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The relativistic Dirac equation covers the fundamentals of electronic phenomena in solids and as such it
effectively describes the electronic states of the topological insulators like Bi2Se3 and Bi2Te3. Topological
insulators feature gapless surface states and, moreover, magnetic doping and resultant ferromagnetic
ordering break time-reversal symmetry to realize quantum anomalous Hall and Chern insulators. Here, we
focus on the bulk and investigate the mutual coupling of electronic and magnetic properties of Dirac
electrons. Without carrier doping, spiral magnetic orders cause a ferroelectric polarization through the spin-
orbit coupling. In a doped metallic state, the anisotropic magnetoresistance arises without uniform
magnetization. We find that electric current induces uniform magnetization and conversely an oscillating
magnetic order induces electric current. Our model provides a coherent and unified description of all those
phenomena. The mutual control of electric and magnetic properties demonstrates implementations
of antiferromagnetic spintronics. We also discuss the stoichiometric magnetic topological insulator
MnBi2Te4.
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Relativistic effects on electrons, exemplified by the
spin-orbit coupling, mingle the spin and orbital degrees
of freedom and bring the interplay between electric and
magnetic properties. Multiferroics is a manifestation in
insulators, where a magnetization induces an electric
polarization and vice versa [1–4]. In metals and semi-
conductors, the spin-orbit coupling enables control of
electrons’ spin from electric current, and it is essential
for spintronics. For example, the Rashba spin-orbit cou-
pling causes the Edelstein effect [5], which produces spin
polarization by electric current in inversion-breaking sys-
tems. Spintronics conventionally utilizes ferromagnets.
Antiferromagnetic spintronics recently has gained more
interest owing to various advantages such as fast response,
no stray field, and large magnetotransport effects [6–8].
However, because the net magnetization vanishes in an
antiferromagnet, manipulation and detection remain essen-
tial challenges.
A magnetization pattern in general configures a spiral

order with strong correlation or with magnetic elements
with a fixed magnetic moment. Magnetism breaks time-
reversal symmetry T even though a spiral magnetic order
may have no net magnetic moment. In addition, a spiral
order is characterized by a wave vector Q and often breaks

inversion symmetry P regardless of the underlying crys-
talline symmetry.
We study various phenomena related to broken T and P

symmetries in magnetic Dirac materials in a unified
fashion. The spin-orbit coupling naturally arises from the
Dirac equation; as it abides by relativity, the coupling
between the electric and magnetic degrees of freedom is
contained. There are various materials where the Dirac
Hamiltonian becomes the effective model near the chemical
potential. Examples are the three-dimensional topological
insulators (TIs) Bi2Se3 and Bi2Te3 [9–14]. With an
insulating bulk, the topologically protected surface states
determine the physical properties, which have been exten-
sively studied [15,16]. In the doped case, however, the bulk
states dominate the electric and magnetic properties of the
system. When a magnetic order is present, the bulk of TIs
offer an ideal laboratory to study the Dirac electrons with
the exchange coupling to the magnetic moments.
In this Letter, we consider the electromagnetic response

of a gapped Dirac system coupled to local magnetic
moments. Our model describes the magnetically doped
TIs Bi2Se3 and Bi2Te3 [17–21], where the magnetic
dopants couple locally to the Dirac electrons via the
exchange coupling. We first show that an inversion-
breaking magnetic order can generate a finite electric
polarization in the insulating state while the pristine
electronic system is centrosymmetric. In a doped metallic
state, we reveal that a magnetic order can induce aniso-
tropic resistance. In addition, an electric field produces a
uniform magnetization and in reverse an oscillating mag-
netic order generates direct current. We also discuss the
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intrinsic magnetic TI MnBi2Te4 [22–25] and the possibility
of inversion-breaking magnetic orders in magnetic TIs.
Model.—We consider a three-dimensional isotropic gap-

ped Dirac system. Such an electronic system is realized, for
example, in the bulk of TIs. For the TIs Bi2Se3 and Bi2Te3,
the energy bands near the Γ point describe the low-energy
behavior, which consists of the spin σ and p orbitals τ from
Bi (τz ¼ þ1) and Se=Te (τz ¼ −1). To linear order in
momentum k, the k · p Hamiltonian becomes

H0ðkÞ ¼ mβ þ α · k; ð1Þ
where the 4 × 4 matrices α ¼ στx and β ¼ τz satisfy the
anticommutation relations fαa; αbg ¼ fαa; βg ¼ 0 (a ≠ b)
and α2a ¼ β2 ¼ I (I: identity matrix) [10]. We set ℏ ¼ 1.
The pristine system preserves inversion P ¼ τz and time
reversal T ¼ iσyK with the complex conjugate operatorK:
PH0ðkÞP−1 ¼ H0ð−kÞ and T H0ðkÞT −1 ¼ H0ð−kÞ. The
kinetic term renders the spin and orbital coupling, so that
neither is a good quantum number. The sign of the mass can
be either positive or negative, which describes the band
inversion near the Γ point.
Magnetic dopants such as Mn, Cr, and Fe can substitute

the Bi sites of Bi2Se3 and Bi2Te3 [26]. Their local magnetic
moments break time-reversal symmetry and tend to form a
magnetic order. In a metallic state, the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction favors ferromagnetism
when the Fermi level is near the Dirac point, but in general a
complex magnetic order may occur depending on the Fermi

level, anisotropy, and inhomogeneity [27–30]. An effective
spin Hamiltonian reflecting such details of the system
determines the magnetic orderMðrÞ ¼ P

Q MQeiQ·r, which
we take as given in the following analyses.
The exchange coupling yields the local magnetic cou-

pling to the Dirac electrons. We note that the exchange
coupling is orbital dependent [31]:

H0ðrÞ ¼ −JMðrÞ · σ − J0β̃MðrÞ · σ: ð2Þ

Here, we introduce β̃ ¼ τzsgnðmÞ for later convenience.
The two coupling constants J and J0 describe the diffe-
rent strengths of the exchange coupling for the two
orbitals (τz ¼ �1).
Insulating state.—The bulk is insulating when the

chemical potential lies inside the mass gap. While the
electronic system preserves inversion, the magnetic order
may violate it, allowing a finite electric polarization. The
calculation of the polarization follows the method by King-
Smith and Vanderbilt [32]. We find an inversion-breaking
magnetic order produces a finite polarization of the Dirac
electrons

ΔP ¼ −
eJJ0

6π2jmj
X

Q

Im½M�
QðQ ·MQÞ�; ð3Þ

see Supplemental Material (SM) for details [33].
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FIG. 1. Electromagnetic properties of a magnetic TI. (a) Polarization in the insulating state and magnetization in the metallic state
induced by cycloidal and proper screw spiral magnetic orders. With the wave vector Qkẑ, the cycloidal spiral order is characterized by
MQ ∝ ŷ − iẑ and the proper screw spiral order by MQ ∝ x̂ − iŷ. For those two spiral orders, only the cycloidal order displays a finite
polarization according to Eq. (3). In the metallic state, the induced magnetization of the Dirac electrons mDirac varies with the electric
field; see Eq. (8). (b) Anisotropic magnetoresistance in the presence of a spiral magnetic order Eq. (7). The left panel is a three-
dimensional illustration of the anisotropic resistance R, and the center and right panels are the two distinct plane cuts, displaying the
anisotropy in the plane perpendicular to the local magnetic moments. (c) Uniform direct current induced by oscillating magnetic orders.
For oscillations forming cycloidal and proper screw patterns, the generated direct current is parallel to the wave vector of the magnetic
orders, following Eq. (9).
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The result conforms to the analyses of a Ginzburg-
Landau model [34] and a microscopic model [35], where
certain chiral magnetic orders induce a finite electric
polarization. For cycloidal and proper screw orders,
only the former induce a finite polarization perpendicular
to the wave vector in the magnetization plane according to
Eq. (3) [Fig. 1(a)]. The product JJ0 implies that the
strengths of the exchange coupling should be different
for the two orbitals for a finite polarization. The orbital-
dependent exchange coupling mixes the conduction and
valence bands by the magnetic order to realize a finite
polarization.

Effective Hamiltonian in the metallic state.—When the
system is metallic, we expect various responses to an
external electromagnetic field. As charges in the vicinity of
the Fermi surface are dominantly responsible to electro-
magnetic response, it is convenient to derive the effective
Hamiltonian for the bands that cross the Fermi energy. We
obtain the effective Hamiltonian by following the method
by Foldy and Wouthuysen [40], and Tani [41], which we
can calculate as a perturbative series in the large mass limit
jmj ≫ jϵFj (ϵF: the Fermi energy measured from a band
edge) [33]. In the presence of an external electromagnetic
field, the effective Hamiltonian to order m−2 is

Heff ¼ jmjβ̃ − eΦ − ðJ þ J0β̃ÞM · σ þ β̃

2jmj ðΠ ·Πþ eσ · BÞ þ e
8m2

ð∇ · EÞ þ e
8m2

½Π · ðσ × EÞ þ ðσ × EÞ ·Π�

þ J
8m2

fðΠ · σÞ½−i∇ ·M þ σ · ð∇ ×MÞ − 2iðσ ×MÞ ·Π� þ H:c:g

þ J0β̃
8m2

fðΠ · σÞ½−i∇ ·M þ σ · ð∇ ×MÞ þ 2M ·Π� þ H:c:g; ð4Þ

with Π ¼ pþ eA and the momentum operator p ¼ −i∇.
The charge of an electrons is −e. The electric and magnetic
fields are E ¼ −∇Φ − ∂A=∂t and B ¼ ∇ × A, respectively,
with the scalar potentialΦ and the vector potential A. In the
effective Hamiltonian, β̃ ¼ �1 signifies the energy bands:
β̃ ¼ þ1 corresponds to the conduction band and β̃ ¼ −1 to
the valence band. Although we originally define β̃ ¼
τzsgnðmÞ, it does not precisely label the orbitals after
the unitary transformation.
The last two terms of the effective Hamiltonian (4) reveal

the nontrivial coupling between the Dirac electrons and the
magnetic order, which is central to the following results. It
manifests the strong spin-orbital coupling embedded in the
Dirac Hamiltonian along with the exchange coupling. It
also modifies the current density operator J ¼ ie½r; Heff �
to become

J ¼ −
e
m
βp −

e
4m2

ðJ þ J0βÞð∇ ×MÞ

−
e

4m2
fJ½−2iM × p − σ × ðM × pÞ −M × ðσ × pÞ�

þ J0β̃½σðM · pÞ þMðσ · pÞ� þ H:c:g ð5Þ

at zero frequency. The second term with ∇ ×M has a
classical analog to the Ampère’s circuital law. The third
term contains the local magnetic momentM and the spin of
the Dirac electrons σ. It implies the possibility of the mutual
control of the electric and magnetic degrees of freedom as
we will see below.
Current under an electric field.—We perform perturba-

tive calculations using functional derivatives to calculate

response. We define the action S ¼ T
P

ωn

R
drψ̄ð−iωnþ

HeffÞψ , where T is the temperature and ωn ¼ ð2nþ 1ÞπT
is the fermionic Matsubara frequency. Using the partition
function Z ¼ R

Dψ̄Dψe−S, we obtain the current response
in the presence of an external electric field EðωÞ ¼ iωAðωÞ
(Φ ¼ 0) as

jaðωÞ ¼ hĵaðωÞi ¼
1

iω
δ2 lnZ

δAað−ωÞδAbðωÞ
�
�
�
�
E¼0

EbðωÞ: ð6Þ

We note that it is equivalent to the Kubo formula. We
calculate it perturbatively with respect to the exchange
couplings J, J0, and the inverse mass m−1, using the un-
perturbed Green’s function G0 ¼ ðω −H0

eff − ΣÞ−1 with
H0

eff ¼ mβ þ βk2=ð2mÞ and the self-energy Σ. We approxi-
mate Σ ≈ −isgnðωnÞ=ð2τÞ with a constant τ to describe
momentum relaxation in diffusive transport.
The magnetic order alters the current flow. When we

focus on a spatially uniform current, the lowest-order
corrections by the magnetic order appear as a product of
MQ and M�

Q. By differentiating Eq. (6) with respect to MQ

and M�
Q, we obtain the conductivity tensor

σabðωÞ ¼ σ0ðωÞδab þ σAHab ðωÞ − ηðωÞ
X

Q

jMQj2δab

þ η0ðωÞ
X

Q

ðM�
Q;aMQ;b þMQ;aM�

Q;bÞ; ð7Þ

where the coefficients are given by
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σ0ðωÞ ¼
e2jnðϵFÞjτω

jmj ;

ηðωÞ ¼ 2e2jnðϵFÞjτ3ω
jmj ðJ þ J0β̃Þ2;

η0ðωÞ ¼ e2jnðϵFÞjτω
8jmj3 ð−3J2 þ 5J02 − 2JJ0β̃Þ:

nðϵFÞ ∝ jϵFj3=2 is the carrier density (n > 0 for electrons and
n < 0 for holes). We introduce τω ¼ τ=ð1 − iωτÞ and retain
the leading-order contributions in m−1 in the expressions of
σ, η, and η0. When there is a uniform magneti-
zation M0 ≠ 0, it yields the anomalous Hall contribu-
tion σAHab ∝ εabcM0;c; see SM for details [33]. jðωÞ
depends only on MQ but does not directly depend on Q to
this order.
The spatial pattern of the magnetic order modifies the

conductivity at second order inM. The first correction with
ηðωÞ reduces the longitudinal conductivity, arising from the
exchange coupling −ðJ þ J0β̃ÞM · σ. The effect is isotropic
and it does not require the spin-orbital coupling inherent in
the Dirac Hamiltonian. It resembles the magnetoresistance
whereas there is no uniform magnetization by assumption.
On the other hand, the η0 term can be traced to the coup-
ling between the magnetic order and current, as we have
seen in Eq. (5). It gives rise to anisotropic corrections to the
conductivity tensor σabðωÞ depending on the magnetic
order.
The second-order corrections to the conductivity corre-

spond to the anisotropic magnetoresistance and the planar
Hall effect [42]. Both cycloidal and screw magnetic orders
show the anisotropic resistance R [Fig. 1(b)]: when the
magnetic order lies in the xy plane, the resistance is
different in the xy plane and along the z axis. We
emphasize, however, that the second-order effect in
Eq. (7) appears even without a uniform magnetization.
Therefore, when there is no uniform magnetization,
namely, σAHab ¼ 0, the conductivity tensor is symmetric:
σabðωÞ ¼ σbaðωÞ. On the other hand, the anomalous Hall
contribution is antisymmetric: σAHab ðωÞ ¼ −σAHba ðωÞ [43].
Magnetization by an electric field.—From the coupling

between the current and the spin degrees of freedom, we
expect that an electric field produces a finite magnetization
of Dirac electrons even when the magnetic order has no
uniform magnetization. We evaluate the spin expectation
value of the Dirac electrons hσi in the presence of an
external electric field E and the magnetic order M using
Heff . The uniform magnetization of the Dirac electrons is
given by mDirac ¼ −gμBhσi=2, where g is the g factor and
μB is the Bohr magneton. A perturbative calculation finds a
finite magnetization under a static and uniform external
electric field [33]

mDirac ¼ λð1Þ
X

Q

ðQ · EÞImðMQ ×M�
QÞ

þ λð2Þ
X

Q

fIm½ðM�
Q × QÞðMQ · EÞ�

þ Im½ðM�
Q × EÞðQ ·MQÞ�g ð8Þ

with

λð1Þ ¼ gμBenðϵFÞ
m2

τ3JðJ þ J0β̃Þ;

λð2Þ ¼ gμBenðϵFÞ
2m2

τ3ðJ2 − J02Þ:

Since the magnetization and the electric field transforms
differently under inversion, an inversion-breaking magnetic
order is necessary to induce magnetization by an electric
field [Fig. 1(a)]. It allows detection of an inversion-breaking
magnetic order through the magnetization by applying an
electric field. The change of the magnetization under an
electric field can be attributed to mDirac. The effect resem-
bles the Edelstein effect but it appears in the bulk of a TI,
where inversion is broken by a magnetic order. The exten-
sion to a time-dependence case is straightforward [33].
Current by an oscillating magnetic order.—We now

investigate whether an external magnetic field induces an
electric current. The magnetic field should vary in time as a
spatially uniform current cannot exist in the equilibrium.
The external magnetic field applied to a metallic system
with a magnetic order has the following two effects: it
couples to the itinerant electrons to induce cyclotron
motion; at the same time, it drives the Rabi oscilla-
tion and the Larmor precession of the local magnetic
moments.
We first check if a uniform oscillating magnetic field

BðωÞ induces a uniform current in the presence of a static
magnetic order. From the symmetry consideration, the
lowest-order contribution should have the form jaðωÞ ¼
κabcdBbðωÞMQ;cM−Q;d with κabcd linear in Q. However,
this mechanism is improbable. The conductivity tensor
Eq. (7) is insensitive to inversion breaking, so that the
cyclotron motion of the Dirac electrons would not yield a
uniform current. We calculate κijkl perturbatively and
observe that it vanishes to order QJ2nðϵFÞ=m2 [33].
We then examine current response by an oscillating

magnetic order. If it is finite, an external magnetic field
induces an electric current by making the local magnetic
moments oscillate.Wewrite the spatial and temporal depend-
ence of the magnetic order asMðr; tÞ ¼ P

QωMQωeiðQ·r−ωtÞ.
Here, we seek the uniform current response of the form
jaðω1 þ ω2Þ ¼ γabcðω1;ω2;QÞMQω1;bM−Qω2;c, where γabc
is linear in thewavevectorQ to capture the inversion breaking
by themagnetic order andhence to complywith the symmetry
constraint. As a second-order response, the output frequency
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is the sum of two input frequencies. We can calculate the
current response similarly to σabðωÞ [33]:

jðωÞ ¼
X

Qω1ω2

δω1þω2;ω½γðSÞðω1;ω2ÞQ × ðM1 ×M2Þ

þ γðAÞðω1;ω2Þ
× fJ½M1 × ðQ ×M2Þ þM2 × ðQ ×M1Þ�
þ J0β̃½M1ðQ ·M2Þ þM2ðQ ·M1Þ�g�; ð9Þ

where we denote M1 ¼ MQω1
, M2 ¼ M−Qω2

, and the coef-
ficients are

γðSÞðω1;ω2Þ ¼
e

8m2
nðϵFÞðJ þ J0β̃Þ2

× iðω1 þ ω2Þτω1þω2
ðω1τ

2
ω1

þ ω2τ
2
ω2
Þ;

γðAÞðω1;ω2Þ ¼ −
e

4m2
ðJ þ J0β̃ÞnðϵFÞðω1τ

2
ω1

− ω2τ
2
ω2
Þ:

γðSÞðω1;ω2Þ and γðAÞðω1;ω2Þ are symmetric and antisym-
metric under the exchange of ω1 and ω2, respectively.
γðAÞðω;−ωÞ corresponds to zero-frequency response, namely
direct current depicted in Fig. 1(c), and γðSÞðω;ωÞ to 2ω
response.
It is worth contrasting the current response in the metallic

state (9) with the polarization in the insulating state (3) as
they reflect different material properties. First, the current
response requires dynamics of the magnetic order whereas
the polarization is a thermodynamic quantity defined in the
equilibrium. The diffusive nature of the current is man-
ifested in the appearance of the lifetime τ. Second, the
current is carried by electric charges near the Fermi energy
and it is thus proportional to the carrier density. On the
other hand, the polarization only involves the quantities that
characterize the system, implying that it requires the
information of the entire band structure. Indeed, we cannot
obtain Eq. (3) from the effective Hamiltonian (4) but from
the original model (1).
As we have discussed, the local magnetic moments

oscillate under a time-dependent external magnetic field to
induce a uniform electric current. When the oscillation is
near resonance, we may expect a larger current response.
Since it is a second-order response with respect to the
magnetic order, the response should be peaked at the zero
frequency and double the resonance frequency. A magnetic
order might also be driven by the spin wave spectroscopy
technique [44–46]. An oscillating magnetic field is induced
by periodically aligned wave guides whereby the wave
vector of the magnetic field is designed.
Discussions.—We have revealed that electromagnetic

response of a magnetic TI manifests the entanglement of
the spin and orbital degrees of freedom and hence the
electric and magnetic properties. Particularly with an
inversion-breaking magnetic order, it allows a measurement

of electric properties through a magnetic probe and vice
versa, and suggest applications in spintronics.
In addition to the magnetically doped TIs, we can

consider the stoichiometric magnetic TI MnBi2Te4. It
consists of stacking layers of TI films, bound by the van
der Waals interaction [22]. The low-energy effective
Hamiltonian is HSTIðkÞ¼mτxþvτzðẑ×σÞ ·k⊥þvzkzτy,
where the stacking direction is set along the z direction
and τz corresponds to the top and bottom TI surface states
of a constituent layer [36]. In SM [33], we confirm that an
inversion-breaking magnetic order induces an electric
polarization in the insulating state, and derive the effective
Hamiltonian for the metallic case to see that the current
operator is affected by the magnetic order.
Experimentally, a spiral magnetic order has not yet

been reported in magnetic TIs, but yet some experiments
reveal noncollinear magnetic orders. Stacking layers of
MnBi2Te4 realize a canted antiferromagnetic order [47],
and alternating stacks of MnBi2Te4 and Bi2Te3 lead to a
variety of heterostructures ðMnBi2Te4ÞmðBi2Te3Þn [48].
The topological Hall effect is observed in the magnetic
and nonmagnetic topological insulator heterostructures
CrxðBi1−ySbyÞ2−xTe3=ðBi1−ySbyÞ2Te3 and a theory attrib-
uted its origin to a Néel-type skyrmion, consisting of the
superposition of the local three spiral orders [37]. The
topological Hall effect attributed to skyrmions is also
observed in Mn-doped Bi2Te3 topological insulator films
[49]. Those observations suggest that various magnetic
orders may appear by different stacks and material
compositions.
We now estimate the magnitude of the effects that

we have discussed using the material parameters of
CrxðBi1−ySbyÞ2−xTe3 [37]: m ¼ −300 meV, J ¼ −5 meV,
J0 ¼ 1 meV, and the velocity v ¼ 5.0 × 105 m=s; see SM
for details [33]. The magnetic moment per Cr atom is
M ≈ 3μB. We set ϵF ¼ −100 meV. The RKKY interaction
would form a magnetic order in the metallic state with the
wave number Q ¼ 2kF ≈ 1.5 × 109 m−1. We estimate
τ ≈ 5 × 10−15 s from the longitudinal conductivity
100 Ω−1 cm−1 with jnj ≈ 1.4 × 1019 cm−3. Then, the cor-
rections to the conductivity are −2ηM2 ≈ −8.7 Ω−1 cm−1

and 4η0M2 ≈ −0.4 Ω−1 cm−1 for the isotropic and aniso-
tropic parts, respectively. The magnetization induced by the
current density j ¼ 108 A=m is mDirac ∼ 10−4 A=m. The
current densities generated by an oscillating magnetic order
at 1 GHz are γðSÞQM2 ≈ 9.2 A=m2 for the sum frequency
generation and γðAÞJQM2 ≈ −2.3 × 105 A=m2. We note
that the former grows quadratically with frequency while
the latter does linearly. In the insulating state, the electric
polarization is ΔP ≈ 1.8 μC=m2 with the same Q. From
those estimates, the electronic response is more likely to be
observable that the magnetic one.
In addition to magnetic TIs, we also anticipate similar

current response in magnetic Weyl and Dirac semimetals,
where an emergent electromagnetic field plays a role as
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well as the Berry curvature [50–52]. A surface, an interface,
and a domain wall geometrically break inversion, and thus
the existence of a magnetic order can also induce various
response. Such structures without inversion support the
Dzyaloshinskii-Moriya interaction, which could contribute
to a chiral magnetic order to reveal the effects that we have
discussed.

This work was supported by JST CREST Grant
No. JPMJCR1874, Japan, and JSPS KAKENHI Grant
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