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During morphogenesis, the shape of living species results from growth, stress relaxation, and
remodeling. When the growth does not generate any stress, the body shape only reflects the growth
density. In two dimensions, we show that stress free configurations are simply determined by the time
evolution of a conformal mapping which concerns not only the boundary but also the displacement field
during an arbitrary period of time inside the sample. Fresh planar leaves are good examples for our study:
they have no elastic stress, almost no weight, and their shape can be easily represented by holomorphic
functions. The growth factor, isotropic or anisotropic, is related to the metrics between the initial and
current conformal maps. By adjusting the mathematical shape function, main characteristics such as tips
(convex or concave or sharp-pointed), undulating borders, and veins can be mathematically recovered,
which are in good agreement with observations. It is worth mentioning that this flexible method allows us
to study complex morphologies of growing leaves such as the fenestration process in Monstera deliciosa,
and can also shed light on many other 2D biological patterns.
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During morphogenesis or embryogenesis, biological
species grow very slowly, often creating important shape
transformations at the origin of elastic stresses. In recent
years, the theoretical framework of finite elasticity with
multiplicative decomposition [1–3] was employed to
understand and mimic these shape transformations; for
instance, the development of leaves or flowers [4–6], the
morphological instabilities of human organs in fetal life,
including the brain cortex [7], the fingerprints [8,9], the
oesophagus mucosa [10], and the intestine villi [11–13].
For slender soft bodies with initially a rather symmetric
shape, the growth may change drastically their aspect with
curling and buckling [10,14,15], and these instabilities
perfectly illustrate the successive bifurcation steps induced
by the relative volume increase G. Thin bilayers exhibit
zigzag instabilities [12,16–18] in the same way as fluids in
Rayleigh-Bénard convection [19,20] or localized solitonic
patterns in the presence of defects [21]. However, due to the
complexity of finite elasticity, most of the theoretical works
describe simple highly symmetric bodies, such as thin
plates or shells, with the space-independent parameter G,
which grows slowly with time. The elastic stresses are in
the order of μV0ðG − 1Þ, μ being the shear modulus and V0

the initial volume: this estimate causes a significant
increase of energy in the soft material if the stress relaxation
and the shape remodeling are inhibited by the boundaries
[3], but it may not coincide with true situations.
Recently Chen et al. [22,23] have proposed that the

change of geometric shape is only induced by the volu-
metric growth GðtÞ without the generation of elastic
stresses. This strategy implies the definition of a mapping

that connects the initial position of points to their current
position at time t, and then GðtÞ is determined by imposing
a zero-stress condition. Their derivation is rather technical
and their examples are based on initial circular geometry.
Nevertheless, they derive a variety of stress-free mathemati-
cal geometries that mimic different biological patterns.
With the same objective but limiting ourselves to two-

dimensional thin samples of arbitrary initial and final
shapes, like fresh leaves, we propose a general formalism
based on conformal mapping techniques. Indeed, regular
planar close curves ∂Ω limiting a domainΩ can be related to
the unit circle by a holomorphic function according to the
Riemann theorem. This function also associates the points
insideΩ to the Riemann disc, and it gives a way to construct
the geometric deformation field during the growth process.
Then the shape will evolve from Cartesian coordinates to a
rectangular curvilinear system of coordinates. D’Arcy
Thompson [24] made the hypothesis that these coordinates
represent the velocity of shaping. Although conformal
mapping is not explicitly mentioned in his original work,
the pictures drawn in Ref. [24] concerning the growth and
evolution between neighbor species strongly suggest such a
hypothesis. The idea behind conformal mapping for grow-
ing leaves was revisited more recently [25] and also tested
experimentally. For example, Alim et al. [26] predict the
local displacement field of petunia and tobacco leaves
through a conformal mapping, which is rather consistent
with their experimental results.
The aim of this Letter is to prove that conformal

mappings can recover the shape of leaves without generat-
ing elastic stress and can determine the growth laws,
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independently of the nonlinear elasticity model. Herein,
different shapes of common leaves are selected, with a
special focus on the Monstera deliciosa family.
The formalism.—We consider a 2D formalism where the

leaf thickness remains constant during the growth without
deformation in the thickness direction. Growth is a very
slow process so that the deformations adjust immediately to
the growth. The initial leaf shape is represented by Ω0 and
the material points by X, the current shape at time t
becomes Ωt with the current point coordinates x. The
geometric deformation gradient is the second order tensor
defined by: F ¼ ∂x=∂X, and F ¼ FeG, where G is the
growth and Fe the elastic tensor [1]. The right Cauchy
tensorC only depends on Fe and is given byC ¼ FT

eFe [2].
Using the curvilinear coordinates of the initial configura-
tion with Z ¼ X þ iY ¼ F1ðΞÞ ¼ F1ðμþ iηÞ, we choose z
for the current configuration, such as z ¼ xþ iy ¼
F2½kðμÞ þ ilðηÞ� where conformal mapping is preserved
only if kðμÞ ¼ μ and lðηÞ ¼ η. F2ðμþ iηÞ is determined by
the outer leaf shape ∂Ωt which corresponds to μ ¼ μ0 ¼
kðμ0Þ at the time t of observation. Introducing kðμÞ and lðηÞ
for z simply broadens the ensemble of mappings between
the two domain boundaries F1 and F2.
Local growth rate of living tissues can be inhomogeneous

(dependent on the coordinates μ and η) and anisotropic,
which explains the tensorial mathematical representation of
G. To respect the leaf geometry, this tensor G must be
diagonal: G ¼ diag½gðμ; ηÞ=pðμ; ηÞ; pðμ; ηÞgðμ; ηÞ�, where
pðμ; ηÞ is the growth anisotropy coefficient, and gðμ; ηÞ2 is
the local volumetric growth at time t. For simplicity, we
suppress the μ, η, and t dependence in p and g functions.
Then the elastic tensor becomes

Fe ¼
1
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For incompressible living species, the third invariant
I3 ¼ det Fe ¼ 1, so imposing the local growth eigenvalue g:
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A stress free configuration requires the cancellation of the
first invariant I1: I1 ¼ TraceC − 2 ¼ 0 which, with the
constraint I3 ¼ 1, leads to
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If p ¼ 1, the growth is isotropic, and Eq. (3) recovers the
Cauchy relations implying that the current configuration z
is an holomorphic function. If p ≠ 1,the growth is aniso-
tropic and p2 ¼ l0ðηÞ=k0ðμÞ. The derivation can be found in
the Supplemental Material [27], Sec. I. In finite elasticity,

the elastic strain depends on invariants (invariant under a
rotation) traditionally called I1, I2, and I3 [28,29], also
eventually on pseudoinvariants I4 and I5 for transversely
isotropic fibrous materials [30]. All these invariants are
functions of the right Cauchy tensor C which is reduced to
the unity tensor. So as long as Eq. (3) is satisfied, the
growth process will generate no stress, even in the case of
anisotropic growth.
As a conclusion, for 2D materials, it exists an infinite

space of stress-free conformal maps associated to a growth
tensor satisfying simultaneously Eqs. (2) and (3).
Incompressibility is not mandatory since material com-
pressibility is controlled by I3 that is equal to unity in our
case. In the following, we focus on fresh leaves which are
extremely diverse in nature with quasiplanar shapes
independently of the connection to the branch. The vein
size depends on the species, most of them have a central
prominent and rigid vein with a network of weaker lateral
veins [31]. Having its own characteristics, each species
requires an adaptation of our model to recover its shapes,
which is perfectly doable with holomorphic functions.
In particular, when very rigid veins appear, a partition
following the big veins may be necessary and the modeling
should be applied piece by piece. Hereafter, we focus on
botanic traits, such as the tip, the margin, and the existence
of internal holes. The knowledge of the initial and current
shape contours specifies both functions F1 and F2 and also
the growth density g. However, despite the mathematical
proofs of existence of such functions, their precise deter-
mination remains a challenge in practice requiring to solve
a rather difficult inverse problem [32–35], and the accuracy
of numerical methods depends strongly on the complexity
of the domain geometry. Therefore, our choice will consist
of summing a restricted number of hyperbolic cosine
functions −iΣkbkðtÞSk with S ¼ cosh ½aðμþ iηÞ�, the coef-
ficient bk being obtained by simple fitting of the contour.
In practice, 3 modes k were sufficient to mimic a variety of
leaf shapes during their growth. The schematic diagram is
shown in Fig. 1.
Tips and margins of leaves.—Tips play a major role in

physical growth processes in various fields such as dendritic
growth [36], viscous fingering [37], fractures [38–40], and
filamentary organisms [41]. Tips are often considered as
being responsible for not only the growth dynamics but also
the stability of the global shape. However, leaves [42] exhibit
almost all kinds of shapes at the tip such as sharp pointed,
convex, or concave, see Figs. 2(a)–2(c), the last case being
much less common. Also, leaf margins are rather diverse,
being either smooth such as lily leaves or undulated such as
apple leaves. All these morphologies can be recovered with
our formalism based on the expansion in powers of S, by
fixing the central vein at μ ¼ 0 and the outer contour at
μ ¼ μ0. The coefficient a characterizes the plant species and
the parameters bk at initial and final time t are adjusted to the
observed contours, then generating both functions F1 andF2
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(see Supplemental Material [27], Sec. SII). Nevertheless, tips
with a central dip or undulating margins require an additive
correction Sc ¼ −icðtÞSedðtÞðμþiη−0.6Þ to our expansion. The
period and the amplitude of oscillations are easily controlled
by cðtÞ and dðtÞ, respectively, see Fig. 3, where we focus on
the margins of the Jujube and the White Sapote leaves. For
the Robinia shown in Fig. 2(f), the term Sc plays two roles,
i.e., controlling tip and margin. Once the shape of the leaves
is obtained with enough accuracy, the volumetric growth can
be evaluated using Eq. (2). In particular, in Figs. 2(d)–2(f),
color variation from dark green (weak growth amount) to
light green or yellow indicates the heterogeneity of the
growth intensity, less pronounced for the most rounded leaf
[Fig. 2(e)].
Blade perforation.—Surprisingly, the initiation and

evolution of holes in leaves also called fenestration is a
rather rare event across the plant world, and it mostly
happens in the family of Monstera deliciosa, commonly
used as a decorative vine. The blade perforation remains
difficult to interpret in terms of adaptive function to its
natural environment, that consists in tropical forests, and
different hypotheses have been considered such as water
uptake or sun flecks [43]. There are some biological
evidences that the blade perforation is generated by a
regulated program of cell death [44] and in this case, we
must take the hole distribution as a matter of fact occurring
in rather big leaves (more than 10 cm): physics and
mechanics cannot explain or justify their existence and
distribution. Indeed, even in the same vine, the leaves have
no symmetry: some present holes on both sides of the
central veins, some only on one side, and the number of
holes per leaf is highly variable. Most of the time, the
perforation is not visible and happens when the leaf is still

inside the sheath of an old one, see Supplemental Material
[27]. The emergence of a hole in a mature leaf is a rare
event but not impossible, in this case the central zone of the
domain between two lateral veins becomes thinner and
thinner in the middle, and ultimately one hole appears. The
typical timescale for this event is about 1 month.

FIG. 2. Natural leaves: (a) Jujube leaf with sharp tip and
oscillatory border. (b) Redbud leaf with rounded tip and smooth
border. (c) Robinia pseudoacacia leaf with concave tip and
smooth border. Mathematical images: (d)–(f) simulated by shape
function (see Supplemental Material [27], Sec. SII). Level of
green colors shows the local growth density in different regions,
lighter color indicating more growth intensity. Jujube leaf [(a) and
(d)] grows more at the tip while the top and bottom of Robinia
pseudoacacia leaf [(c) and (f)] have a weak level of growth.
Redbud leaf [(b) and (e)] shows a relatively uniform growth in the
entire area, except near the petiole.

FIG. 1. Schematic diagram: (a) μ and η are the curvilinear
coordinates, μ ¼ μ0 corresponds to a green curve and η ¼ η0 to a
blue curve. (b) Parameters bk0 depend on the leaf contour at
t ¼ 0, (F1). (c) Parameters bkðtÞ are determined by the contour at
time t, (F2).

FIG. 3. Different leaf borders, shape function of all contours:
z ¼ −ib1Sþ Sc, where μ0 ¼ 0.6, a ¼ 2 and b1 ¼ 2. (a)–(c):
Boundary shapes changing with decreasing values of αðtÞ
and βðtÞ. (d) Jujube leaves showing similar edges with (c).
(e)–(g) Boundary shapes evolving with only decreasing values
of αðtÞ. (h) White Sapote leaves show similar edges as (g).
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We have noticed the similarity of hole shapes with
viscous fingers or bubbles in Hele-Shaw cells [45,46].
From the viewpoint of modeling, they have in common to
be generated with conformal fields, of course due to
totally different physical reasons. The studies more
connected to our Letter concern series of steady bubbles
of velocity U traveling periodically in an infinite linear
Hele-Shaw cell. When surface tension is neglected, their
shapes are defined by 2 (for symmetric and centered
bubbles, [47]) or 7 parameters (for non symmetric bub-
bles, [48–50]), each of them allowing a time-dependent
adjustment. The periodic flow field is Laplacian, satisfies
the imposed boundary conditions on the two sides of a
rectangle which corresponds to one period of the flow and
is limited by the parallel horizontal walls of the exper-
imental cell. Such a rectangle can be easily mapped to a
domain enclosed by two lateral veins (defined by η), the
central vein and the outer contour. At the bubble boundary,
the pressure vanishes, which is also relevant to the
elastic fenestration problem without stress. Calling ζ
the Riemann unit disc coordinates, zb the position of an
arbitrary point in the flow, Burgess and Tanveer establish
the following relation [47]:

dzb
dζ

¼ Kð2=U þ Að1þ ζ2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ2 − β2Þðζ2 − α2Þð1 − α2ζ2Þð1 − β2ζ2Þ

p ; ð4Þ

where K and A are constants determined by the three
parameters U, α, and β; they are responsible for the length
and width of the hole through Eq. (4). The transformation
process and themapping functions are displayed in Fig. 4(b).
The leaf shape functions are fully determined at two different
times of their evolution and are shown in Fig. 4(a), in which
the maximum growth rate G is predicted near the petiole
while the tip corresponds to a minimal growth. These
solutions have symmetric holes (for-aft, up-down) and
centered in the middle, but in reality holes may appear closer
to the edge where they broaden, see Fig. 4(c). In this case,
they lose the for-aft symmetry and display finger shapes, the
previous approach [47] ceases to be valid and more complex
shape functions involving 8 parameters are required [48–50];
see Supplemental Material [27]. The mapping process
between the bubble and the hole is the same for the
symmetric or asymmetric case, see Figs. 4(b) and 4(d). In
addition, a peculiar variety of Monstera exhibits a finger
facing a small hole which reminds us of viscous fingering
experiments inHele-Shawcells [51–54]. Figure 4(e) displays

FIG. 4. (a) On left, natural Monstera deliciosa leaf with holes located either at the center (on top right) or connected to the border. On
the same level on top, initial and current state of a mathematical leaf with one hole, located at the center in a chosen area. (b) A rectangle
including a hole on left mapped into a specific curvilinear rectangle with boundaries defined by μ and η. The selected conformal
mapping is a solution of the periodic Darcy flow with periodic and symmetric bubbles. Selection of constant k and c2 are made in
relation with (a). (c) Natural Monstera leaf with “fingerslike” shape holes. The initial and current state of a mathematical leaf with
asymmetrical hole. (d) Conformal mapping generating an asymmetric bubble. The hole is closer to the outer boundary. (e) Natural
MexicoMonstera leaf with holes and fingers and the initial and current state of mathematical leaf with two holes. (f) Anisotropic growth
of the mathematical leaves with two holes, the functions kðμÞ and lðηÞ are detailed in [49], notice the changes of vein position between
(e) and (f).
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an example of such leaves, comparing to our mathematical
shapes at two different times. To sum up, our formalism
applies to any kind of planar leaves. The shape complexity
may require elaborated mapping functions that can be
found either in the literature or in classical specialized books
[55–57]. Numerical methods have also been established
[33,34,58]. The amount of growth, isotropic or anisotropic, is
obtained as displayed in Fig. 4 and in Supplemental
Material [27].
Leaf vein.—Veins provide structure and support to leaves

while also playing a vital role in transporting water and
nutrients to the leaf blade. The region closer to the major
vein may have access to more nutrients, which will be evenly
transmitted into lateral veins with a nutrient content equiv-
alent in each location [31]. Such unequal nutrient distribu-
tion is responsible for an anisotropic growth process
represented in Ref. [59]. It further leads to a change of
the leaf vein locations and consequently of the hole shape, as
shown by the comparison of Figs. 4(f) and 4(e). Besides, in
the anisotropic case, the growth rateG is more homogeneous
across the whole leaf, except near the petiole and the tip.
Conclusion.—Among all mappings possible for the shape

evolution of a 2D elastic sample, we demonstrate that
conformal or quasiconformal mappings have the advantage
to eliminate the elastic stresses independently of the elastic
material properties. Contrary to other cases studied recently
[3,5,6], leaves without exterior loading and growing in a
quiet environment sustain this approach. In this Letter, we
exploit the hypothesis of conformal mapping [24–26] on
plant leaves, recovering the boundary and further obtaining
the displacement field which establishes the growth kin-
ematics. Our method extracts information not only on the
cell proliferation which is often restricted to the nutrient
penetration but also on the biological complexity, such as
tissue remodeling [43]. This formalism allows us to evaluate
the growth accumulation in case of isotropy or anisotropy.
Veins can also be simulated and their relationship with
nutrient contents can be established. Understanding the
stress-free morphological evolution induced by growth is
not limited to the morphogenesis of leaves or other bio-
logical tissues, but can also shed light on the design of new
biomimetic soft devices.
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