based on the Moyal algebra is presented where
N, the rank of the gauge group, parameterizes an infinite
tower of higher-dimension operators [46]. Note that at the
classical level, ZM theory is very closely related to self-
dual Yang-Mills (SDYM) theory [21,22], which exhibits
identical integrable and Moyal structures [49].
Implementing the double copy on nonperturbative, large-

field configurations, we show analytically that every
classical solution of the SG theory is isomorphic to
corresponding dual solutions in ZM and BAS theory. As
a highly nontrivial check, we compute an explicit, large-
field, numerical solution for soliton scattering in the SG
theory, map it to a corresponding configuration in ZM
theory for UðNÞ at large N, and verify that it satisfies the
ZM equations of motion to high precision.
Color algebra.—A field in the adjoint of UðNÞ is a

Hermitian matrix, V ¼ VaTa, where ½Tb�ac ¼ ifab c and
½Ta;Tb� ¼ ifabcTc. For odd N there exists a basis of
generators Tp labeled by a two-vector, p ∈ ZN × ZN

[40]. In this basis, V ¼ VpTp where Vp� ¼ V−p, and

½Tpi
;Tpj

� ¼ ifpipj
pkTpk

; ð3Þ

with the corresponding color structure constant [50],

fpipj
pk ¼ −

N
2π

sin

�
2π

N
hiji

�
δpiþpj;pk

¼N→∞ − hijiδpiþpj;pk
:

ð4Þ

Hence, the N → ∞ limit literally defines the algebra of
volume-preserving diffeomorphisms on the torus [40], or
equivalently, the Poisson algebra. The toroidal geometry
arises because the generator labels p are defined mod N.
Kinematic algebra.—Equation (2) implies that fields in

the adjoint of UðNÞ at large N are isomorphic to field-
dependent diffeomorphisms,

V ¼ ϵμν∂μV∂ν ¼ ∂μV∂̃
μ ¼ −∂̃μV∂μ; ð5Þ

which are volume-preserving because ∂μ∂̃
μV ¼ 0. This

algebra is closed since the commutator of diffeomorphisms
yields another diffeomorphism via

Z ¼ ½V;W� ¼ ½∂μV∂̃μ; ∂νW∂̃
ν� ¼ ∂μZ∂̃

μ; ð6Þ

where Z ¼ ∂μV∂̃
μW. Motivated by these structures, we

propose a color-kinematic duality replacement,

Va → V

fabcVaWb → ∂μV∂̃
μW

gabVaWb →
Z

VW: ð7Þ

The first line simply maps any color-adjoint field to a
corresponding singlet field. The second line maps the color
structure constant to a kinematic structure constant whose
momentum space representation is

fpipj
pk ¼ −hijiδ2ðpi þ pj − pkÞ: ð8Þ

This is literally the continuum limit of Eq. (4), in accor-
dance with the algebra isomorphism in Eq. (2). The third
line is obtained from the Killing form of UðNÞ at large N,
which effectively defines a Killing form for the diffeo-
morphism algebra [40].
Lagrangian double copy.—The color-kinematic replace-

ment rules in Eq. (7) can be applied directly at the level of
the Lagrangian, thus giving an off-shell, nonperturbative
definition of the double copy.
BAS theory: The Lagrangian for BAS theory is

LBAS ¼
1

2
∂μϕaā∂

μϕaā þ 1

6
fabcfā b̄ c̄ϕ

aāϕbb̄ϕcc̄; ð9Þ

while the corresponding equation of motion is

□ϕcc̄ −
1

2
fabcfā b̄

c̄ϕaāϕbb̄ ¼ 0: ð10Þ

The tree-level four-point off-shell BAS amplitude is

−ABAS ¼
csc̄s
s

þ ctc̄t
t

þ cuc̄u
u

; ð11Þ

where s ¼ ðp1 þ p2Þ2, t ¼ ðp2 þ p3Þ2, u ¼ ðp3 þ p1Þ2,
and the color factors are cs ¼ fa1a2

bfba3a4 , ct ¼
fa2a3

bfba1a4 , cu ¼ fa3a1
bfba2a4 , and likewise for barred

color.
Massless on-shell kinematics in two dimensions is

famously plagued by infrared singularities since all asymp-
totic states are either left or right movers. For example, for
the case of four-point scattering with color-ordered external
states, the external momenta exhibit kinematic configura-
tions which we classify as “split,” where p1 þ p2 ¼ p3 þ
p4 ¼ 0 or p2 þ p3 ¼ p1 þ p4 ¼ 0, versus “alternating,”
where p3 þ p1 ¼ p2 þ p4. Since either s, t, or u is always
zero, there is a vanishing Gram determinant, stu ¼ 0,
and propagator exchanges generically exhibit collinear
singularities.
The precise method of infrared regulation—be it going

off-shell, introducing a physical mass term to the theory, or
analytically continuing away from two dimensions—can
yield different answers for nominally classical equivalent
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theories, and special care must be taken [51]. Nevertheless,
the claim of the present Letter is that assuming a particular
infrared regulator, our construction can be applied to map
any given infrared-regulated theory to a corresponding
infrared-regulated double copy theory.
ZM theory: Applying the replacement rules in Eq. (7) to

the Lagrangian of BAS theory in Eq. (9), we obtain the
action of ZM theory, whose Lagrangian is [41,51–53]

LZM ¼ 1

2
∂μϕa∂

μϕa þ 1

6
fabcϕa

∂μϕ
b
∂̃
μϕc: ð12Þ

The resulting equation of motion is

□ϕc −
1

2
fabc∂μϕa

∂̃
μϕb ¼ 0; ð13Þ

which can alternatively be obtained from Eq. (10) via
Eq. (7). Note that Eq. (13) also encodes the dynamics of
SDYM theory [21,22,49].
As is well-known [41,51,53], ZM theory is classically

equivalent to the principal chiral model (PCM), otherwise
known as the nonlinear sigma model (NLSM) in two
dimensions. In general dimensions, the NLSM is classi-
cally defined by

∂½μjcν� þ fabcjaμjbν ¼ 0 and ∂
μjaμ ¼ 0; ð14Þ

where the former is a pure gauge condition implying that
jaμTa ∼ g−1∂μg and the latter is the NLSM equation of
motion. By defining jaμ ¼ ϵμν∂

νϕa, we trivially enforce the
latter, while the former is equivalent to Eq. (13).
The three-point Feynman vertex defined by Eq. (12) is

ð15Þ

which is fully antisymmetric because off-shell two-
dimensional kinematics implies that h12i ¼ h23i ¼ h31i.
The tree-level four-point off-shell ZM amplitude is

−AZM ¼ csns
s

þ ctnt
t

þ cunu
u

; ð16Þ

where the kinematic numerators,

ns ¼ h12ih34i; nt ¼ h23ih14i; nu ¼ h31ih24i; ð17Þ

satisfy the off-shell kinematic Jacobi identity, ns þ ntþ
nu ¼ 0, on account of the Schouten identity. Applying the
standard color decomposition [54], the color-ordered ZM
amplitude is AZM½1234� ¼ ðns=sÞ − ðnt=tÞ.
For the alternating configuration described previously,

u ¼ sþ t ¼ 0, which implies that AZM½1234� is free of

collinear singularities. In this case ns ¼ −nt ¼ h12i2, so
AZM½1234� ¼ 0, in accordance with the phenomenon of no-
particle production described in [55]. For the split con-
figurations, AZM½1234� is nonzero but must be evaluated
with some choice of infrared regulator [51].
At loop level, integrands at arbitrary order are mechan-

ically calculated using the Feynman vertex in Eq. (15). By
construction, all loop-level kinematic Jacobi identities are
automatically satisfied, even off-shell. While enforcing
“global color-kinematics constraints” is a well-known
difficulty in gauge theory starting at two loops [56], we
learn here that there is no obstacle to this for ZM theory at
all orders in perturbation theory.
SG theory: Equation (7) maps the ZM Lagrangian in

Eq. (12) to the action of the SG theory, whose Lagrangian is

LSG ¼ 1

2
∂μϕ∂

μϕþ 1

6
ϕ∂μ∂νϕ∂̃

μ
∂̃
νϕ; ð18Þ

and whose equation of motion is

□ϕ −
1

2
∂μ∂νϕ∂̃

μ
∂̃
νϕ ¼ 0: ð19Þ

The three-point Feynman vertex is then

ð20Þ

which is fully permutation invariant. Applying either an
off-shell or mass regulator for infrared singularities, the on-
shell amplitude is

−ASG ¼ n2s
s
þ n2t

t
þ n2u

u
∼ stu ¼ 0; ð21Þ

which is proportional to the Gram determinant and thus
vanishes in two dimensions. This reflects the fact that the
SG is field-redefinition equivalent to a two-dimensional
free theory [57,58].
Masses and higher-dimension operators.—Thus far we

have only considered those theories which have historically
appeared in the amplitudes-level double copy [3]. Our
construction extends far more broadly, however. In par-
ticular, the color-kinematic replacement rules in Eq. (7) can
be applied to any operator that does not have (i) a closed
loop of color structure constants, nor (ii) multiple color
traces. In both cases, the third line of Eq. (7) will induce ill-
defined or nonlocal integrals over the volume of spacetime
which enter into the Lagrangian. The mildness of the
restrictions (i) and (ii) means that a very large class of
operators manifestly obey color-kinematics duality, in
sharp contrast to the typical intuition that almost all
operators will fail the duality.
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By these rules, mass terms are perfectly fine and trivially
double copy via the same color-kinematic replacements as
the kinetic terms. These mass terms serve only to change
the propagator denominators.
Equation (7) can also be implemented for an infinite

class of higher-dimension operators. For example, consider
the higher-dimension operator in BAS theory, OBAS ¼
fabefcdefā b̄ ēfc̄ d̄ ēϕ

aāϕbb̄ϕcc̄ϕdd̄, where both the color and
dual color structures are single trace. Applying Eq. (7) to
dual color, we obtain the spacetime integral of OZM ¼
fabefcde∂μϕa

∂̃
μϕb

∂νϕ
c
∂̃
νϕd, which is the color-kinematic

dual operator in ZM theory. Then applying Eq. (7) to the
remaining color structures, we obtain the spacetime inte-
gral of OSG ¼ ∂μ∂νϕ∂̃

μ
∂̃
νϕ∂ρ∂σϕ∂̃

ρ
∂̃
σϕ, which is the color-

kinematic dual operator in the SG theory.
Now consider O0

BAS ¼ gacgbdfā b̄ ēfc̄ d̄ ēϕ
aāϕbb̄ϕcc̄ϕdd̄,

which is double trace in color and single trace in dual
color. Applying Eq. (7) to the latter, we obtain O0

ZM ¼
∂μϕa∂̃

μϕb∂νϕ
a
∂̃
νϕb. Since the resulting operator is double-

trace in color, it cannot be further double copied via Eq. (7)
without generating an additional integral over all of
spacetime.
Fundamental BCJ relation.—Our Lagrangian-level for-

mulation of the double copy does not preserve the funda-
mental Bern-Carrasco-Johansson (BCJ) relation [1,2] nor
the so-called minimal rank condition [59]. Ultimately, this
is not so surprising because the fundamental BCJ relation is
literally equivalent to the conservation equation for the
kinematic current in theories with purely cubic interactions
[24,28], and our generalized double copy construction
allows for quartic and higher interactions.
Crucially, failure of the minimal rank condition implies

that our framework should be interpreted as a generaliza-
tion of the color-kinematic dual formulation of the double
copy [1,2], which is built upon the kinematic Jacobi
identities, rather than the Kawai-Lewellen-Tye (KLT)
formulation [4], which relies on relations amongst color-
ordered amplitudes.
As an example, consider BAS theory deformed by a

mass and the higher-dimension operator defined earlier,

L ¼ LBAS −
m2

2
ϕaāϕ

aā þ τ

16
OBAS: ð22Þ

For the moment, let us work in general dimensions, where
infrared divergences are absent. The matrix of doubly
color-ordered amplitudes is

Hðm; τÞ ¼
�
A½1234j1234� A½1234j1324�
A½1324j1234� A½1324j1324�

�

¼ −
� 1

s−m2 þ 1
t−m2 − τ − 1

t−m2 þ τ
2

− 1
t−m2 þ τ

2
1

t−m2 þ 1
u−m2 − τ

�
: ð23Þ

The minimal rank condition holds for pure BAS theory
in general dimensions since detHð0; 0Þ ¼ 0 on-shell.

However, it fails in the presence of masses [60,61] and
higher-dimension operators [59],

detHðm; 0Þ ¼ m2

ðs −m2Þðt −m2Þðu −m2Þ

detHð0; τÞ ¼ −τ
�
1

s
þ 1

t
þ 1

u

�
þ 3τ2

4
: ð24Þ

Evaluating these expressions for two-dimensional kinemat-
ics, we encounter the usual annoyances of infrared diver-
gences, but irrespective of choice of regulator, the above
determinants are still nonzero.
Integrable models.—Since ZM theory is classically

equivalent to the PCM, it is similarly integrable [41,52,62].
Moreover, ZM theory maps to the SG under the double
copy, so we will see that the latter is also integrable. Note
that mapping the integrability of one theory to another
would not be possible with the standard amplitudes-level
double copy because the integrability conditions are
expressed in terms of currents and off-shell fields.
As a brief review, integrability is achieved by casting the

equations of motion into the form of the Lax equation,
_L ¼ ½M;L�, where the operators L and M constitute a Lax
pair [63–67]. By virtue of this form of the equations of
motion, the eigenvalues of L are conserved charges.
A familiar Lax pair is the Hamiltonian together with an
observable in the Heisenberg picture. In two dimensions,
integrability requires infinitely many charges where the
infinitude of Lax pairs is parameterized by a spectral
parameter λ. The Lax pair comes from a Wilson line and a
gauge field, the Lax connection, where flatness of the gauge
connection yields the Lax equation.
Integrability of ZM theory: Let us review the integra-

bility properties of ZM theory [41,52,62]. To begin, we
define the Lax connection [41,62,68,69],

Aμ ¼
1

1 − λ2
ð∂̃μϕþ λ∂μϕÞ; ð25Þ

whose corresponding field strength,

Fμν ¼ ∂½μAν� þ ½Aμ;Aν� ¼ 0; ð26Þ

vanishes for all values of the parameter λ due to the ZM
equation of motion in Eq. (13). Since the Lax connection is
pure gauge, we can construct the Wilson line,

WðxÞ ¼ P exp

�
−
Z

x
dx0μAμðx0Þ

�

¼ 1 −
Z

x
dx0Aðx0Þ þ

Z
x
dx0Aðx0Þ

×
Z

x0

dx00Aðx00Þ þ � � � ; ð27Þ
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which is path independent and satisfies DμW ¼ ∂μWþ
AμW ¼ 0. Next, we define the Lax current [41,52,62]

Jμ ¼ ∂̃μW ¼
X∞
k¼0

λ−kJðkÞμ ; ð28Þ

which furnishes an infinite tower of currents, including

Jð1Þμ ¼ ∂̃μϕ; Jð2Þμ ¼ ∂μϕþ ∂̃μϕϕ

Jð3Þμ ¼ ∂̃μϕþ ∂μϕϕþ ∂̃μϕ
Z

x
dx0∂̃ϕþ ∂̃μϕ

Z
x
dx0∂ϕϕ;

ð29Þ

which become increasingly nonlocal at higher orders. On
the support of the equations of motion in Eq. (13), these

currents are conserved, so ∂
μJμ ¼ ∂

μJðkÞμ ¼ 0.
Integrability of SG theory: Applying the color-

kinematics replacement in Eq. (7) to Eqs. (25) and (26)
we obtain the Lax connection for SG theory,

Aμ ¼
1

1 − λ2
ð∂̃μϕþ λ∂μϕÞ; ð30Þ

whose corresponding field strength is also vanishing,

Fμν ¼ ∂½μAν� þ ∂ρAμ∂̃
ρAν ¼ 0: ð31Þ

Meanwhile, the Wilson line maps from a color matrix to a
diffeomorphism via

WðxÞ ¼ P exp

�Z
x
dx0μ∂̃νAμ∂ν

�

¼ 1þ
Z

x
dx0μ∂̃νAμ∂ν þ

Z
x
dx0μ∂̃νAμ∂̃

ρAν∂ρ þ � � �

¼
Z

x
dx0μKν

μ∂ν where Kν
μ ¼ ðδνμ − ∂̃

νAμÞ−1: ð32Þ

As per Eq. (28), the Lax current for the SG theory is

Jμ ¼ ϵμν∂̃
ρAνKσ

ρ∂σ; ð33Þ

which is conserved since

∂
μJμ ¼ −∂̃νð∂̃ρAνKσ

ρÞ∂σ ¼ −∂̃νðKρ
ν∂̃

σAρÞ∂σ ¼ 0; ð34Þ

where Kρ
ν∂μAρ ¼ ∂νAμ follows directly from Eq. (31). The

series expansion of Eq. (33) yields an infinite tower of
conserved currents in the SG theory which include

Jð1Þμ ¼ ∂̃μ∂νϕ∂̃
ν; Jð2Þμ ¼ ∂μ∂νϕ∂̃

νþ ∂̃μ∂νϕ∂̃
ν
∂ρϕ∂̃

ρ; ð35Þ

and can also be obtained trivially from the currents of ZM
theory in Eq. (29) by applying the color-kinematic replace-
ment rules in Eq. (7).

Nonperturbative solutions.—Equation (2) implies a non-
perturbative map between the classical solutions of the
equations of motion of BAS, ZM, and SG theory.
Since the SG theory is field-redefinition equivalent to a

two-dimensional free theory [57,58,70,71], any arbitrary
configuration of left- and right-moving wave packets will
pass through each other unscathed even though the colli-
sion itself will be highly nonlinear and nonperturbative.
Thus if we restrict to scattering on a spatial circle of
circumference 2π, then the time evolution will be similarly
2π periodic. Since every classical solution of the SG theory
effectively resides on a spacetime torus, it can be expressed
as a double discrete Fourier transform,

ϕðxÞ¼
X

p∈Z×Z
eipxϕ̃ðpÞ¼

X
p∈ZN×ZN

eipxϕ̃ðpÞþO
�
1

N

�
; ð36Þ

where the corrections to the right-hand side are negligible
as long as the field does not vary on distances shorter than
1=N, which is always true for sufficiently large N.
We now construct a dual field configuration in ZM

theory defined for UðNÞ,

ϕaðxÞTa ¼
X

p∈ZN×ZN

eipxϕ̃ðpÞTp; ð37Þ

which is literally the SG solution under the replacement
eipx → eipxTp. It is straightforward to see that Eq. (37)
automatically satisfies the ZM equations of motion in
Eq. (13) up to 1=N corrections, since the commutator in
Eq. (3) and Eq. (4) yields a color structure constant that
exactly transforms the interaction vertex of ZM theory into
that of SG theory. Repeating this procedure, we obtain

ϕaāðxÞTa ⊗ Tā ¼
X

p∈ZN×ZN

eipxϕ̃ðpÞTp ⊗ Tp; ð38Þ

which is a classical solution of BAS theory.
Remarkably, the above analytic construction can be

verified numerically, as described in Fig. 1. Using the
double copy replacement, we map a numerical solution of
SG theory onto a corresponding matrix-valued field con-
figuration of ZM theory, which is then shown to satisfy the
ZM equations of motion to high precision.
Note that every solution of the SG theory maps to a dual

solution in ZM theory but the converse is not true. This is
not actually surprising given what is known from scatter-
ing: every gravity amplitude maps to a gauge theory ampli-
tude with very specific color structures which are precisely
chosen to be certain kinematic numerators. On the other
hand, a generic gauge theory amplitude with arbitrary color
structures will not have any interpretation as a gravity
amplitude.
That the SG is secretly free certainly detracts from the

miracle of a nonperturbative mapping in this context.

PHYSICAL REVIEW LETTERS 129, 221602 (2022)

221602-5



However, recall that very general deformations of BAS and
ZM theory—for example including masses or higher-
dimension operators—also double copy mechanically into
analogous deformations of the SG theory. Nonperturbative
solutions of this much larger class of nonfree theories will
also exhibit the nonperturbative double copy defined in
Eqs. (36)–(38).
Generalization using the Moyal algebra.—We observed

in Eq. (2) that the N → ∞ limit of UðNÞ yields the
diffeomorphism algebra. What about finite N? In this case
the continuum version of Eq. (4) is the Moyal algebra [73],

fp1p2

p3 ¼ −
1

α0
sinðα0h12iÞδ2ðpi þ pj − pkÞ; ð39Þ

which is the unique deformation of the Poisson algebra [74]
encoding an infinite tower of higher-dimension corrections
to the original kinematic structure constant in Eq. (8). Here
we have defined a new coupling constant α0 ∼ ð2π=NÞ. At
the level of fields, the generalized color-kinematic replace-
ment rule is

fabcVaWb →
1

α0
sin ðα0∂V ∂̃WÞVW; ð40Þ

where the subscripts denote which fields the derivatives act
upon. Under this substitution, BAS theory maps to

LZM;α0 ¼
1

2
∂μϕ

a
∂
μϕa þ 1

6α0
fabcϕa sin ðα0∂ϕb ∂̃ϕcÞϕbϕc;

ð41Þ

a Moyal-deformed variation of ZM theory which has also
appeared in the context of SDYM theory [49].
The corresponding three-point Feynman vertex is

ð42Þ

which is totally antisymmetric because of two-dimensional
kinematics. The resulting four-point amplitude is given by
Eq. (16) with the numerators

ns ¼
1

α02
sinðα0h12Þi sinðα0h34iÞ

nt ¼
1

α02
sinðα0h23iÞ sinðα0h14iÞ

nu ¼
1

α02
sinðα0h31iÞ sinðα0h24iÞ: ð43Þ

FIG. 1. We numerically solve the SG equations of motion in Eq. (19) for a pair of colliding Gaussian wave packets. The discrete
Fourier transform of this solution, defined in Eq. (36), is inserted into Eq. (37) to obtain a putative matrix-valued solution of ZM theory.
The above density plots characterize this ZM configuration, where the horizontal (vertical) axes denote space (time) and lighter (darker)
colors denote positive (negative) field values. Each panel depicts a different matrix-valued, spacetime-dependent operator,
O ¼ ϕ;ϕtt;ϕxx, etc., where the subscripts denote derivatives. Each operator is visualized by plotting its projection onto a single
component, trðOT0Þ, where T0 ¼

P
p Tp. Each term in the ZM equations of motion in Eq. (13) is nonzero, but they nevertheless cancel

to high precision in the final panel. These results were obtained forUðNÞwith N ¼ 499. See Ref. [72] for an animation of this scattering
process.
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Remarkably, these satisfy the kinematic Jacobi identity for
any value of α0, so for example

sinh12i sinh34i þ sinh23i sinh14i þ sinh31i sinh24i ¼ 0;

ð44Þ

for arbitrary off-shell two-dimensional kinematics.
The generalized replacement rule in Eq. (40) can be

reapplied to ZM theory to generate a deformation of SG
theory that includes a fixed tower of higher-dimension
corrections, analogous to the infinite tower of corrections to
self-dual gravity in Ref. [49].
Future directions.—The double copy is an extremely

potent computational tool but it is fundamentally unclear
why it works. Our results mark a radical departure from the
status quo of the double copy in several ways. Typical
theories that admit color-kinematics duality have a single
coupling constant, massless particles, square in any space-
time dimension, only double copy on-shell, and all of this is
only provable at tree level [3]. On the other hand we have
presented an enormous class of scalar theories with
arbitrary Wilson coefficients and masses that square
off-shell (to all orders in perturbation theory) in two
dimensions. A Lagrangian formulation coupled with an
understanding of the algebra mapping also broadens the
scope of the double copy to include Wilson lines, currents,
and nonperturbative (non-Abelian) classical solutions.
The present Letter leaves several avenues for further

inquiry. In general dimensions, the kinematic algebra for
the NLSM is that of volume-preserving diffeomorphisms
[24]. Generalizing this tree-level observation to the full
loop-level action is an open problem. The two-dimensional
results presented here suggest that this generalization may
be possible, at least in principle. While we have found an
enormous class of operators that double copy, it may be
possible to enlarge the space even further by overcoming
the restrictions (i) and (ii) given above.
Finally, it would also be interesting to apply our

approach to gauge theory and gravity in two dimensions
and beyond. The kinematic algebra for gauge theory [24],
even at tree level, is not as well understood as for the
NLSM. However, the self-dual sector of Yang-Mills theory
has a simple kinematic algebra so it may be possible to
systematically perturb away from the self-dual sector
[21,22].
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