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We consider correlation functions of single trace operators approaching the cusps of null polygons in a
double-scaling limit where so-called cusp times t2i ¼ g2 log x2i−1;i log x

2
i;iþ1 are held fixed and the ‘t Hooft

coupling is small. With the help of stampedes, symbols, and educated guesses, we find that any such
correlator can be uniquely fixed through a set of coupled lattice PDEs of Toda type with several intriguing
novel features. These results hold for most conformal gauge theories with a large number of colors,
including planar N ¼ 4 SYM.
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Introduction.—Correlation functions are the backbone of
quantum field theory. In the realm of gauge-string corre-
spondence, correlation functions of n single-trace gauge-
invariant operators in the planar limit describe the scattering
of n closed strings, whose world-sheet is a punctured
sphere. Under special circumstances this sphere simplifies
further and factorizes into a product of two disks.
(Reminiscent of KLT type relations connecting open and
closed strings.) This can happen in at least two ways as
depicted in Fig. 1.
One option uses supersymmetry. InN ¼ 4 SYM say, we

can take single-trace half-BPS operators made out of many
fields and use R-symmetry polarizations in order to form a
thick frame with many propagators sequentially connected
drawing a closed polygon. The frame is SUSY protected
from quantum corrections and thus the correlator splits into
decoupled dynamics happening inside and outside the
polygon [1,2].
An alternative way to decouple the inside and outside

of the polygon is to make the polygon’s edges approach the
light cone. If we send to zero the coupling g2 as well as
the distances between consecutive cusps x2i;iþ1 with the
so-called cusp times

t2k ≡ g2 logðx2k−1;kÞ logðx2k;kþ1Þ; ð1Þ

held fixed, we obtain the decoupling without any require-
ment on the frame’s thickness [3]. This is the regime we
will focus on. This decoupling is dynamical: in this limit a
fast classical particle travels around the null perimeter

decoupling the quantum dynamics that are confined inside
and outside the polygon [3–7]. The null polygon limit (1) is
a double-scaling limit resumming the maximal power of
logarithms at each perturbative order. Since it only depends
on very universal one-loop features of the conformal gauge
theory, most of our results (if not all) should apply to any 4d
conformal gauge theory with a planar limit and at least one
adjoint scalar [8].
The key objects of this paper are these null polygons of

disk topology. We think of them as a tree level skeleton
which are then dressed by quantum corrections at loop
order. The skeleton is described by a set of internal bridges
which are bundles of propagators connecting nonconsecu-
tive cusps. For squares and pentagons we have a single
choice of such bridges (see Figs. 1 and 3) while for
hexagons and higher there are multiple different topologies
(see for instance Fig. 6).
Belitsky and Korchemsky found a remarkable result for

the null square as [9,10] squarel ¼ e−s
2

τlðsÞ, where l is
the number of bridges, s2 ¼ P

t2i , and τl is a solution of
the Toda lattice equation

ðs∂sÞ2 log τlðsÞ ¼ s2τlþ1ðsÞτl−1ðsÞ=τ2lðsÞ: ð2Þ
The square with no bridges is simply given by the Sudakov
exponential e−s

2

so that τ0 ¼ 1; the exponential can be

K

K
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FIG. 1. Correlators with a large BPS frame (left) and doubly
scaled correlators with operators approaching the cusps of a null
polygon (right) both factorize into products of disk topology
correlators (middle).
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thought of as a square null Wilson loop [4,5,9]. The square
with one bridge τ1, the seed, is a nontrivial function of s.
Together with τ0 ¼ 1 and the Toda equation it gives us
recursively all other squares. Amusingly the seed itself can
be fixed by the simple requirement that loop corrections in
presence of l bridges kick-in at (lþ 1) loops: squarel ¼
1þOðs2ðlþ1ÞÞ uniquely fixes τ1 to be a modified Bessel
function I0ð2sÞ. All other squares then evaluate to simple
determinants of Bessel functions.
In this Letter we conjecture an extension of this result

and of the Toda system to any null polygon with any bridge
configuration. We will encounter a novel hierarchy of Toda
equations, determinantal solutions, and generalized Gross-
Witten-Wadia matrix integrals [11,12]. More details about
our derivations can be found in the supplemental material to
this letter [13].
From stampedes to data—We first consider pentagons. If

we take two nonconsecutive edges to approach a null limit
there is a tool we can use to capture the corresponding
leading logarithms: the stampedes [3]. There are five
different pairs of edges we can take to be null as depicted
in Fig. 2.
Consider the choice x12 and x45 for concreteness; the

other choices are treated similarly. A convenient choice of
coordinates for this limit is depicted in Fig. 3. In terms of
these coordinates the relevant cusp times simply read

t21 ¼ g2 log

�
1

z̄

�
logðzÞ; t22 ¼ g2 log

�
1

z̄

�
log

�
1

v

�
;

t24 ¼ g2 logðw̄Þlog
�

1

1 − w

�
; t25 ¼ g2 logðw̄ÞlogðzÞ: ð3Þ

The terms logðzÞ and logð 1
1−wÞ arise once we Taylor expand

the top and bottom edges in terms of top and bottom states

O1O2 →
X∞
J¼0

zJ

J!
jtopJi; O4O5 →

X∞
J¼0

w−J

J!
hbotJj; ð4Þ

where

jtopJi ¼ jð∂JzXÞX…X|fflffl{zfflffl}
hþkþ1

i; hbotJj ¼ hX…X|fflffl{zfflffl}
1þh

∂
J
wðX…X|fflffl{zfflffl}

kþ1

Þj:

Here we performed already three major simplifications
which we learned from [3]. First, the factorization of the
polygon in the limit (1) restricts the analysis only to its
interior (or, alternatively, exterior) so that top and bot
states are mapped to vectors of an open spin chain where
each site is one field that belongs to the inside of the
polygon. Second, the one-loop dilation operator that gen-
erates quantum corrections is replaced by the SLð2Þ spin
chain hamiltonian H. That is, the leading action of the
dilation on the null polygon is generated only by the
hopping of light-cone derivatives and we replaced every
scalar by X. Finally, the thickness K of the frame is
irrelevant in this limit where boundary-dependant terms
are subleading, hence we set K ¼ 1 [19].
The terms logð1z̄Þ and logðw̄Þ in (3) appear through the

action of the Hamiltonians that generate the stampedes
illustrated in Fig. 4

FIG. 2. Three of the five channels for the stampede computation
of pentagon. (Reflections around the vertical axis yield the two
missing channels.) Thick ed ges are null and expanded in top
and bot states, then acted on by the SLð2Þ HamiltonianH which
captures the associated leading log. A red dot in j corresponds to
subleading cusp time t2j → 0.

FIG. 3. To parametrize the pentagon we take four points on the
plane as indicated in the figure and one point x3 outside the plane.
The five parameters match the five independent cross ratios. In
the null limit z̄; 1=z; 1=w̄; 1 − w, v go to zero.
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FIG. 4. The Taylor expansion of null edges (dashed) at order
J=J0 around 0=∞ creates topJ=botJ0 states, depicted here for
h ¼ 3, k ¼ 2. Each chain site is a circle: filled ones are those
where derivatives are injected. The states bot and top evolve by
the SLð2Þ action at order ðg2 log 1=z̄Þm and ðg2 log w̄Þn. The
resulting states can have derivatives distributed among all sites.
Overlap site by site is illustrated by dotted lines.
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stampedeh;k
J;J0

¼ hbotJ0 jeg2 logðw̄ÞHðI ⊗ jvihvjÞeg2 logð1=z̄ÞHjtopJi: ð5Þ
Dependence on h, k is implicit on the rhs. The stampede is
given by bottom and top time evolution together with the
overlap with the impurity jvihvj at the right-most site which
is the sole effect of the last operator, the off the plane one.
In the end we have

F h;k ≡
X
J;J0¼0

zJ

wJ0 stampede
h;k
J;J0 : ð6Þ

For example, for two equal bridges of length 1 the pentagon
starts at two loops and evaluating the smallest stampedes
for the lowest spins J; J0 ≤ 1 yields

F 1;1 ¼ 1þ z
v
ð−g6 log3 z̄þ…Þþ

þ z
w
ðg4 log2 z̄=w̄þ 4g6 log3 z̄=w̄þ g6 log3 z̄þ…Þ

þ 1

w
ð−g4 log2 w̄þ 4g6 log3 w̄þ…Þ þ…: ð7Þ

Such expansions are very easy to generate to large orders in
z and 1=w and 1=v (i.e., large spins) and to relatively large
order in g2 (we have gone to five loops, i.e., g10). They are
what we call our data.
From data to symbols to pentagons—We now need to

resum (7) which is an expansion with small z; 1=v; 1=w
while we are after the null limit where these three variables
are either finite or very large. This is easy. We found that at
L loops we can express the full functions of these three
variables in terms of iterated Goncharov polylogarithms of
transcendentality L which can be nicely coded in terms
of symbols [20]. The symbol ansatz is generated as a linear
combination of words a1 ⊗ a2 ⊗ � � � ⊗ aL of letters ai
picked from the set

fz; w; v; 1 − z; 1 − w; 1 − v; w − z; v − z; v − wg: ð8Þ
At two loops, for instance, the expansion (7) is nothing but
the Taylor expansion of

log2w̄

�
Li2ð1=wÞ þ

1

2
log2ð1− 1=wÞ

�
− log2ðw̄=z̄ÞLi2ðz=wÞ;

whose symbol is

log2w̄

�
1

1 − w
⊗

1 − w
w

�
þ log2ðw̄=z̄Þ

�
z − w
w

⊗
z
w

�
: ð9Þ

Stampedes count movements of bosons (the derivatives) in
a spin chain leading to nice rational numbers with com-
binatorial interpretations. There are no π’s or ζ’s in
expansions like (6) so the symbol misses no information
in this case. We simply write an ansatz as in (9) with

unknown rational coefficients multiplying each word,
which we then fix by matching with expansions such as (6).
We can then expand the resulting functions in the null

limits of interest. For example,

lim
z→∞

lim
w→1

lim
v→0

F h;k ¼ pentagonh;kðt1; t2; 0; t4; t5Þ:

Applied to the example h ¼ k ¼ 1 we get

pentagon1;1jt3¼0

¼ 1 −
1

4
ð2t21t25 þ t41 þ t44 þ t45Þ

þ 1

36
ð4t64 − 3t21t

4
2 − t62Þ þ

1

9
ðt21 þ t25Þ3 þ…

Considering different channels each time, we can generate
a huge amount of null pentagonswith a single cusp time
set to zero. This allowed us to fix all pentagons up to a
single constant at five loops when the first completely
mixed term t21t

2
2t

2
3t

2
4t

2
5 appears. This term can never be

detected if we send any of the five cusp times to zero.
A gift from the stampedes—How can we use all these

pentagons computed to high perturbative order to unveil
an underlying structure leading to their exact expressions?
We looked for a set of differential equations for these
objects akin to the Toda equation (2) for the square. We
made an educated ansatz for such equations and used the
stampede data to fix their form. This leads to the main
formulas of this Letter:

ðD1 þD2ÞðD1 þD5Þ logPh;k ¼ 4t21
Phþ1;kPh−1;k

P2
h;k

;

ðD3 þD2ÞðD3 þD4Þ logPh;k ¼ 4t23
Ph;kþ1Ph;k−1

P2
h;k

; ð10Þ

where Dj ¼ tj∂=∂tj and

pentagonh;k ¼ e−t
2
1
−���−t2

5 × Ph;kðtjÞ; P0;0 ¼ 1: ð11Þ
A second crucial piece of information from the stampede

are the reductions of pentagonh;k when only specific
cusp times are switched on. In particular, when the times t1,
t3 are set to zero equations (10) imply factorization. Setting
most ti to zero degenerates the pentagon into squares so we
expect these functions to be given by squares. We find
precisely such square reductions as

Ph;kð0; t2; 0; t4; t5Þ ¼ τhðt5Þτhþkðt2Þτkðt4Þ; ð12Þ
where each τ function has an index given by the total
number of bridges emitted by the ith cusp.
Henceforth we take the stampedes gift (10), (12) as our

starting point and explain how these equations fix all
polygons at any loop order.
Toda bootstrap.—Under the assumption that Ph;k has a

regular Taylor expansion around t2j ¼ 0
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Ph;k ¼
X
n1…n5

ch;kðn1;…; n5Þ × t2n11 � � � t2n55 ; ð13Þ

the first of (10) can be used to express any coefficient
cðn1;…; n5Þ as a function of coefficients ch;k; ch�1;k with
lower value of n1, due to the factor 4t21 in the r.h.s. of the
equation. Likewise, the second equation in (10) can be
used to express each ch;k via coefficients with lower n3.
The iterative application of the two equations eventually
reduces the problem to the determination of

ch;kð0; n2; 0; n4; n5Þ; ∀ h; k ∈ N:

But these coefficients are precisely those determined by the
reduction (12) so we are done.
Pertinent for higher polygon generalizations, an impor-

tant observation is that Ph;0 only depends on times which
are either end points of the bridges ðt2; t5Þ or sandwiched
between two such points (t1); the two times t3 and t4 do not
show up. For the first such pentagon we managed to
identify its exact resummation as P1;0 ¼ ϕðt1; t2; t5Þ and
P0;1 ¼ ϕðt3; t2; t4Þ, where

ϕðx; y; zÞ ¼
X∞
n¼0

Xn
m

Xn−m
r

x2ðn−m−rÞy2mz2r

ðn −mÞ!ðn − rÞ!m!r!
: ð14Þ

Any solution Ph;k with h, k ≥ 1 can be cast in the compact
form of a nested determinant

Ph;k ¼
jðD1 þD2Þi−1ðD1 þD5Þj−1P1;kji;j≤h

ð2t1Þh−h2Ph−1
0;k

;

P1;k ¼
jðD3 þD2Þi−1ðD3 þD4Þj−1P1;1ji;j≤k

ð2t3Þk−k2Pk−1
1;0

: ð15Þ

This representation follows iteratively from (10) and
from the fact that P0;k and Ph;0 are functions of three cusp
times only. Formulas (15) make manifest that everything
can be reduced to seed functions P0;1 and P1;1. The former
is given by (14) while the latter can be bootstrapped by the
self-consistency argument presented above.
Higher polygons—Based on the experience collected on

pentagon functions, we can readily conjecture the form
of any null polygon. We express a polygon with n edges as
the product of an exponential of cusp times—reminiscent
of the Sudakov term in a null polygonal Wilson loop—and
a function H that depends on the configuration of bridges

polygon ¼ e−
P

i
t2i × Hðt1;…; tnÞ: ð16Þ

When there are no bridges, as, for instance, for correlators
of short operators, we known from [6] that H is one.
Let l be the number of bridges stretching between

ti−1; tiþ1, we denote t̂i the cusp time comprised between the
end points. We focus on this bridge and write Hl leaving
other bridge indices implicit. We can state that (i) there is a
Toda equation of type (10) in ti−1; t̂i; tiþ1 relating Hl to

Hl�1. When t̂i ¼ 0 it becomes a factorization condition
Di−1Diþ1Hl ¼ 0. (ii) the function H depends only on cusp
times that emit bridges (e.g., ti−1; tiþ1) or are sandwiched
between the two end points of a bridge (e.g., t̂i). (iii) when
t̂j ¼ 0, the function H factorizes into a product of squares
τnðtkÞ, one for each cusp k emitting a total of n bridges.
This set of statements traces back to pentagon

observations. For higher polygons the novel feature is
the presence of both blue bridges in Fig. 5—connecting
next-to-nearest neighbouring cusps ti�1 and governed by
a 2d Toda equation—and the red bridges which connect
further apart cusps. To complete the conjecture we add
(i) The polygonH is factorized into the product of functions
X of those cusps ti and t̂i comprised between the end points
of a continuous path of blue bridges. (In Fig. 5, for instance,
we have three such blue paths of lengths 2, 1 and 0 and thus
the correlator would factor into three factors.) Paths of
length 0 correspond to squarenðtjÞ where n is the total
number of bridges emitted by the cusp tj.
Let us apply these conjectures to the general hexagon.

A planar hexagon can have three different bridge configu-
rations as depicted in Fig. 6. Cases (a) and (b) in the figure
feature two blue bridges, connected and disconnected
respectively. Hence they are subject to two 2d Toda
equations as does pentagon to which they are closely
related. Case (a) is factorized as

HðaÞ
h;l;k ¼ Xh;l;kðt1; t̂2; t3; t̂4; t5Þτlðt6Þ:

m

m3

m4
l2

l3

t1

0

t3

t5

t6

t8

t9

t10

0

0

m4

l1
m1

m3

l3

l1

l2

m

m

m4

l1

l2

l3

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

1

2

1

FIG. 5. A decagon example with blue bridges, stretching
between next-to-neighboring points, and red bridges. Dashed
lines cut the null polygon into factorized contributions, each
subject to a set of coupled Toda equations. On the right we
depicted the boundary data at tj ¼ 0, which fixes the solution.
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FIG. 6. The three possible configurations of bridges for the
hexagon in the planar limit. Blue bridges are associated to 2d
Toda equations of type (10).
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The function X solves two coupled equations in ðt1; t̂2; t3Þ
and ðt3; t̂4; t5Þ moving h and k. (Notice that for l ¼ 0 the
same holds for pentagon, which means Xh;0;k ¼ Ph;k.)
Case (b) features two disconnected blue bridges, i.e., it
solves decoupled equations and is thus factorized into two
functions of three cusps and expressed via pentagon
functions already determined in this Letter,

HðbÞ
h;l;k ¼ Pl;hð0; t6; t̂1; t2; 0ÞPl;kð0; t3; t̂4; t5; 0Þ:

Case (c) features three connected blue bridges and thus is
solution to three pairwise coupled 2d Toda equations in
ðt1; t̂2; t3Þ, ðt3; t̂4; t5Þ and ðt5; t̂6; t1Þ moving h, k and l,
respectively. The boundary data for the three cases are

HðaÞ
h;k;lðt1; 0; t3; 0; t5; t6Þ ¼ τhðt1Þτhþkþlðt3Þτkðt5Þτlðt6Þ;

HðbÞ
h;k;lð0; t2; t3; 0; t5; t6Þ ¼ τhðt2Þτhþlðt6Þτkþlðt3Þτkðt5Þ;
HðcÞ

h;k;lðt1; 0; t3; 0; t5; 0Þ ¼ τhþlðt1Þτhþkðt3Þτkþlðt5Þ:
We tested these various statements against stampede data at
three loops for a few six-point correlators [21].
Discussion—In this Letter we used the stampede technol-

ogy developed in [3] to unveil new integrable structures in the
null limits of conformal gauge theories. The final picture is
quite compact. In the double-scaling limit (1), correlators are
characterized by internal bridges which can be blue (if they
connect next-to-neighboring cusps) or red (if they connect
farther separated vertices). With zero blue bridges the
correlators factorize into products of square functions (the
boundary data); finite blue lengths can then be constructed
recursively by means of Toda equations (10) [22].
Some of the solutions to these PDEs are rather novel. If

we take a five point correlator with two nonzero cusp times;
for instance, we find

Ph;kðt1; t2; 0; 0; 0Þ ¼ det
1≤i;j≤hþk

jzi−ji Ii−jð2ziÞj;

where Ij are modified Bessel functions of the first kind and

zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ t22

p
if i ≤ h and zi ¼ t2 for i > h. It admits a

representation as an exotic matrix integralZ
dθ1
2π

� � �
Z

dθl
2π

ΔðZÞeTrðZþZ†ÞY
k

ðzkeiθkÞ1−k;

where Z is a matrix with eigenvalues fzjeiθjg and Δ is the
Vandermonde determinant. When xi ¼ y this integral
reduces to the Gross-Witten-Wadia matrix model [11].
What is the physical origin of these matrix integrals?
It would be fascinating to connect the structures found

here to other exact approaches to quantum gauge theories.
We can envisage three natural connections.
A first connection would be with conformal bootstrap

explorations. In [5–7,23] the conformal bootstrap was
applied to the study of null correlation functions. There,

no simplifying double-scaling limit was taken. On the other
hand the analysis was restricted to correlation functions of
the lightest fields of the theory which translates into
polygons with no internal bridges. Indeed, if we take the
Sudakov and recoil factors bootstrapped there, in the limit
(1) we would obtain the universal exponentials

e−t
2
1
−���−t2n ; ð17Þ

showing up everywhere in our Letter. When the bridges are
nonzero, dressing these exponentials we have the very
nontrivial solutions to the Toda hierarchy. Would be
remarkable to fit them inside a bootstrap analysis.
Combining the technology developed here with a bootstrap
approach might lead to a more general null limit for any
polygon. The physical picture should be one where in the
null limit correlators become Wilson loops dressed by
further cusp insertions of adjoint fields. The latter then
propagate from cusp to cusp interacting with the planar
chromodynamic flux tube of the theory.
We computed the hexagon for any bridge topology as

depicted in Fig. 6; from an OPE perspective the last one
resembles a snowflake while the other two mimic the
structure of comb channel decompositions. Despite some
encouraging first steps [24,25], there is no analytic result
for comb channels for n > 4 points. Can one use our
hexagon results to improve this state of affairs?
A second connection would be with integrability. In

planar N ¼ 4 SYM four-point disk correlators were
computed for any kinematics in [1,2] by means of bootstrap
plus hexagonalization [26–29] and preliminary higher
polygons explorations were started in [30,31]. Would be
very interesting to connect our results with these. In the
hexagonalization formalism, for instance, the limit (1) is
governed by an interesting region where all rapidities and
bound-state numbers of the mirror particles are (analyti-
cally continued to) zero. The square was identified with an
amplitude in the Coulomb branch [32]; are the doubly
scaled higher polygons found here higher-point scattering
amplitudes in some interesting kinematics?
A last connection could be with supersymmetric locali-

zation. Determinants of Bessel functions and Toda equa-
tions constantly pop up in such supersymmetric studies,
see, e.g., Refs. [33–35]—is this a coincidence?
Finally, can we fix the so-called pentagon at all loops

following a bootstrap à la [1,3] for the square (called
octagon there)? A strategy would be to construct a symbol
ansatz for five point functions of large operators. (We
already know some of its letters from (8) arising from the
stampede analysis here.) Full null polygon limits will not
be enough to fix the ansatz but single light-cone limits—
which are still fully captured by the stampedes—might
suffice once combined with simple additional physical
conditions such as Steinmann relations and single valued-
ness in the physical sheet.
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