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Topological vacua are a family of degenerate ground states of Yang-Mills fields with zero field strength
but nontrivial topological structures. They play a fundamental role in particle physics and quantum field
theory, but have not yet been experimentally observed. Here we report the first theoretical proposal and
experimental realization of synthetic topological vacua with a cloud of atomic Bose-Einstein condensates.
Our setup provides a promising platform to demonstrate the fundamental concept that a vacuum, rather than
being empty, has rich spatial structures. The Hamiltonian for the vacuum of topological number n ¼ 1 is
synthesized and the related Hopf index is measured. The vacuum of topological number n ¼ 2 is also
realized, and we find that vacua with different topological numbers have distinctive spin textures and Hopf
links. Our Letter opens up opportunities for exploring topological vacua and related long-sought-after
instantons in tabletop experiments.
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Introduction.—The vacuum of a gauge field is the field
state with the lowest energy and thus zero field strength. It
is crucial to our understanding of some amazing features of
particle structures and quantum fields [1,2]. For example, in
quantum electrodynamics, a familiar vacuum is the zero-
point fluctuation of the electromagnetic field, which leads
to important physical effects such as the Lamb shift,
anomalous magnetic moment of electrons, and Casimir
force. As another example, in the electroweak theory,
the investigation of vacuum leads to our deep understand-
ing of the spontaneous symmetry breaking of vacuum, the
origin of mass, and the predication of the Higgs bosons.
Furthermore, the studies of the quantum chromodynamics
vacuum may explain the origin and value of the quark and
gluon condensates, the mechanism for quark confinement
and chiral symmetry breaking [1,2].
The non-Abelian Yang-Mills field is predicted to have an

intriguing type of topological vacua (TV), namely, a family
of degenerate ground states with zero field strength but
nontrivial topological structures [2–5]. This type of vacua is
predicted to be significantly different from an Abelian
vacuum in terms of energy degeneracy and field topology.
Furthermore, quasiparticles called instantons are known to
describe tunneling processes between different vacua,
which lead to the introduction of the CP-violating θ term
and shed light on the mechanism of quark confinement
[1,2]. These nonperturbative solutions of the Yang-Mills

fields were first proposed in 1975 [3], but have not yet been
experimentally observed.
Inspired by the realization of the Abelian Higgs model

with Bose-Einstein condensates (BECs) [6,7] and the
rapidly developing quantum simulation of synthetic gauge
fields in ultracold atoms [8–18] and other quantum-
engineered systems [19,20], in this Letter, we theoretically
propose and experimentally realize the first scheme to
synthesize TV of Yang-Mills fields using a cloud of
ultracold atomic BECs coupled with a pair of Raman laser
fields. The exemplary TV with topological number (TN)
n ¼ 1 is realized and the related Hopf index is measured.
Furthermore, both the three-dimensional spin textures and
Hopf links of this family of TV with n ¼ 1 and 2 are
demonstrated. Our Letter opens up a potential way to study
TV with engineered quantum systems.
Topological vacua of the Yang-Mills fields.—A gauge

field is fully described by a gauge potential Aμ. The
commonly studied kinetic effects of a field are determined
by the field strength Fμν≡∂μAν−∂νAμ− i½Aμ;Aν�. Notably,
a gauge field also has geometric effects, such as the
Aharonov-Bohm effect, which are solely determined by
Aμ. It is worth noting that for the same Fμν, there exist a
group of gauge potentials Aμ’s that are connected by gauge
transformations described by N × N unitary matrices
UðNÞ. With an Abelian vacuum, Fμν ¼ 0 results in the
only choice of Aμ ¼ 0. However, for a non-Abelian UðNÞ,
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besides the regular vacuum with Aμ ¼ 0, there are a group
of Aμ ¼ U−1

∂μU gauge potentials that possess rich geo-
metric effects. Searching for nonperturbative solutions of
the SU(2) Yang-Mills fields reveals a family of solutions
described by the gauge transformations Un ¼ ðU1Þn with n
being an integer [3–5], where

U1ðrÞ ¼
r2 − η2

r2 þ η2
σ0 −

2iηr · σ⃗
r2 þ η2

: ð1Þ

Here σ⃗ ¼ ðσx; σy; σzÞ are Pauli matrices, σ0 is the identity
matrix, r ¼ ðx; y; zÞ is the position vector with r ¼ jrj, and
η is a constant. As can be seen, the field strength Fμν related
to gauge transformation Un ¼ ðU1Þn vanishes and thus
they represent degenerate vacua. Interestingly, these vacua
are characterized by a TN,

n¼ 1

24π2

Z þ∞

−∞
drϵijkTrðU−1

n ∂iUnU−1
n ∂jUnU−1

n ∂kUnÞ; ð2Þ

where ϵijk is the Levi-Civita symbol. As shown in Fig. 1(a),
there must exist potential barriers to separate vacua with

different TNs. Accompanied by instantons, quantum tran-
sition between vacua is predicted [1,2,4].
Artificial gauge fields for a light-atom system.—Here we

use atomic BECs to demonstrate that TV can be syn-
thesized with an engineered quantum system. The
Hamiltonian of a laser-atom interaction system reads
H ¼ ðp2=2mÞ þ VðrÞ þHAL, wherem is the atomic mass,
the laser-atom interaction HAL is an N × N matrix in the
basis of the internal energy levels jji, and the potential
VðrÞ ¼ P

N
j¼1 VjðrÞjjihjj. In this case, the full quantum

state can be expanded as jΦðrÞi ¼ P
N
j¼1 ϕjðrÞjji.

In the representation of the dressed states jχni that are
eigenvectors of the Hamiltonian HAL, HALjχni ¼ εnjχni,
the full quantum state of the atom jΦ̃ðrÞi is written as
jΦ̃ðrÞi ¼ P

j ψ jðrÞjχjðrÞi, where the wave functions

jΨ̃i ¼ ðjψ1i; jψ2i;…; jψNiÞ⊤ obey the Schrödinger equa-
tion iℏð∂=∂tÞjΨ̃i ¼ H̃eff jΨ̃i, with the effective Hamiltonian
H̃eff ¼ UHU†. We further assume that the first 2 atomic
dressed states among the total N states are degenerate
and are well separated from the remaining N − 2 states.
This way, we can project the full Hamiltonian onto this
subspace. Under this condition, the wave function in
the subspace Ψ ¼ ðψ1;ψ2Þ⊤ is again governed by the
Schrödinger equation iℏð∂=∂tÞΨ ¼ HeffΨ with the effec-
tive Hamiltonian taking the following form [21–25]:

Heff ¼
1

2m
ð−iℏ∇ −AÞ2 þ Veff : ð3Þ

Here A ¼ iℏU∇U† with U ¼ ðjχ1i; jχ2ÞiÞ and Veff is a
scalar potential in Supplemental Material (SM) [26].
Realizing topological vacua with atoms.—Topological

vacua can be realized using ultracold atoms with two fully
(or almost) degenerate states by designing the laser-atom
interactions. Two degenerate states can be achieved with
four-level atoms, such as a tripod-level or ∞-level con-
figuration [16,18]. For experimental simplicity, we propose
a feasible scheme with two almost degenerate states. We
consider three-level atoms cyclically coupled by three
position-dependent fields Ω1;2ðrÞ and ΩMWðrÞ, as shown
in Fig. 1(b). The Hamiltonian HALðrÞ can be written as

HALðrÞ ¼
ℏ
2

0
B@

0 Ω�
MWðrÞ Ω�

1ðrÞ
ΩMWðrÞ −2αðrÞjδðrÞj Ω�

2ðrÞ
Ω1ðrÞ Ω2ðrÞ 2αðrÞjΔðrÞj

1
CA;

ð4Þ

where ΔðrÞ [δðrÞ] is the single-photon [two-photon]
detuning and αðrÞ ¼ sgnðjrj − 1Þ is a sign function.
In order to easily obtain a solution for the TV, we assume

ΩMWðrÞ¼−iΩ1ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijδðrÞ=ΔðrÞjp

. To simplify the notations,
we hide the notation r later on. We solve the Schrödinger
equation HALjχni ¼ εnjχni under the large detuning

(a)

(b) (c)

FIG. 1. Scheme of a family of TV synthesized with ultracold
atoms and experimental realization. (a) Schematic plot of
the potential energy V½A� as a function of the TN n. The vacuum
with fixed TN has specific spin textures. Quantum tunneling
between vacua is allowed with the assistance of instantons.
(b) Proposed atomic energy level configuration. Two Zeeman
sublevels that belong to the ground hyperfine manifolds
of 87Rb atoms are selected: j1i¼j51S1=2;F¼2;mF¼0i and
j2i¼j51S1=2;F¼1;mF¼0i, which are cyclically coupled via a
detuned two-photon Raman process (Ω1;2) together with a
microwave (ΩMW). (c) Experiment setup. A cloud of 87Rb
BEC are trapped in a crossed optical dipole trap (ODT).
A homogeneous magnetic field along the x axis sets the quantum
axis. A pair of copropagating Raman lasers Ω1;2 focused at the
cloud couple the two states j1i and j2i. A microwave field
emitted from a microwave waveguide is used to realize the initial
state preparation and synthesized vacua measurement.
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condition, i.e.,Δ≫ jδj;Ω, withΩ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΩ1j2þjΩ2j2

p
, and then

obtain the eigenvalues ε ≈ 0;−ℏκ2=ð4ΔÞ;ℏ½Δþ Ω2=ð4ΔÞ�
with κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ 4jδΔj

p
. The first two are nearly degenerate

since there is a large gap between the first two and the last
one. They may create a subspace for synthetic SU(2) gauge
field. To clearly present that fjχ1i; jχ2ig form a pseudospin
subspace, we denote them as fjχ−i; jχþig. After solving the
related eigenvectors, we derive the transformation

UAL ¼ 1

κ

�−iΩ2 þ 2α
ffiffiffiffiffiffiffiffiffijδΔjp

iΩ�
1

iΩ1 iΩ2 þ 2α
ffiffiffiffiffiffiffiffiffijδΔjp

�
: ð5Þ

Therefore, if we can find a solution with UAL ¼ Un,
then a TV with TN n is realizable. In SM [26], we show
such solutions. In particular, we find that Ω¼2

ffiffiffiffiffiffiffiffiffijδΔjp
×

tan½2arctanðr=ηÞ� leads toUAL ¼ U1. We can further realize
vacuawith different TN n in an array configuration as shown
in Fig. 1(a), and then instantons can emerge in such an
array [27].
We can realize the SU(2) Yang-Mills vacua with

desired UnðrÞ if we implement the laser-atom interaction
to obtain the topologically equivalent Hamiltonian
HTVðrÞ ¼ UnðrÞσzU†

nðrÞ. However, engineering such a
Hamiltonian in real space is challenging since the strength,
frequency, and phase of the coupling fields in each spatial
point must be well designed. In the first experiment, we
simply implement the above HTVðrÞ in a parameter space
and then measure the TN and the related significant
properties of the TV. Our experiment can visualize the
spatial structure of the TV, which has not been explored in
previous literature.
The TN in Eq. (2) is equivalent to the Hopf index χHopf

[22,26,28,29],

n ¼ χHopf ¼ −
1

4π2

Z þ∞

−∞
draðrÞ · fðrÞ; ð6Þ

where the kth component of aðrÞ defined as akðrÞ¼
hχ−ðrÞ∂kjχ−ðrÞi is Berry connection and fðrÞ¼∇×aðrÞ
is Berry curvature [21]. Experimentally, we can obtain both
aðrÞ and fðrÞ by adiabatically tuning the Raman laser fields
and detecting the state jχ−ðrÞi. According to Eq. (6), the
TN can be measured by detecting the spin states of the
atoms in the full space of r. Furthermore, the properties of
the vacuum can be determined by the density matrices
hσi ¼ fhχ−jσxjχ−i; hχ−jσyjχ−i; hχ−jσzjχ−ig [26].
Experimental scheme.—The schematics of our experi-

ment setup is shown in Fig. 1. A cloud of 87Rb atoms are
laser cooled in a magneto-optical trap and then evapora-
tively cooled down to BEC state in a far off-resonant
crossed optical dipole trap (ODT). A weak homogeneous
magnetic field B along the x axis sets a quantum axis. In
order to maintain a long coherence time, we choose two
quantum states j1i and j2i from the magnetic insensitive
hyperfine Zeeman sublevels to mimic the pseudospin.

Initially, all atoms are polarized in pseudospin state j1i
by a coherent microwave pulse.
The expected HamiltonianHTVðrÞ at specified position r

is realized by adding two Raman lasers with respective
Rabi frequency Ω1 and Ω2. As shown in the energy level
configuration in Fig. 1(b), the paired Raman lasers couple
the two spin states j1i and j2i via two-photon process. The
effects of excited states are adiabatically eliminated by
setting Δ ¼ 2π × 3.9 THz since both Ω1;2 and δ are on the
order of 2π × 10 kHz. The third coupling field ΩMW is
estimated to be around 1 Hz and hence can be safely
omitted. Therefore, the two quantum states j1i and j2i,
together with the paired Raman lasers, produce an approxi-
mate degenerate sub-Hilbert space.
To detect the state jχ−i at each position r, we manipulate

the HamiltonianHTV adiabatically and drive the atoms from
the initial state j1i to the final state jχ−i in an adiabatic way.
In our experiment, the largest Rabi frequency ΩM is
2π × 28.5 kHz, while the coherence time of spin states is
longer than 8 ms. For adiabatic state evolution, the single
photon detuning Δ is kept almost constant while the Raman
coupling strength ΩR and two-photon detuning δ ramp
smoothly from the respective initial value of ΩR ¼ 0 and
δ ¼ ΩM. The whole evolution time is set to around 350 μs
(∼20π=ΩM), which is longer compared to the typical time of
Rabi oscillation but much shorter than the coherence time
and thus ensures the adiabatic and coherent state evolution.
With this method, we may adiabatically prepare one
Hamiltonian HTVðrÞ at arbitrary parameter r in a single
experiment run, during which atoms are loaded into the
expected state jχ−i and ready for detections.
Measuring the topological number.—We first synthesize

theTVofn ¼ 1. Along all three x, y, z directions, we take the
step size 0.1 and range of r as −3 ≤ x; y; z ≤ 3. Here and in
the following, the nonzero parameter η in Eq. (1) is taken as
the length unit of x, y, z [30]. To detect TN, we achieve the
Berry curvature fðrÞ point by point bymeasuring the density
matrix of atoms at each point in the parameter space.
Because of the gauge choice problem, it is difficult to
directly measure the Berry connection aðrÞ. As long as a
specified gauge is chosen, theBerry connection at each point
could be derived from the measured distribution of Berry
curvature fðrÞ. Eventually, the TN can be obtained by
summing up the inner product of fðrÞ and aðrÞ at all the
measured points [26]. By repeating the Hamiltonian HTV
preparation and spin density matrix measurement at each
point of r, we measure the Hopf index of U1 as n ¼ 0.91,
which is limited by the average Hamiltonian preparation
fidelity of 0.97� 0.03. The fidelity is evaluated according to
the measured density matrices at all points, and the error is
standard deviation.
Spin texture.—Intriguingly, our setup provides a unique

platform to demonstrate that vacua have rich spatial
structures. We reveal that the distribution of UðrÞ can be
used to visualize the topological structure of a vacuum and
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that the vacua with different TNs have distinctive spatial
spin textures. As UðrÞ ¼ ðjχþðrÞi; jχ−ðrÞiÞ in our experi-
ment and jχþðrÞi; jχ−ðrÞi are always orthogonal to each
other, the spin state jχ−ðrÞi can well demonstrate the
properties of the synthesized vacuum. In order to show
these structures, we utilize hσi to depict the spatial textures
of atomic spins.
Spin texture in the horizontal xy plane of z ¼ 0 and

vertical yz plane of x ¼ 0 are measured. The measurements
are conducted at each point with grid spacing 0.3 and the
range −5 ≤ x; y; z ≤ 5. The spin textures of the vacua with
n ¼ 1 and n ¼ 2 are plotted in Figs. 2(a1)–2(a4). As an
example, Fig. 2(a1) shows spin textures in the xy plane with
z ¼ 0. The black arrows indicate the direction of the in-
plane xy components hσxi and hσyi, while colors depict the
magnitude of z component hσzi.
The topologies of the vacua can be intuitively understood

by checking the rotation of the spin texture. For n ¼ 1, as
shown in Figs. 2(a1) and 2(b1), all directions of hσxi; hσyi,
and hσzi reverse one time in space, which means that the
spin texture reverses its direction once from the center of
the space to the outside. At both the center and the infinity
far away region in Figs. 2(a1) and 2(b1), all spins point to
the positive z axis with hσzi ¼ 1. In between, there exists a
(deep blue) ring shape where all spins point to the negative
z axis with hσzi ¼ −1. This spin texture suggests that the
gauge potential twists one time in space, which can be more
clearly seen in the vertical yz plane with x ¼ 0 from the
arrow direction shown in Figs. 2(a2) and 2(b2).
Spin textures have significant differences between vacua

n ¼ 1 and n ¼ 2, as shown in Figs. 2(a3) and 2(b3) and in
Figs. 2(a4) and 2(b4). In both cases, the spins point to the
positive z axis both at the center and the infinity far away

region, but there are two ring shapes for vacuum n ¼ 2
where all spins point to the negative z axis. Therefore, the
spins twist twice in space for the n ¼ 2 vacuum [31].
Hopf links.—We further show that Hopf links are another

powerful way to reveal the intrinsic spatial structure of the
TV. A Hopf link is a trace of points where the spin points to
the same direction. It has been used to investigate topological
solitons [22,32,33] and the topological properties in the

FIG. 2. The topologies of vacua visualized by spatial distribution of atomic spin direction. (a1)–(a4) Theoretical results of density
matrices that show the direction of atomic pseudospin. (b1)–(b4) Experimentally measured results. Panels (a1) and (b1) correspond to
the spin texture of the vacuum with n ¼ 1 in the plane of z ¼ 0, while panels (a2) and (b2) are those in the plane of y ¼ 0. Panels (a3)
and (b3) correspond to the spin texture of the vacuum with n ¼ 2 in the plane of z ¼ 0, while panels (a4) and (b4) are those in the plane
of y ¼ 0. Black arrows represent the in-plane components, while colors (with values mapped to the right-hand-side color bar) indicate
the remaining components perpendicular to the plane.

(a)

(b)

FIG. 3. Hopf links of topological vacua. Hopf links with
(a) n ¼ 1 and (b) n ¼ 2. Hopf links belonging to spin directions
in the positive x, negtive y, and negtive z axis are plotted in red,
blue, and green, respectively. Solid lines are theoretical results, and
arrows denote the spin direction determined by the measured data.
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Brillouin zone (a three-torusT 3) [29,34]. The link space here
is an ordinary infinite space R3. To understand the vacuum
structures,weplot exemplaryHopf links forn ¼ 1 andn ¼ 2
in the three-dimensional parameter space, as shown in Fig. 3.
We select three typical directions (positive x axis, negative y
axis, and z axis) to plot Hopf links, which are theoretically
depicted by the solid red, blue, and green lines, respectively.
The spin texture at a series of points on each line are
experimentally measured and shown by arrows in Fig. 3.
For the n ¼ 1 vacuum, there is only one link for each spin
direction and these three Hopf links interwind with each
other one time in space.When theTNof thevacuum isn ¼ 2,
there exist two separate links for each spin direction. The 6
total links are in 2 different groups; in each group, the links of
different spin directions interwind with each other one time.
Therefore, the total TNs are equally contributed by the two
groups of spin winding.
Conclusion.—In summary, we have reported the first

experiment to realize synthetic TV and explored their
nontrivial properties. These results establish the first
experimental platform to explore the fundamental structure
of TV. Our Letter can be extended to other quantum-
engineered systems, such as superconducting qubits and
trapped ions. Our theoretical scheme can be applied to
realizing a three-dimensional real space TVand an array of
TV as shown in Fig. 1(a) and in Fig. S1 in SM [26].
Although such experiments are challenging, once they are
realized, the long-sought-after instantons and nonperturba-
tive features of the Yang-Mills fields can be explored in
tabletop experiments. However, just as many work on this
direction [8–20], our simulated SU(2) gauge field is a kind
of fixed classical gauge field felt by particles and it does not
have its own dynamics. Combined with the recently
developed technologies of creating synthetic gauge fields
with its own dynamics [35], our Letter may shed light on
simulating the vacua of the quantized Yang-Mills fields,
which is an open question in quantum field theory.
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