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The construction of the generalized Gibbs ensemble, to which isolated integrable quantum many-body
systems relax after a quantum quench, is based upon the principle of maximum entropy. In contrast, there
are no universal and model-independent laws that govern the relaxation dynamics and stationary states of
open quantum systems, which are subjected to Markovian drive and dissipation. Yet, as we show, relaxation
of driven-dissipative systems after a quantum quench can, in fact, be determined by a maximum entropy
ensemble, if the Liouvillian that generates the dynamics of the system has parity-time symmetry. Focusing
on the specific example of a driven-dissipative Kitaev chain, we show that, similar to isolated integrable
systems, the approach to a parity-time symmetric generalized Gibbs ensemble becomes manifest in the
relaxation of local observables and the dynamics of subsystem entropies. In contrast, the directional
pumping of fermion parity, which is induced by nontrivial non-Hermitian topology of the Kitaev chain,
represents a phenomenon that is unique to relaxation dynamics in driven-dissipative systems. Upon
increasing the strength of dissipation, parity-time symmetry is broken at a finite critical value, which thus
constitutes a sharp dynamical transition that delimits the applicability of the principle of maximum entropy.
We show that these results, which we obtain for the specific example of the Kitaev chain, apply to broad
classes of noninteracting fermionic models, and we discuss their generalization to a noninteracting bosonic
model and an interacting spin chain.
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Introduction.—After a quench, generic isolated quantum
many-body systems relax locally to a state that is deter-
mined, according to the fundamental postulates of statis-
tical mechanics [1], by maximization of entropy subject to
the constraints imposed by integrals of motion [2–4]. For
integrable systems, which are characterized by an extensive
number of integrals of motion, the resultant equilibrium
state is the generalized Gibbs ensemble (GGE) [5–7]. The
principle of maximum entropy and, consequently, the
structure of the GGE are universal in the sense that
model-dependent details affect only the specific form of
the integrals of motion and the numerical coefficients
that enter the GGE as Lagrange multipliers, and that are
determined by the initial state. Likewise, relaxation to the
GGE is characterized by a set of universal characteristic
traits such as light-cone spreading of correlations [7–9] and
linear growth and volume-law saturation of the entropy of a
finite subsystem [10–13]. In contrast to this scenario of
generalized thermalization of isolated integrable systems,
open systems, which are subjected to Markovian drive and
dissipation [14], typically evolve toward nonequilibrium
steady states that are determined by the interplay of internal
Hamiltonian dynamics and the coupling to external reser-
voirs, and that are, therefore, highly model dependent
[15–22]. In particular, the breaking of conservation laws
due to the coupling to external reservoirs entails the

eventual loss of any memory of the initial state. That is,
the constraints that determine the GGE in isolated systems
are lifted, and, consequently, the notion of a maximum
entropy ensemble appears to be rendered meaningless.
Therefore, the existence of model-independent principles
that govern the relaxation dynamics and stationary states of
open systems is seemingly ruled out.
How are these drastically different paradigms of relax-

ation in isolated and driven-dissipative systems connected
when γ, the strength of the coupling to external reservoirs,
is gradually diminished? For any γ > 0, an open system
eventually reaches a stationary state that is vitally deter-
mined by the coupling to external reservoirs and takes the
form of a GGE only in the limit γ → 0 [23–26]. In this
Letter, however, we show that the universal principles that
govern generalized thermalization after a quantum quench
in isolated systems can retain their validity—in suitably
generalized form—even for finite values of γ that are
comparable to characteristic energy scales of the system
Hamiltonian. This robustness is caused by parity-time (PT)
symmetry of the Liouvillian [27–39] that generates the
dynamics of the system. Focusing on the specific example
of a driven-dissipative generalization [40–42] of the Kitaev
chain [43], we find that in the PT-symmetric phase, the
quadratic eigenmodes of the adjoint Liouvillian oscillate at
different frequencies, but crucially, they all decay with the
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same rate. Consequently, after factoring out exponential
decay, dephasing [7,44] leads to local relaxation to a PT-
symmetric GGE (PTGGE). In analogy to the GGE for
isolated noninteracting fermionic many-body systems and
interacting integrable systems that can be mapped to non-
interacting fermions [5–7,45–47], we specify the PTGGE in
terms of eigenmodes of the generator of the postquench
dynamics. However, the PTGGE generalizes the GGE to
account for noncanonical statistics of these eigenmodes, and
the nonconservation of the associated mode occupation
numbers renders the PTGGE intrinsically time dependent.
We illustrate relaxation to the PTGGE in terms of the
fermion parity and the entropy of a finite subsystem.
Thereby, we reveal the directional pumping of fermion
parity, which occurs for quenches from the topologically
trivial phase of the isolated Kitaev chain to the non-
Hermitian topological phase of the driven-dissipative
Kitaev chain [42], as a phenomenon that is unique to
driven-dissipative systems, and we establish the validity
of a dissipative quasiparticle picture [48–50] for values of γ
up to the sharply defined boundary of the PT-symmetric
phase. Going beyond the example of the Kitaev chain, we
show that our results apply to broad classes of noninteracting
fermionic models and, in suitably generalized form, also to
models of noninteracting bosons and interacting spins.
Model.—We consider a Kitaev chain [43] of length L

with hopping matrix element J, pairing amplitude Δ, and
chemical potential μ, as described by the Hamiltonian

H ¼
XL
l¼1

ð−Jc†l clþ1 þΔclclþ1 þH:c:Þ− μ
XL
l¼1

�
c†l cl −

1

2

�
:

ð1Þ

The operators cl and c†l annihilate and create, respectively,
a fermion on lattice site l. Unless stated otherwise, we
assume periodic boundary conditions with cLþ1 ¼ c1. The
system is prepared in the ground state jψ0i for J ¼ Δ and
μ0. We focus on the limit μ0 → −∞, such that the initial
state is the topologically trivial vacuum state jψ0i ¼ jΩi
with cljΩi ¼ 0, but our results are not affected qualitatively
by this choice. At t ¼ 0, the chemical potential is quenched
to a finite value μ, while J ¼ Δ is kept fixed. At the same
time, the system is coupled to Markovian reservoirs.
Consequently, the postquench dynamics is described by
a quantum master equation for the system density matrix ρ
[51,52],

i
d
dt

ρ ¼ Lρ ¼ ½H; ρ� þ i
XL
l¼1

ð2LlρL
†
l − fL†

l Ll; ρgÞ; ð2Þ

where we choose Ll ¼ ffiffiffiffi
γl

p
cl þ ffiffiffiffi

γg
p c†l as a coherent super-

position of loss and gain at rates γl and γg, respectively
[40–42]. The mean rate γ ¼ ðγl þ γgÞ=2 measures the

overall strength of dissipation, whereas the relative rate
δ ¼ γl − γg is akin to an inverse temperature: For δ ¼ 0, the
system evolves for t → ∞ toward a steady state ρSS with
infinite temperature ρSS ¼ ρ∞ ¼ 1=2L [42]. In contrast, for
δ → ∞, the steady state is pure, ρSS ¼ jΩihΩj.
Since the initial state ρ0 ¼ jψ0ihψ0j is Gaussian and

the Liouvillian L is quadratic and, therefore, preserves
Gaussianity, the time-evolved state ρðtÞ ¼ eiLtρ0 is fully
determined by the covariance matrix

gl−l0 ðtÞ ¼
 

h½cl; c†l0 �ðtÞi h½cl; cl0 �ðtÞi
h½c†l0 ; c†l �ðtÞi h½c†l0 ; cl�ðtÞi

!
; ð3Þ

where h� � � ðtÞi ¼ tr½� � � ρðtÞ�. The Fourier transform gk ¼
−i
P

L
l¼1 e

−iklgl obeys the equation of motion dgk=dt ¼
−izkgk þ igkz

†
k − sk, where zk and sk can be expressed in

terms of Pauli matrices as zk ¼ −i2γ1 − 2
ffiffiffiffiffiffiffiffi
γlγg

p
σx þ

2Δ sinðkÞσy − ½2J cosðkÞ þ μ�σz and sk ¼ −2δσz [53].
For γ → 0, zk reduces to the Bogoliubov–de Gennes
Hamiltonian of the isolated Kitaev chain [83], and it has
inversion symmetry zk ¼ σzz−kσz and time-reversal sym-
metry zk ¼ z�−k. These symmetries are broken when γ > 0.
However, the Liouvillian still has PT symmetry in the sense
that the traceless part of zk given by z0k ¼ zk þ i2γ1 is
symmetric under the combined operation of inversion and
time reversal z0k ¼ σzz0�k σz. PT symmetry implies that there
are two types of eigenvectors and associated eigen-
values λ�;k of zk [53]: PT-symmetric eigenvectors, which
come in pairs with eigenvalues Reðλþ;kÞ ¼ −Reðλ−;kÞ and
Imðλ�;kÞ ¼ −2γ, and PT-breaking eigenvectors, for which
Reðλ�;kÞ ¼ 0 and Imðλþ;k þ i2γÞ ¼ −Imðλ−;k þ i2γÞ. The
PT-symmetric phase is defined by the eigenvectors of zk
being PT symmetric for all momenta k, which is the case
for 2

ffiffiffiffiffiffiffiffi
γlγg

p < j2J − jμjj. Then, the eigenvalues of zk are
given by λ�;k ¼ −i2γ � ωk with ω2

k ¼ ε2k − 4γlγg and
ε2k ¼ ½2J cosðkÞ þ μ�2 þ 4Δ2 sinðkÞ2. For strong dissi-
pation with 2

ffiffiffiffiffiffiffiffi
γlγg

p > 2J þ jμj, all eigenvectors are PT
breaking. Finally, in the PT-mixed phase at intermediate
dissipation, eigenvectors of both types exist.
PT-symmetric GGE.—We now focus on relaxation

dynamics after a quench to the PT-symmetric phase, which
is best described in terms of the eigenmodes of the adjoint
Liouvillian [53]. With the matrix Vk that diagonalizes zk,
these modes are given by

�
dk

d†−k

�
¼V†

k

�
ck

c†−k

�
; Vk¼

0
B@

cos
�
θkþϕk

2

�
isin
�
θk−ϕk

2

�

isin
�
θkþϕk

2

�
cos
�
θk−ϕk

2

�
1
CA;

ð4Þ

where ck ¼ ð1= ffiffiffiffi
L

p ÞPL
l¼1 e

−iklcl, tanðθkÞ ¼ −2Δ sinðkÞ=
½2J cosðkÞ þ μ�, and tanðϕkÞ ¼ 2

ffiffiffiffiffiffiffiffi
γlγg

p =ωk. For γ ¼ 0, Vk
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reduces to the usual unitary Bogoliubov transformation.
When γ > 0, nonunitarity of Vk is reflected in the statistics
of the modes dk as expressed through their anticommuta-
tion relations:

 
fdk; d†k0 g fdk; d−k0 g
fd†−k; d†k0g fd†−k; d−k0 g

!
¼ fkδk;k0 ; ð5Þ

where fk ¼ V†
kVk ¼ 1þ 2

ffiffiffiffiffiffiffiffi
γlγg

p
σy=εk. To discuss the

dynamics of the modes dk, we consider their commutators.
Expectation values of normal commutators evolve as [53]

h½dk; d†k�ðtÞi ¼ e−4γth½dk; d†k�i0 þ ð1 − e−4γtÞh½dk; d†k�iSS;
ð6Þ

where h� � �i0 ¼ trð� � � ρ0Þ and h� � �iSS ¼ trð� � � ρSSÞ denote
expectation values in the initial and steady state, respec-
tively. For anomalous commutators, we find

h½dk; d−k�ðtÞi ¼ e−i2ðωk−i2γÞth½dk; d−k�i0
þ ð1 − e−i2ðωk−i2γÞtÞh½dk; d−k�iSS: ð7Þ

We first consider the case of balanced loss and gain δ ¼ 0.
Then, heating to infinite temperature is reflected in the
exponential decay and vanishing in the steady state of the
expectation values of both normal and anomalous commu-
tators. Crucially, in the PT-symmetric phase, the decay rate is
identical for all momentummodes. Thus, after factoring out
exponential decay, the system relaxes locally to a maximum
entropy ensemble through dephasing of modes with
ωk ≠ ωk0 [7,44]. Since the decay of normal commutators
is nonoscillatory, dephasing affects only anomalous com-
mutators. Therefore, we define the PTGGE as themaximum
entropy ensemble [84] that is compatible with the statistics
given in Eq. (5) and the nondephasing expectation values
of normal commutators collected in the diagonal matrix
ζkðtÞ ¼ e−4γtdiagðh½dk; d†k�i0; h½d†−k; d−k�i0Þ. We find, in
terms of spinors Dk ¼ ðdk; d†−kÞ⊤ [53],

ρPTGGEðtÞ ¼
1

ZPTGGEðtÞ
e−2
P

k≥0
D†

kf
−1
k arctanhðζkðtÞf−1k ÞDk; ð8Þ

with normalization ZPTGGEðtÞ such that tr½ρPTGGEðtÞ� ¼ 1.
The PTGGE reduces to the conventional GGE when γ ¼ 0
such that fk ¼ 1 and ζkðtÞ becomes time independent.
Relaxation to the PTGGE in the PT-symmetric phase stands
in stark contrast to the long-time dynamics in the PT-mixed
and PT-broken phases, which is determined by the single
slowest-decaying mode. Therefore, the boundary of the
PT-symmetric phase corresponds to a sharp dynamical
transition that delimits the applicability of the principle of
maximum entropy.

When δ ≠ 0, the PTGGE captures relaxation dynamics
only up to a crossover time scale t× that is determined by the
equivalence of initial-state and steady-state contributions
in Eq. (6), e−4γt× jh½dk; d†k�i0j ¼ ð1 − e−4γt×Þjh½dk; d†k�iSSj.
Since h½dk; d†k�iSS is proportional to δ [53], this equation
implies t× ∼ ð1=γÞjlnðc×jδjÞj with a constant coefficient
c× > 0 for δ → 0. Consequently, within the entire PT-
symmetric phase, which includes values of γ that are
comparable to Hamiltonian energy scales, t× can be large
enough such that relaxation to the PTGGEcan be observed if
δ is sufficiently small. The precise condition on thevalue of δ
depends on the observable under consideration. Below, we
provide a quantitative discussion for the fermion parity of a
finite subsystem.
Relaxation of subsystem parity.—To illustrate relaxation

to the PTGGE, we consider the fermion parity of a
subsystem that consists of l contiguous lattice sites

Pl ¼ eiπ
P

l
l¼1

c†l cl . The expectation value hPli ¼ pfðΓlÞ
is given by the Pfaffian of the reduced covariance matrix
Γl ¼ ðΓl;l0 Þ2ll;l0¼1

[85,86], where Γ ¼ iR†GR, G is a block
Toeplitz matrix built from the 2 × 2 blocks gl in Eq. (3), and
R ¼ ⊕l

l¼1ð1=
ffiffiffi
2

p Þð1
1
−i
i Þ. For the isolated Kitaev chain, a

combined Jordan-Wigner [87] and Kramers-Wannier
[88,89] transformation maps the subsystem parity to order
parameter correlations in the transverse field Ising model
[53]. Based on the analytical results of Calabrese et al.
[45–47] for the relaxation of order parameter correlations in
the space-time scaling limit l; t → ∞ with l=t fixed, in
Eqs. (9) and (10) below, we formulate analytical conjec-
tures for the time dependence of the subsystem parity in the
driven-dissipative Kitaev chain, which we find to be in
excellent agreement with numerical results.
First, we consider quenches to the topologically trivial

[42] PT-symmetric phase with jμj > 2J. Then, as shown in
Fig. 1, for δ ¼ 0, the behavior of the subsystem parity in the
space-time scaling limit is well described by [53]

FIG. 1. Subsystem parity after quenches to the trivial (green,
μ ¼ −4J) and topological (blue, μ ¼ −J) PT-symmetric phases
for γ ¼ 0.3J, δ ¼ 0, and l ¼ 20. The solid lines are obtained
from Eqs. (9) and (10), where we set αþ ¼ 0.08 and α− ¼ 0.11 to
achieve best agreement with the numerical data shown as dashed
lines. Straight vertical and horizontal lines indicate t ¼ tF and the
PTGGE predictions for the stationary values, respectively. In all
figures, L is chosen large enough to avoid finite-size effects.
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hPlðtÞi ∼ P0e
−4lγtþ

R
π

0

dk
2πminð2jvkjt;lÞtr½lnðjζ0kf−1k jÞ�; ð9Þ

where ζ0k ¼ e4γtζkðtÞ is time independent. The value γ ¼
0.3J chosen in Fig. 1 leads to sizeable modifications of
statistics and dynamics of Liouvillian as compared to
Hamiltonian elementary excitations, which are accounted
for in Eq. (9) by the appearance of fk and the definition of
the velocity vk ¼ dωk=dk in terms of ωk rather than the
Hamiltonian dispersion relation εk. Relaxation to the
PTGGE is best revealed by considering the rescaled
subsystem parity e4lγthPlðtÞi, which decays up to the
Fermi time [46] tF ¼ l=ð2vmaxÞ where vmax ¼ maxk jvkj,
before it approaches a stationary value. The prefactor P0 in
Eq. (9) is obtained by fitting the long-time limit of the
rescaled subsystem parity to the PTGGE prediction.
For small δ ≠ 0, we expect hPlðtÞi to deviate from

Eq. (9) after a crossover time t× ∼ ð1=γÞ lnðc×jδjÞ. This
expectation is confirmed in Fig. 2, where we also compare
numerical results for t× with an analytical estimate [53].
The condition to observe relaxation of the subsystem parity
to the PTGGE, therefore, reads tF < t×.
Directional parity pumping.—For quenches to the PT-

symmetric phase with jμj < 2J, due to nontrivial non-
Hermitian topology of the Liouvillian [42], the rescaled
subsystem parity repeatedly crosses zero before it relaxes to
a stationary value. Physically, these zero crossings can be
interpreted as pumping of parity between the subsystem
and its complement. The period of the zero crossings is
determined by soft modes of the PTGGE, i.e., momenta
ks;�, for which the exponent in Eq. (8) vanishes. For the
isolated Kitaev chain [7,46], the soft modes ks;þ ¼ −ks;−
are locked onto each other by inversion symmetry [53], and
the period of zero crossings is given by ts ¼ π=ð2εks;þÞ ¼
π=ð2εks;−Þ. In contrast, for the PTGGE in Eq. (8),
we find that due to the breaking of inversion symmetry
when γ > 0, there are two distinct soft modes with ks;þ≠
−ks;− [53], and consequently, two distinct timescales

ts;� ¼ π=ð2ωks;�Þ. As shown in Fig. 1, for t < tF, the
resulting oscillatory decay of the subsystem parity is
captured by the following modified space-time scaling
limit [53]:

hPlðtÞi ∼ 2 cosðωks;þtþ αþÞ cosðωks;− tþ α−ÞhPlðtÞinonosc;
ð10Þ

where α� are undetermined phase shifts, and the non-
oscillatory part is given by Eq. (9), which also approx-
imately describes the behavior of hPlðtÞi for t > tF.
The two timescales ts;þ and ts;− have a clear physical

meaning in terms of the exchange of parity through,
respectively, the left and right boundaries of the subsystem.
This is confirmed numerically in Fig. 3 by considering a
chain with open boundary conditions and subsystems Ll ¼
f1;…;lg and Rl ¼ fL − lþ 1;…; Lg located at the left
and right ends of the chain [53]. Then, zero crossings of
hPlðtÞi occur only with period ts;− and ts;þ, respectively. In
contrast, for a chain with periodic boundary conditions,
hPlðtÞi exhibits zero crossings at multiples of both ts;þ and
ts;−. As we show in the Supplemental Material [53], the
occurrence of different periods of parity pumping for
subsystems at the left and right ends of the chain requires
both mixedness of the time-evolved state and breaking of
inversion symmetry and is, therefore, unique to driven-
dissipative systems.
Evolution of subsystem entropy.—In isolated systems, a

key signature of thermalization is provided by the growth
and saturation of the von Neumann entropy of a finite
subsystem SvN;l ¼ −tr½ρl lnðρlÞ�. Here, we consider a
subsystem that consists of l contiguous lattice sites, and
whose density matrix ρl is obtained by taking the trace over

FIG. 2. Deviation from the PTGGE due to δ ≠ 0 for μ ¼ −2.5J,
γ ¼ 0.1J, δ ¼ 10−7J, and l ¼ 20. The rescaled subsystem parity
(dashed line) follows Eq. (9) (solid line) up to the crossover
timescale t× ≈ 5.7tF defined as jhPlðt×Þi − hPlðt×ÞiPTGGEj ¼
hPlðt×ÞiPTGGE. Inset: t× diverges logarithmically for δ → 0.
The numerical data are in good agreement with an analytical
estimate [53].

FIG. 3. Directional pumping of subsystem parity for a quench
to the topological PT-symmetric phase with μ ¼ −0.5J, γ ¼ 0.3J,
δ ¼ 0, and l ¼ 30. For periodic boundary conditions (PBC), the
subsystem parity [black line, numerics; blue shading, sign of
numerical data; red line, Eq. (10) with αþ ¼ α− ¼ 0.09] crosses
zero at multiples of both ts;þ and ts;−. In contrast, for open
boundary conditions (OBC), zero crossings occur only at multi-
ples of ts;− and ts;þ for subsystems, respectively, Ll (violet line)
and Rl (blue line). Factors e�2γt compensate for additional
exponential decay (left end) and growth (right end) due to edge
modes [53].

PHYSICAL REVIEW LETTERS 129, 220602 (2022)

220602-4



the L − l remaining sites ρl ¼ trL−lðρÞ. Quantitative
predictions for the time dependence of SvN;l in the
space-time scaling limit can be derived from a quasiparticle
picture [10–13], according to which the initial state acts as
the source of pairs of entangled quasiparticles. The ballistic
propagation of quasiparticles leads to growth of the sub-
system entropy in proportion to the number of pairs of
entangled quasiparticles that are shared between the sub-
system and its complement.
In open systems, the subsystem entropy SvN;l ¼ SQPvN;l þðl=LÞSstatvN is the sum of two contributions [48–50,90]:

SQPvN;l measures correlations due to the propagation of
quasiparticle pairs, and SstatvN ¼ SvN;L is the statistical
entropy due to the mixedness of the time-evolved state.
Based on results of Refs. [49,50] for weak dissipation
γ ∼ 1=l, we conjecture that for quenches to the PT-
symmetric phase and δ ¼ 0, the quasiparticle-pair contri-
bution SQPvN;l obeys the following space-time scaling
limit [53]:

SQPvN;lðtÞ∼
Z

π

0

dk
2π

minð2jvkjt;lÞtr½SðζkðtÞf−1k Þ− S(gkðtÞ)d�;

ð11Þ

where SðξÞ¼−ð1þξ=2Þlnð1þξ=2Þ−ð1−ξ=2Þlnð1−ξ=2Þ.
The subscript “d” in last term indicates that due to
dephasing, only the nonoscillatory components of the trace
are required to capture the space-time scaling limit. At long
times γt ≫ 1, since ζkðtÞ; gkðtÞ ∼ e−4γt, we can expand
SðξÞ ∼ lnð2Þ − ξ2=2. Then, due to the cancellation of the
leading constant term in the difference in Eq. (11), we
obtain SQPvN;lðtÞ ∼ e−8γt. Therefore, in analogy to the sub-
system parity, relaxation to the PTGGE becomes visible
by considering the rescaled quasiparticle-pair entropy
e8γtSQPvN;lðtÞ. As shown in Fig. 4 the rescaled quasiparti-
cle-pair entropy grows up to the Fermi time tF before it
saturates to a stationary value predicted by the PTGGE.

Discussion.—An important question concerns the vali-
dity of the PTGGE beyond the specific example of the
Kitaev chain. As we show in the Supplemental Material
[53], our results apply directly to symmetry-preserving
deformations of the Kitaev chain, and also to a class
of fermionic models with a particle-number-conserving
Hamiltonian, for which a natural choice of dissipation is
provided by incoherent loss and gain. Furthermore, we find
that for an interacting spin chain that can be mapped to
fermions but with quadratic jump operators, relaxation of a
subset of observables is described by the PTGGE. Finally,
for a model of noninteracting bosons, we demonstrate
relaxation to an ensemble that generalizes the PTGGE for
fermions while maintaining the key property of conserving
an extensive amount of information about the initial state. It
is intriguing to speculate whether PT symmetry can affect
also the dynamics of nonintegrable driven-dissipative
systems in a similar way so as to induce relaxation to a
PT-symmetric Gibbs ensemble.
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